Improved steel structure surface rust image segmentation method for U_Net network
DOI:
CSTR:
Author:
Affiliation:

1.Hubei Key Laboratory of Hydropower Machinery Design & Maintenance, China Three Gorges University, Yichang 443002,China;2.National Dam Safety Research Center, Wuhan 430010, China

Clc Number:

TP391.41;TN911.73

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to lighten the rust image segmentation network model and eliminate the interference of nonsingle feature background and similar feature backgrounds such as rust liquid, this paper replaces the encoded part of the U-Net network model with the MobilenetV3_large network, imports the pre-trained weights of the MobilenetV3_large network based on the ImageNet dataset, and replaces the ordinary convolution of the decoded part of the U-Net network model with a deep separable residual convolution. And add the attention-oriented AG module and the Dropout mechanism in the process of upsampling. Experimental results demonstrate that the improved U-Net network model designed in this paper exhibits significant advantages in rust image segmentation under non-uniform feature background and similar feature background interference such as rust liquids. The model size is reduced by 81.18% compared to the original U-Net network model, resulting in a decrease of floating point calculations by 98.34%. Additionally, the detection efficiency has improved by 3.27 times, increasing from less than 6 frames/s to 19 frames/s. While the network model is lightweight, the accuracy of the network model is 95.54%, which is 5.04% higher than the original U_Net network model.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 29,2024
  • Published:
Article QR Code