2024, 38(5):169-177.
摘要:各种原因使得工业现场设备状态监测的首选测量信号是声信号时,提出一种基于声信号的设备状态监测方法显得尤为必要。以某型离心泵为依据对象,对现场采集的声信号提取梅尔倒谱系数(MFCC)作为信号的初始特征,然后计算这些MFCC初始特征的散布熵(DE)值,并通过主成分分析法(PCA)对矩阵进行降维,从而构造特征矩阵。利用蝙蝠优化算法(BA)对支持向量机(SVM)的惩罚系数与核函数参数进行优化,对离心泵的多种故障工况开展诊断,并与多种诊断方法进行比较。实验结果表明,经过BA优化后的模型在诊断准确率上提高了21.7%;在该模型的基础上利用DE对MFCC提取的信号进行深度挖掘,使模型诊断的准确率提高2.05%。
2023, 37(1):12-20.DOI: 10.13382/j.issn.1000-7105.2023.01.002
摘要:针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于 RCMDE-XGBoost 海面小目标检测方法。 利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入 XGBoost 网络进行特征分类,通过模型训练,实现海面小目标检测。 利用 IPIX 雷达实测数据库,在#54、#311、#320 海情 HV 极化方式下检测率分别达到了 93. 33%、92. 38%、95%,相较于图连通密度检测法平均提升 12%,证明了 RCMDE-XGBoost检测方法有效。
2021, 35(4):169-176.
摘要:对单向阀早期微弱故障进行诊断可预防高压隔膜泵因单向阀磨损击穿无法正常工作而造成经济损失及安全事故。 针对往复式高压隔膜泵单向阀早期微弱故障特征不明显且受大量噪声干扰的问题,提出基于复合多尺度波动散布熵( compositemultiscale fluctuation dispersion entropy, CMFDE)的单向阀早期微弱故障诊断方法。 首先,用正切 S 型替换 CMFDE 方法中的正态分布函数映射,提高 CMFDE 的抗噪性;其次,计算振动信号的复合多尺度波动散布熵值,构建特征矩阵,并将其输入支持向量机(support vector machine, SVM)分类器中进行故障诊断;最后,利用单向阀实际工程数据验证该方法的有效性,并进行对比实验。 实验结果与对比分析表明,不需对单向阀原始信号进行降噪,简化了诊断过程。 复合多尺度波动散布熵可精确反映单
2020, 34(7):15-24.
摘要:针对传统特征指标评估轴承性能退化状态时可靠性、敏感性低的问题,提出一种基于散布熵和余弦欧氏距离的滚动轴承性能退化评估方法。 首先,将待测滚动轴承振动信号分为健康数据和测试数据,分别对其进行集成经验模态分解( ensembleempirical mode decomposition, EEMD),得到若干本征模态分量(intrinsic mode function, IMF),计算各 IMF 分量与原信号的相关系数,并根据相关系数准则选择 IMF 分量重构信号;然后,计算重构信号的散布熵,通过结合欧氏距离和余弦距离得到健康数据和测试数据散布熵之间的余弦欧氏距离作为退化指标;最后,利用切比雪夫不等式计算余弦欧氏距离健康阈值,评估轴承性能退化状态。 实验结果表明,利用散布熵之间的余弦欧氏距离可以有效、及时地判断轴承性能退化状态,并且与其他指标相比,其敏感性、鲁棒性更高,能够更好地刻画滚动轴承性能退化趋势,为滚动轴承性能退化评估提供新的解决方法。