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摘　 要:针对传统轨迹规划算法在狭长空间规划成功率低、自适应程度差等问题,提出一种基于虚拟障碍物决策的自适应两阶

段轨迹规划方法。 首先,通过动态规划和二次规划完成无人车辆的路径规划和速度规划;其次,提出了一种自适应聚集采样策

略解决了狭长空间较难通过的问题;最后,构建了一种基于随机森林的虚拟障碍物决策模型提升了无人车辆在不同会车情况决

策的合理性。 在 Carla(car
 

learning
 

to
 

act)仿真平台的结果表明,相比于传统方法,该方法在狭窄区域的静态多障碍物避障时路

径长度、路径曲率分别降低了 2. 4%、85. 6%,规划成功率、安全性及其稳定性分别提高了约 20%、20. 6%和 44. 9%;在狭窄区域

的动态多障碍物避障时路径长度、路径曲率分别降低了 8. 3%、76. 4%,规划成功率、安全性及其稳定性分别提高了约 36%、
78. 2%和 45. 3%。 最后,将方法部署到实际无人车辆中,在狭长的走廊场景设置障碍物进行测试,验证了方法的有效性。
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Abstract:To
 

address
 

the
 

limitations
 

of
 

traditional
 

trajectory
 

planning
 

algorithms
 

in
 

confined
 

spaces,
 

such
 

as
 

low
 

planning
 

success
 

rates,
 

poor
 

adaptability,
 

and
 

deviations
 

from
 

human
 

driving
 

habits,
 

this
 

paper
 

proposes
 

an
 

adaptive
 

two-stage
 

trajectory
 

planning
 

algorithm
 

integrated
 

with
 

virtual
 

obstacle
 

decision-making.
 

The
 

first
 

stage
 

combines
 

dynamic
 

programming
 

and
 

quadratic
 

programming
 

to
 

achieve
 

path
 

planning
 

and
 

velocity
 

optimization
 

for
 

autonomous
 

vehicles.
 

Subsequently,
 

an
 

adaptive
 

aggregation
 

sampling
 

strategy
 

is
 

introduced
 

to
 

resolve
 

navigation
 

challenges
 

in
 

narrow
 

environments.
 

Finally,
 

a
 

random
 

forest-based
 

virtual
 

obstacle
 

decision
 

model
 

is
 

developed
 

to
 

enhance
 

decision-making
 

rationality
 

under
 

diverse
 

vehicle
 

interaction
 

scenarios.
 

The
 

results
 

on
 

the
 

simulation
 

platform
 

Carla
 

show
 

that,
 

compared
 

with
 

the
 

traditional
 

method,
 

the
 

path
 

length
 

and
 

path
 

curvature
 

of
 

the
 

proposed
 

method
 

are
 

reduced
 

by
 

2. 4%
 

and
 

85. 6%
 

respectively,
 

and
 

the
 

success
 

rate
 

of
 

planning,
 

safety
 

and
 

stability
 

are
 

improved
 

by
 

about
 

20%,
 

20. 6%
 

and
 

44. 9%
 

respectively
 

in
 

the
 

static
 

multi-obstacle
 

avoidance
 

in
 

narrow
 

areas.
 

In
 

the
 

dynamic
 

multi-obstacle
 

avoidance
 

in
 

narrow
 

areas,
 

the
 

path
 

length
 

and
 

path
 

curvature
 

are
 

reduced
 

by
 

8. 3%
 

and
 

76. 4%,
 

respectively,
 

and
 

the
 

planning
 

success
 

rate,
 

safety
 

and
 

stability
 

are
 

improved
 

by
 

about
 

36%,
 

78. 2%
 

and
 

45. 3%,
 

respectively.
 

