Abstract:Currently, there are lots of technical difficulties in the measurement of transient electromagnetic pulses. In order to solve the problem of narrow dynamic range of transient electric field measurement, an optical fiber electric field sensor that can adaptively adjust the measurement range was developed. Firstly, the monopole PCB antenna was modeled on the CST platform, and its electromagnetic characteristics and size effects were simulated. Then, the automatic gain control (AGC) circuit of the transmitter was designed, and the threshold of AGC circuit was adjustable. Quadratic interpolation was used to compensate for transmitter ’ s non-linearity. The transimpedance amplifier of the receiver were optimized to make its noise in the microvolt level. The sensor was calibrated and tested using the standard field method, and the uncertainty was quantitatively calculated. The test results show that the input dynamic range of the sensor reaches 54 dB, the average response time is less than 3 ns, the linear correlation is 0. 98, the sensitivity is 0. 025 V/ (kV· m -1 ), and the extended uncertainty is 2. 67. The sensor can meet the electromagnetic environment measurement of lightning pulses and partial discharge positioning.