基于PSO_GRNN网络的肺内静态压力值预测方法* .txt
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

中图分类号: TH77N94514文献标识码: A国家标准学科分类代码: 5104020 .txt

基金项目:

*基金项目:吉林市科技局项目(201731199)、吉林省发展和改革委员会项目(2019C0581)资助 .txt


The method of pulmonary static pressure value prediction based on PSO_GRNN network .txt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:为了实现机械通气辅助医疗中依据病人个体差异控制呼吸机通气参量,分析了基于广义回归神经网络(GRNN)的呼吸系统力学模型,通过结合PSO_GRNN网络、数值积分和递推最小二乘法等实现呼吸系统模型的参数辨识。采用直接计算法实现单周期呼吸样本的肺静态压力值计算,并利用二阶多项式拟合体积值误差,计算10个吸气周期静态数据点的平均绝对值误差为0169 3 mL,计算10个呼气周期静态数据点的平均绝对值误差为0372 8 mL。采用PSO_GRNN网络实现多周期呼吸样本集的肺静态压力值预测,10个呼吸周期样本集的训练集平均误差为0000 9 kPa,测试集平均误差为0040 7 kPa。仿真实验结果表明PSO_GRNN网络在收敛速度、平均误差、运算速度等方面均优于PSO_BP网络。所用方法在机械通气辅助治疗时可以为医生设置呼吸机通气参量提供有效的参考依据。 .txt

    Abstract:

    Abstract:It needs to control ventilator parameters according to individual differences of patient in the auxiliary treatment of mechanical ventilation. In this study, the mechanical model of a respiration system based on general regression neural network(GRNN)are analyzed. To identify parameters of the respiratory system model, a fusion method based on PSO_GRNN, numerical integration and recursive least square is proposed. The static lung pressure value of singlecycle respiratory samples is calculated by direct calculation and the second order polynomial is used to fit the volume error. The mean absolute error of static data points for ten inhalation cycles is 0169 3 mL, and the mean absolute error of static data points for ten expiratory cycles is 0372 8 mL. PSO_GRNN is used to predict the static lung pressure of the multicycle respiratory sample set. For the ten sample sets of respiratory cycle, the average error of the training set is 0009 1 and the average error of the test set is 0406 5. Simulation results show that PSO_GRNN is better than PSO_BP in terms of convergence rate, average error and computation speed. The proposed method can provide an effective reference basis for doctors to set ventilator parameters during the mechanical ventilation treatment. .txt

    参考文献
    相似文献
    引证文献
引用本文

张玉欣,金江春植,白晶,周振雄 . txt.基于PSO_GRNN网络的肺内静态压力值预测方法* . txt[J].仪器仪表学报,2020,41(5):174-184

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-01
  • 出版日期:
文章二维码