Finally,
 

the
 

method
 

was
 

deployed
 

to
 

the
 

actual
 

unmanned
 

vehicle,
 

and
 

the
 

obstacles
 

were
 

set
 

up
 

in
 

the
 

narrow
 

and
 

long
 

corridor
 

scene
 

for
 

testing,
 

which
 

verified
 

the
 

effectiveness
 

of
 

the
 

method.
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0　 引　 言

　 　 随着人工智能、电子通信等高新技术的迅猛发展,无
人驾驶技术在全球范围内取得了显著的进步和成果。 轨

迹规划技术作为无人驾驶的重要技术组成,不仅是保障

车辆安全行驶的核心,还决定了其能否高效到达目的地。
轨迹规划的任务在于当无人车辆在行驶过程中遇到障碍

物后规划一条安全、无碰撞的轨迹,这条轨迹包含位置、
速度、时间、加速度等信息,便于控制模块进行控制。 典

型方法包括基于采样的方法、基于优化的方法、基于搜索

的方法和基于几何曲线的方法[1] 。 在实际应用中,由于

较低的计算复杂度和较高的灵活性,先采样、后优化的两

阶段轨迹规划方法在智能驾驶领域备受关注[2] 。
近年来,许多学者也提出了轨迹规划相关的方法。

文献[3]提出了一种拟水流算法,通过拟水流避障算法

和拟病毒算法进行避障,减少了寻路时间;文献[4]考虑

了车辆动力学约束和周围车辆的运动信息以及安全距

离,提出了一种基于 5 次多项式的线性规划轨迹曲线模

型,以实现更加高效和安全的换道操作;文献[5]通过结

合先验知识和运动学约束在速度规划空间进行自适应采

样,使用动态规划算法计算最低代价路径并构建二次规

划问题进一步优化此路径;文献[6]
 

提出一种融合改进

人类学习优化算法和动态窗口算法的路径规划算法,实
现动态避障;文献[ 7] 提出了一种改进的模型预测控

制(model
 

predict
 

control,
 

MPC)轨迹规划方法,用于自动

驾驶车辆在不确定环境中的安全行驶;文献[8]考虑了

道路摩擦和车辆速度对自动驾驶车辆的影响,同时兼顾

了行驶安全和乘客舒适性,并通过构建七阶多项式函数

来确保规划轨迹的连续性;文献[9]提出了一种基于车

辆底盘全局动力学的轨迹规划方法,旨在解决现有方法

在考虑车辆动力学高非线性时可能引起的操控不稳定问

题;文献[10] 结合了图搜索法和凸优化技术,能够在存

在多边形障碍的环境中为动态系统规划出时间最优、距
离最优和能量最优的轨迹。

现有的算法大多聚焦于宽敞的马路场景,然而在现

实中常常会有狭长的道路和空间,例如地下停车场、巷道

等,这些场景同样也需要无人车辆的应用,而对于这些场

景轨迹规划的研究还较少。 另外,在决策方面,轻决策方

法占据主流,然而轻决策方法在一些场景下并不符合人

类的驾驶习惯。 因此,本文针对狭长空间无人车辆轨迹

规划系统,提出一种基于虚拟障碍物决策的自适应两阶

段轨迹规划方法。 本文基于先采样、后优化的思想,首
先,采用动态规划和二次规划完成对无人车辆的路径规

划和速度规划;其次,在采样阶段提出了一种自适应聚集

采样策略,能够使得规划器在狭窄路段的采样更加聚集

于可行驶区域;然后,构建了一种基于随机森林的虚拟障

碍物决策模型,使得规划器能够在无人车辆遇到不同的

会车情况自适应做出合适的决策,例如超车、跟车、停车

避让等。

1　 两阶段轨迹规划的基本原理

　 　 本文所用两阶段轨迹规划方法分为采样和优化两个

阶段,即首先在 Frenet 坐标系下进行采样,再通过动态规

划和二次规划完成对轨迹的进一步优化。
1. 1　 Frenet 坐标系

 

