Adaptive ensemble modeling for dynamic liquid level of oil well based on improved AdaBoost method
Author:
Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China; 2. College of Engineering,Bohai University, Jinzhou 121013, China

Clc Number:

TQ063

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    When the single soft sensor model is used for the dynamic liquid level prediction, there are many shortcomings such aspoor generalization ability, weak adaptive ability, etc. In order to solve these problems, a soft sensor modeling method based on AdaBoost ensemble learning algorithm is proposed in this paper. The proposed method focuses on effects of the prediction error to the weight of the modeling samples and weak learning machine, therefore which is more suitable for the regression model prediction.In practical production,dynamic and changing working conditions during operations may lead to failure of the soft sensor model. In order to solve this problem,a small amount of patrolmeasuring data of the dynamic liquid levelis used to evaluate the original model, and then the similarity principle is used to add new data on the basis of the original model. And on this basis the weight of the new data is used to update the weak learning machine to become the strong learning machine model to dynamically adapt to the new production conditions.The simulation results using the real operation data of the oil well show that the proposed method has strong adaptive ability for fluctuation in production and can improve the generalization ability and the prediction accuracy of the soft sensor model.

    Reference
    [1]李翔宇, 高宪文, 李琨,等. 基于多源信息特征融合的抽油井动液面集成软测量建模[J].化工学报, 2016, 67(6):24692479. LI X Y, GAO X W, LI K, et al. Ensemble soft sensor modeling for dynamic liquid level of oil well based on multisource information feature fusion[J].Journal of Chemical Industry and Engineering, 2016, 67(6):24692479.
    [2]李琨, 韩莹, 黄海礁. 基于IBHLSSVM的混沌时间序列预测及其在抽油井动液面短期预测中的应用[J].信息与控制, 2016, 45(2):241247. LI K, HAN Y, HUANG H J. Chaotic time series prediction based on IBHLSSVM and its application to shortterm prediction of dynamic fluid level in oil wells [J].Information and Control,2016, 45(2):241247.
    [3]李翔宇, 高宪文, 侯延彬,等. 基于在线动态高斯过程回归抽油井动液面软测量建模[J].化工学报, 2015, 66(6):21502158. LI X Y, GAO X W, HOU Y B, et al.Online dynamic Gaussian process regression for dynamic liquid level soft sensing of sucker rod pumping well[J]. Journal of Chemical Industry and Engineering,2015, 66(6):21502158.
    [4]刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收PSOLSSV建模[J].化工学报, 2016, 5(5):19821988. LIU J, SHAO CH, ZHU L. Modeling of cracking furnace yields with PSOLSSVM based on operating condition classification by transfer learning[J]. Journal of Chemical Industry and Engineering,2016, 5(5):19821988.
    [5]周丽春, 靳鑫, 刘毅,等. 即时局部建模在填料塔液泛气速预测的应用[J].化工学报, 2016, 67(3):10701075. ZHOU L CH,JIN X, LIU Y, et al.Justintime local modeling for flooding velocity prediction in packed towers[J]. Journal of Chemical Industry and Engineering, 2016,67(3):10701075.
    [6]赵超, 戴坤成,王贵评,等.基于AWLSSVM的污水处理过程软测量建模[J].仪器仪表学报,2015,36(8):17921800. ZHAO CH, DAI K CH, WANG G P,et al. Soft sensor modeling for wastewater treatment process based on adaptive weighted least squares support vector machines[J]. Chinese Journal of Scientific Instrument, 2015,36(8):17921800.
