动态场景下基于光流的语义 RGBD-SLAM 算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP242. 6 TH74

基金项目:

国家自然科学基金(62063033)项目资助


Semantic RGBD-SLAM in dynamic scene based on optical flow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统的同时定位与建图算法在复杂动态环境下容易受到动态目标干扰而导致定位精度差和建图错误的问题,提 出了一种动态场景下基于光流的语义 RGBD-SLAM 算法。 首先,通过优化的二维相邻帧透视矫正方法,对当前帧进行透视矫正 以补偿相机运动;然后,将矫正后的图像输入 RAFT-S 网络中,在获得低分辨率的稠密光流场后提取动态目标的掩码,并根据上 一帧掩码中动态目标的位置和速度信息,对当前掩码中的动态区域进行跟踪和优化,从而提取动态目标在每一帧中的精确区 域;最后,分离静态和动态特征点,通过最小化静态特征点的重投影误差,得到优化后的相机位姿,并结合轻量级语义分割网络 BiSeNetv2 提供的语义信息和相机提供的深度信息,构建无人的静态语义八叉树地图。 公开数据集 TUM 上的测试结果表明,本 文算法的绝对轨迹误差相对于 ORB-SLAM2 减少了 90% 以上,并能获取精确的动态区域掩码以及准确的语义地图,验证了该算 法在复杂动态场景中具有良好的定位精度和鲁棒性。

    Abstract:

    To address the problems of poor positioning accuracy and mapping error in the traditional simultaneous localization and mapping algorithms under the complex dynamic environments with dynamic objects, a semantic RGBD-SLAM algorithm in dynamic scenes is proposed, which is based on the optical flow. Firstly, the camera ego-motion is compensated by the optimized 2D perspective correction method based on adjacent frames. Secondly, by feeding the compensated perspective images into the RIFT-S network, the lowresolution dense optical flow field is obtained for extracting the current mask of the dynamic region. The dynamic regions in the current mask are tracked and optimized by using the position and velocity of the dynamic regions in previous mask. The accurate dynamic regions in each frame can be extracted. Finally, the static and dynamic features are separated, and the optimized camera pose is obtained by minimizing the reprojection error of the static feature points. The static semantic octree map without people is established by the depth data from camera and semantic information produced by the lightweight semantic segmentation network BiSeNetv2. Compared with ORBSLAM2, the test results on the public data set of TUM indicate that the absolute trajectory error of the proposed algorithm is reduced by more than 90% , and the accurate masks of dynamic regions and an accurate semantic map also can be obtained. Results show that the proposed algorithm has a good positioning accuracy and robustness under complex dynamic scenes.

    参考文献
    相似文献
    引证文献
引用本文

刘钰嵩,何 丽,袁 亮,齐继超.动态场景下基于光流的语义 RGBD-SLAM 算法[J].仪器仪表学报,2022,43(12):139-148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-04
  • 出版日期:
文章二维码