湖泊表面水温预测与可视化方法研究
DOI:
CSTR:
作者:
作者单位:

1.云南师范大学 信息学院昆明650500;2.西部资源环境地理信息技术教育部工程研究中心昆明650500;3.云南师范大学教务处昆明650500

作者简介:

通讯作者:

中图分类号:

X82TH89

基金项目:

国家自然科学基金(41761084)、国家863计划(2012AA121402)、教育部博士点专项基金(20115303110002)、云南省自然科学基金青年(2016FD020)项目资助


Lake surface water temperature prediction and visualization
Author:
Affiliation:

1. School of Information Science and Technology, Yunnan Normal University, Kunming 650500,China; 2. The Engineering Research Center of GIS Technology in Western China of Ministry of Education of China, Kunming 650500,China; 3. Teaching Affairs Department, Yunnan Normal University, Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    湖泊表面水温是水生态环境的重要因子,直接影响流域生态系统及生物多样性。准确获取湖泊表面水温、预测表面水温时空变化过程是控制和改善流域水生态环境的基础,同时也是预防和治理蓝藻水华爆发的关键。为此,以滇池为研究区,以2005~2016年10个水质监测站点的54个水质数据(水温、叶绿素a、pH、高锰酸盐指数、溶解氧等)为基础数据集,将支持向量回归(SVR)、主成分分析法(PCA)及反向传播人工神经网络(BPANN)3种算法相结合,组成混合预测模型,并将克里金插值法与地理信息系统相结合,实现滇池水温12年来历史变化过程的情景再现及未来5年变化趋势的情景模拟。研究结果表明,模型的平均相对误差为0.5%,均方根误差为1.452 3,R2=0.904 9,具有误差低、泛化高的综合预测性能;空间可视化分析结果表明,2005~2020年水温高于20℃的区域呈现北向南扩散趋势,蓝藻水华爆发可能性由局部性变为全面性,这与昆明市快速城镇化发展及全球气候变暖密切相关。

    Abstract:

    Lake surface water temperature (LSWT) is an important factor in aquatic environment, which directly affects watershed ecosystem and biodiversity. Precise LSWT measurement and prediction is essential to control and improve the aquatic ecological environment of the river basin, and is also the key to prevent and control the outbreak of cyanobacteria bloom. Focusing on Dianchi Lake, 54 water quality parameters (LSWT, chlorophyll a, pH, permanganate index, dissolved oxygen, etc.) of 10 water quality monitoring sites from 2005 to 2016 are used as the data set. A hybrid forecasting model is presented composed of εsupport vector regression (εSVR), principal component analysis (PCA) and back propagation artificial neural network (BPANN). Moreover, Kriging method is combined with geographic information system (GIS) to realize the scene reproduction of the historical changes of the Dianchi lake LSWT and water quality in the past 12 years and the trend simulation of the next 5 years. Results show that the average relative error of the model is 0.5%, the mean square error is 1.452 3, R2 is 0.904 9. Spatial visualization results indicate that the region with LSWT over 20 ℃ diffuses obviously from north to south. The outbreak of cyanobacteria bloom changes from locally to globally, which is related to the expansion of Kunming urbanization and meteorological environment.

    参考文献
    相似文献
    引证文献
引用本文

杨昆,喻臻钰,罗毅,商春雪,杨扬.湖泊表面水温预测与可视化方法研究[J].仪器仪表学报,2017,38(12):3090-3099

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-17
  • 出版日期:
文章二维码