Theoretical modeling and simulation analysis of electrostatic loudspeaker based on graphene membrane
CSTR:
Author:
Affiliation:

School of Mechatronic Engineering, National University of Defense Technology, Changsha 410073, China

Clc Number:

O321;TN912.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem that the lack of theoretical instruction lied in the design of the new type electrostatic loudspeaker based on graphene membrane, theoretical modeling and simulation analysis are conducted on electrostatic graphene loudspeaker. Based on the working principle of an electrostatic loudspeaker, the vibration characteristic of a graphene membrane is calculated with the massspringdamper system model. The influence of the size, thickness and stress of the membrane to the vibration characteristic is analyzed. A finite element model of the electrostatic graphene loudspeaker is built with COMSOL software. The comparison is made among loudspeakers with different size, thickness and stress in the simulation analysis, which verifies the accuracy of the theoretical model. The results show that the graphene membrane with larger radius, thinner thickness and smaller strain will contribute to better frequency response characteristic of the electrostatic graphene loudspeaker.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 24,2018
  • Published:
Article QR Code