    [7]孙茂伟, 杨慧中. 基于改进Bagging算法的高斯过程集成软测量建模[J].化工学报, 2016, 67(4):13861391. SUN M W, YANG H ZH. Gaussian process ensemble softsensor modeling based on improved Bagging algorithm[J]. Journal of Chemical Industry and Engineering,2016, 67(4):13861391.
    [8]夏陆岳,王海宁, 朱鹏飞,等. KPCAbagging集成神经网络软测量建模方法[J].信息与控制, 2015,44(5):519524. XIA L Y, WANG H N, ZHU P F, et al. Softsensor modeling method using kernel principal component analysis bagging ensemble neural network [J].Information and Control, 2015, 44(5):519524.
    [9]KANKANALA P, DAS S, PAHWA A.AdaBoost+: An ensemble learning approachfor estimating weatherrelated outagesin distribution systems[J].IEEE Transactions on Power Systems,2014, 29(1):359367.
    [10]毕雪芹,惠婷.基于肤色分割与AdaBoost算法的人脸检测[J].国外电子测量技术,2015,34(12):8286. BI X Q, HUI T.Face detection based on skin color segmentation and AdaBoost algorithm [J].Foreign Electronic Measurement Technology, 2015,34(12):8286
    [11]焦晓璇,景博,黄以锋,等.基于小波包BP_AdaBoost算法的机载燃油泵故障诊断研究[J].仪器仪表学报,2016,37(9):19781988. JIAO X X, JING B, HUANG Y F, et al.Research on fault diagnosis for airborne fuel pump based on wavelet package and BP_AdaBoost algorithm[J].Chinese Journal of Scientific Instrument, 2016,37(9):19781988.
    [12]MATHANKER S K, WECKLER P R, BOWSER T J, et al.AdaBoost classifiers for pecan defect classification [J].Computers and Electronics in Agriculture, 2011, 77(1):6068.
    [13]WANG J, GAO L, ZHANG H, et al.Adaboost with SVMbased classifier for the classification of brain motor imagery tasks[M]. Berlin Heidelberg: Springer, 2011:629634.
    [14]刘元元,杨功流,李思宜. BPAdaBoost模型在光纤陀螺零偏温度补偿中的应用[J]. 北京航空航天大学学报,2014, 40 (2):235239. LIU Y Y, YANG G L, LI S Y. Application of BPAdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (2):235239.
    [15]寇鹏, 高峰. 几何转换Boosting回归算法及其在高耗能企业负荷预测中的应用[J].系统工程理论与实践, 2013, 3(7):18801888. KOU P, GAO F. Boosting regression method based on geometric conversion and its application to load forecasting in energyintensive enterprise[J].Systems Engineering Theory & Practice,2013,3(7):18801888.
    [16]田惠欣, 李坤, 孟博.一种用于软测量建模的增量学习集成算法[J].控制与决策,2015,30(8):15231526. TIAN H X, LI K, MENG B. An incremental learning ensemble algorithm for soft sensor modeling[J]. Control and Decision, 2015,30(8):15231526.
    [17]PATEL A J, PATEL J S. Ensemble systems andincremental learning[C]. International Conference on Intelligent Systems & Signal Processing, 2013: 365368.
    [18]王通, 高宪文,蒋子健. 基于黑洞算法的LSSVM的参数优化[J].东北大学学报:自然科学版, 2014, 35(2): 170174. WANG T, GAO X W, JIANG Z J.Parameters optimizing of LSSVM based on black hole algorithm [J].Journal of Northeastern University:Natural Science, 2014, 35(2): 170174.
    [19]刘毅, 金福江, 高增梁. 时变过程在线辨识的即时递推核学习方法研究[J].Acta Automatica Sinica, 2013, 39(5):602 609. LIU Y, JIN F J, GAO Z L. Online identification of timevarying processes using justintime recursive kernel learning approach[J].Acta Automatica Sinica, 2013, 39(5):602 609.
    [20]王通,高宪文, 刘文芳. 自适应软测量方法在动液面预测中的研究与应用[J].化工学报, 2014, 65(12):4898 4904.WANG T, GAO X W, LIU W F. Adaptive soft sensor method and application in determination of dynamic fluid level[J]. CIESC Journal, 2014, 65(12):4898 4904.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:3340
  • PDF: 16005
  • HTML: 0
  • Cited by: 0
History
  • Online: September 16,2017
Article QR Code