Massive MIMO signal detection based on improved Richardson method
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TN929

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the detection of massive multiple-input multiple-output systems, the minimum mean square error algorithm can obtain approximately optimal detection performance, its complexity is very high and cannot guarantee the real-time detection of the signal. An improved Richardson signal detection method is proposed, which uses the steepest descent and the whole-correction method to improve the performance of the Richardson algorithm. The steepest descent can provide more efficient search paths and obtain different approximate solutions, in order to improve the accuracy of the algorithm, the whole-correction method is used to modify the different approximate solutions, so that the convergence speed is faster, and the complexity of the algorithm is reduced from the order of magnitude O(K 3 ) to O(K 2 ) . Simulation results show that the proposed algorithm can approach MMSE with only 3 iterations, which reduces the complexity and improves the BER performance.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 15,2023
  • Published:
Article QR Code