Stochastic resonance research with EMD denoising under Levy noise
CSTR:
Author:
Affiliation:

Communication and information engineering institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Clc Number:

TN911.7

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Empirical mode decomposition(EMD)method attenuates the signals’ energy and generates false signals in decomposing signal noise, which leads to incorrect detection results. In order to solve this problem, a stochastic resonance method under Levy noise after denoised by EMD decomposition is presented in this paper. After decomposed by EMD, the noisy signals are handled by overlaying, averaging and resampling to meet the condition of stochastic resonance. An adaptive algorithm is used to optimize system parameters, and then the processed signal can generate stochastic resonance in bistable system to achieve precise detection. The theoretical analysis and experimental results prove that the method can detect singlefrequency signal and multifrequency signal under the same characteristic exponent with the Levy noise. The experimental results demonstrate that the SNR of singlefrequency signal can increase 14 dB in the case of SNR of -28 dB. The spectral amplitude of the 5 Hz spectrum is increased from 311.8 to 724 and 10 Hz spectrum amplitude is increased from 138.9 to 143.2. This method that reduces the residual noise energy and false signal can improve the signal energy in a complex noisy condition. Compared to EMD decomposition which cannot determine the signal components, this method can achieve the detection effect better.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: July 20,2017
  • Published:
Article QR Code