　 　 面对结构化道路,局部规划的空间首先会受到车道

形状和范围的约束,采用笛卡尔空间对车辆行驶状态进

行表达,规划任务会十分复杂,采用 Frenet 坐标系进行表

达,相对会比较简单[11] 。 Frenet 坐标系是一种运动轨迹

规划坐标系,被广泛应用在汽车自动驾驶领域[12] 。 如图

1 所示,Frenet 坐标系以参考线和垂直于参考线的方向作

为纵轴和横轴。 这种做法用车辆偏离参考线的距离( l
轴)和沿参考线方向行驶的距离( s 轴)来描述车辆的位

置,能够忽略道路曲率的影响,使得描述更加清晰明了,
也有利于后续的轨迹规划。

图 1　 笛卡尔坐标系和 Frenet 坐标系对比

Fig. 1　 Comparison
 

between
 

cartesian
 

and
Frenet

 

coordinate
 

systems

参考文献[5],能够得到车辆在笛卡尔坐标系下的

运动状态和和 Frenet 坐标系运动状态之间的转换公式,
这里不再赘述。
1. 2　 参考线及采样

　 　 在轨迹规划中,以参考线为基准进行采样是动态规

划前的重要步骤。 参考线通常代表一种理想的或初步规

划的路径,可以是道路中心线、导航路线或其他预定义路

径。 本文采用 A∗算法[13] 规划出一条全局路径作为参考

线。 而采样的目的是生成一系列离散点,用于离散化路

径规划问题,以便动态规划算法能够处理。
1. 3　 动态规划及二次规划

　 　 动态规划算法通过将路径规划问题分解为一系列更

小的子问题,递归求解这些子问题并存储其结果,从而减
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少了重复计算。 动态规划可以从包含障碍物的非凸空间

中开辟出凸空间,从而利用二次规划的方法对凸优化问

题进行求解,得到路径规划的最终路径[14] 。 二次规划问

题是一种非线性优化问题,其目标函数为二次型,而约束

条件为线性的,即:

min( 1
2
xTHx + f Tx)

s. t. Aeqx = beq,Ax ≤ b
(1)

式中: H 是二次项的参数矩阵; f 为一次项的参数矩阵;
Aeq 和 beq 为等式约束的参数矩阵; A 和 b 为不等式约束

的参数矩阵。

2　 基于虚拟障碍物决策的轨迹规划改进
方法

2. 1　 总体框架

　 　 本文提出的轨迹规划算法总体框架如图 2 所示。 首

先,基于 Frenet 坐标系进行路径规划,通过自适应聚集采

样策略进行采样,之后通过以 5 次多项式为采样点之间

的连接曲线进行路径动态规划,最后通过路径二次规划

进一步对所得路径进行优化。 其次,通过虚拟障碍物决

策模型,完成对静态障碍物和动态障碍物的处理,并根据

动态障碍物的速度进行相应的决策。 最后,经过速度规

划将生成的路径信息和速度信息进行整合,生成一条完

整的轨迹(包含路径、速度、加速度、时间、航向角)。
2. 2　 自适应聚集采样策略

　 　 在狭长的空间中,道路的宽度会不断发生变化,如果

采用相同间隔的采样点的话,则会产生许多无用的采样

点,从而降低了算法效率。 另外,无用的采样点也有可能

对动态规划的性能造成影响,在一些情况下会出现规划

失败的情况。
针对以上问题,本文提出了一种自适应聚集采样策

略(adaptive
 

aggregation
 

sampling,AAS),传统采样方式是

在 Frenet 坐标系下以固定的间隔在 s 方向和 l 方向进行

采样。 AAS 方法则在获取道路边界之后,根据道路的宽

度,将这些无用点重新分配到道路中去。 此外,AAS 方法

也能将采样到前方障碍物中的无用点重新分配到其他可

行驶区域中去。 如图 3 所示,设动态规划沿 s 方向的采

样间隔为 sint ,沿 l 方向的采样间隔为 l int ,采样点行数为

nr(nr 须为奇数),采样点的列数为 nc ,则传统的采样方

法在 Frenet 坐标系下的采样点坐标为:

