2017, 31(3):338-342.DOI: 10.13382/j.jemi.2017.03.002
摘要:在标准谱聚类分析算法中,基于欧氏空间的度量不能完全反映数据集合复杂的空间分布特性,导致聚类结果不够准确。而使用流形空间能够更准确的描述数据之间的几何结构关系。在基于规范化拉普拉斯矩阵的谱聚类算法基础上,研究Grassmann流形的光滑曲面的空间表达方式,应用适合度量数据点之间距离的特性,提出基于Grassmann距离度量的改进的谱聚类分析算法,在流形空间上分析待聚类数据点之间的相似性。实验结果表明,该算法不仅能够对分布在相同或不同子空间上的数据进行有效聚类,而且能够对具有复杂几何结构的数据集合进行分析,在流形空间上进行有效聚类。