Study of diagnostic method on series fault arc of mining electric connector
Author:
Affiliation:

1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China; 2. Faculty of Security, Liaoning Technical University, Huludao 125105, China; 3. State Grid Huludao Electric Power Supply Company, Huludao 125099, China

Clc Number:

TM501

  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to improve the reliability of the coal mine power supply system, the simulation experiment in different voltage, current, power factor and environmental relative humidity conditions is carried out. The influence of different experimental parameters on the arc fault is analyzed, eigenvector constituted by the number of passing zero, normalized variance and covariance of current signals of adjacent five cycles on series arc fault are extracted, and a diagnosis model of series arc fault is established based on random forest classification algorithm. The training samples and test samples constituted by eigenvector of the normal operation and fault arc current signals are served as the input of random forest model, which are sorted to further diagnose whether the series arc fault is occurred. The results show that the method can effectively realize the diagnosis of series arc fault on mining electric connector.

    Reference
    [1]刘晓明,徐叶飞,刘婷,等. 基于电流信号短时过零率的电弧故障检测[J]. 电工技术学报, 2015, 30(13): 125133. LIU X M, XU Y F, LIU T, et al. Arc fault detection based on shorttime zero crossing rate of current signal [J]. Transactions of China Electrotechnical Society, 2015, 30(13): 125133.
    [2]杨凯,张认成,杨建红,等. 基于分形维数和支持向量机的串联电弧故障诊断方法[J]. 电工技术学报, 2016, 31(2): 7077. YANG K, ZHANG R CH, YANG J H , et al. Series arc fault diagnosis method based on fractal dimension and support vector machine [J]. Journal of Electrical Engineering, 2016, 31 (2): 7077.
    [3]BAO J Q, ZHANG Y, DUAN ZH Q ,et al. Arc fault identification method based on fractal theory and SVM[C]. International Conference on Power System Technology, 2012:2022.
    [4]MA SH H, BAO J Q, CAI ZH Y, et al.Arc fault recognition method using box dimension and information dimension as discriminating features[C]. International Conference on Process Equipment, Mechatronics Engineering and Material Science, 2013:137120.
    [5]刘媛,邵文权,夏经德. 带并补电抗线路电弧性故障固有频率特征研究[J]. 国外电子测量技术, 2016, 35(5):4852. LIU Y,SHAO W Q,XIA J D. Analysis on inherent frequencies of transmission lines with shunt reactors in arc fault [J]. Foreign Electronic Measurement Technology, 2016, 35(5):4852.
    [6]LEZAMA J, SCHWEITZER P, WEBER S, et al. Frequency analysis to arcing detection and prototyping FPGA approach [C]. 59th IEEE Holm Conference on Electrical Contacts, 2013: 16.
    [7]PYKER R, SEHWEICKART D L, HORWATH J C, et al. An evaluation of diagnostic techniques relevant to arcing fault current interrupters for direct current power systems infuture aircraft [C]. IEEE Electrical Insulation Conferenceand Electrical Manufacturing Expo, 2005:126150.
    [8]刘晓明, 王丽君, 侯春光,等. 基于小波包能量熵的低压串联故障电弧诊断[J]. 沈阳工业大学学报, 2013,35(6):606612. LIU X M, WANG L J, HOU CH G, et al. Low voltage series arc fault diagnosis based on wavelet packet energy entropy [J]. Journal of Shenyang University of Technology, 2013,35(6): 606612.
    [9]刘艳丽, 郭凤仪, 王智勇,等. 基于信息熵的串联型故障电弧频谱特征研究[J]. 电工技术学报, 2015, 30(12):488495. LIU Y L, GUO F Y, WANG ZH Y, et al. Research on the spectral characteristics of series arc fault based on information entropy [J]. Transactions of China Electrotechnical Society, 2015, 30(12): 488495.
    [10]孙鹏, 董荣刚, 郑志成. 基于小波分析信号特征频段能量变比的故障电弧诊断技术研究[J]. 高压电器, 2010, 46(7):4650. SUN P, DONG R G, ZHENG ZH CH. Arc fault diagnosis technology based on the analysis of energy variation of signals characteristic frequency band with wavelet transform [J]. High Voltage Apparatus, 2010, 46(7): 4650.
    [11]郑昕,许志红. 低压串联型故障电弧通用诊断方法研究[J]. 电子测量与仪器学报, 2014, 28(9):991997. ZHENG X,XU ZH H. Research on universal diagnostic method for lowvoltage series arc fault [J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(9):991997.
    [12]缪希仁, 郭银婷, 唐金城,等. 负载端电弧故障电压检测与形态小波辨识[J]. 电工技术学报, 2012, 29(3):237244. MIU X R, GUO Y T, TANG J CH, et al. Detection and morphological wavelet identification of arc fault voltage at the load end [J]. Journal of electrical engineering, 2012, 29 (3): 237244.
    [13]张士文, 张峰, 王子骏,等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报, 2012, 29(6):290295. ZHANG SH W , ZHANG F, WANG Z J, etc. Series arc fault identification method based on energy produced by wavelet transformation and neural network [J]. Transactions of China Electrotechnical Society, 2012, 29(6): 290302.
    [14]PAN J J, ZHU H W, CHEN L SH. Timefrequency ridge analysis using on distinguish regular signal from arcfault signal[C]. IEEE International Workshop on Intelligent Energy System,2014:203208.
    [15]中国国家标准化管理委员会.电气火灾监控系统第 4 部分:故障电弧探测器 [S].北京:中国标准出版社,2012. The China National Standardization Management Committee. Part 4 of electric fire monitoring system: Arc fault detector [S]. Beijing: Standards Press of China, 2012.
    [16]李胜,张培林,佟若雄. 基于多类AdaBoost的故障诊断算法[J].电子测量技术,2011,34(8):101105. LI SH, ZHANG P L , TONG R X. Multiclass AdaBoost forfault diagnosis[J]. Electronic Measurement Technology,2011,34(8):101105.
    [17]贺思捷,刘大同,彭宇. 遥测数据驱动的无人机飞行状态识别方法[J].仪器仪表学报,2016,37(9):20042013. HE S J, LIU D T, PENG Y. Flight mode recognition method of the unmanned aerial vehiclebased on telemetric data[J]. Chinese Journal of Scientific Instrument, 2016,37(9):20042013.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:3761
  • PDF: 16930
  • HTML: 0
  • Cited by: 0
History
  • Online: September 16,2017
Article QR Code