查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 基于神经网络的星敏支架指向倾角监测方法

      2022, 36(11):1-8.

      关键词:星敏支架形变监测深度学习倾角预测
      摘要 (1091)HTML (0)PDF 7.50 M (2040)收藏

      摘要:针对星敏支架热致变形导致其指向精度降低的问题,提出了一种基于神经网络的指向倾角监测方法。 首先,分析星敏支架结构特征,搭建星敏支架指向倾角预测系统,采集星敏支架结构形变和倾角变化数据,并对实验数据进行预处理;其次,构建深度神经网络模型,将星敏支架模型各测量点的应变信息作为输入变量,并使用 Adam 优化算法更新网络参数,经训练迭代后得到指向倾角预测模型;然后针对传统深度神经网络收敛速度慢、容易产生局部最小值等局限性,使用遗传算法对深度神经网络的超参数进行优化,以提升神经网络的训练速度;最后使用测试集数据对星敏支架指向倾角变化进行预测,分析该模型在不同温度条件下对星敏支架指向倾角监测的准确率。 实验结果表明,优化后深度神经网络模型的指向倾角预测方法的平均误差为 0. 20″,且倾角预测精度明显优于传统算法,证明利用深度学习方法实现星敏支架指向倾角监测具有可行性。

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份