Ultrashortterm wind speed prediction model using LSTM networks
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

U298.12;U238

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Gale weather can easily cause highspeed train accidents such as derailment and rollover. Therefore, the ultra shortterm prediction of wind speed is of great significance for the safe operation of highspeed rail. A prediction model based on long shortterm memory (LSTM) networks is proposed in this paper. The maximum wind speed data per minute collected by WindLog wind speed sensor is preprocessed. The proposed model was trained using wind speed data of Haidian District, and the wind speeds 1, 5 and 10 min ahead were predicted. The mean absolute error (MAE) of 1min ahead prediction was 0467 m/s with the accuracy rate of 100%. The MAE of 5 min ahead prediction is 0543 m/s with the accuracy rate of 996%, the MAE of 10 min ahead prediction is 0627 m/s, and the accuracy rate was 988%. The experimental results show that the prediction model has better adaptability and higher prediction accuracy.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 04,2024
  • Published:
Article QR Code