( jsint, - 1
2
l int(nr - 1) + ( i - 1) l int) (2)

式中: j = 1,2,…,nc;i = 1,2,…,nr。

图 2　 所提轨迹规划方法的结构

Fig. 2　 Architecture
 

of
 

the
 

proposed
 

trajectory
 

planning
 

method

　 　 设道路宽度为 d j ,若道路中无障碍物,则自适应聚

集采样策略得到的采样点坐标为:

( jsint, - 1
2

d j

nr + 1
(nr - 1) + ( i - 1)

d j

nr + 1
) (3)

式中: j = 1,2,…,nc;i = 1,2,…,nr 。 若道路中存在障碍

物,则可将每个可行驶区域看作一条新的道路,即可通过

式(3)计算采样点坐标。
综上所述,AAS 方法能够在采样点总数不变的情况
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图 3　 自适应聚集采样策略示意图

Fig. 3　 Schematic
 

diagram
 

of
 

the
 

adaptive
aggregation

 

sampling
 

strategy

下,提高在不同道路下的采样效率。 另外,在狭长道路

中,采用 AAS 方法能够使采样在 l 方向的采样点间隔更

小,这更加有利于后续的动态规划及二次规划完成避障,
提高避障的成功率以及规划路径的质量。
2. 3　 基于五次多项式的动态规划算法

　 　 本文采用基于 5 次多项式的动态规划算法,如图 4
所示,通过构建 5 次多项式作为连接两点之间的曲线。
设两端点的坐标分别为 ( s1,l1) 和 ( s2,l2) ,则连接这两

点之间的 5 次多项式为:
f( s) = a0 + a1s + a2s

2 + a3s
3 + a4s

4 + a5s
5 (4)

为了确定 5 次多项式的系数,需要给定端点的边界

条件,即:
f( s1) = l1,f′( s1) = 0,f″( s1) = 0
f( s2) = l2,f′( s2) = 0,f″( s2) = 0{ (5)

这样的边界条件能够保证路径的连续性和平滑性,
提高路径的质量。

图 4　 基于 5 次多项式的动态规划

Fig. 4　 Dynamic
 

trajectory
 

planning
 

based
 

on
 

quintic
 

polynomials

对于路径规划,两点之间的代价由以下函数确定:
P = Psmooth + Pref + Pobs (6)

式中: Psmooth 表示平滑性代价; Pref 表示参考线代价; Pobs

表示障碍物代价。 设 ( s1i,l1i) 表示两端点 ( s1,l1)和( s2,
l2) 之间均匀采样的多个点,则平滑性代价为:

Psmooth = ω 11∑
i

( f′( s1i)) 2 + ω 12∑
i

( f″( s1i)) 2 +

ω 13∑
i

( f‴( s1i)) 2 (7)

式中: Psmooth 表示采样点的各阶导数的加权平方之和;
ω 11、ω 12、ω 13 分别表示各阶导数的权重,这项代价保证规

划的结果更加平滑。 参考线代价为:

Pref = ω 2∑
i
l2

1i (8)

式中: Pref 表示距参考线之间的距离的平方之和; ω 2 表示

参考线代价的权重,这项代价保证规划的结果更接近参

考线。 障碍物代价为:

Pobs = ω 3∑
i

∑
j
gobs(d ij) (9)

式中:

d ij = ( s1i - s j)
2 + ( l1i - l j)

2 (10)

gobs(d ij) =

0, d ij ≥ dsafe

ω 31

d ij
, ddanger < d ij < dsafe

+ ∞ , d ij ≤ ddanger

ì

î

í

ï
ïï

ï
ï

(11)

式中: d ij 表示采样点 ( s1i,l1i) 与坐标为 ( s j,l j) 的障碍物

之间的距离; ddanger 表示危险距离; dsafe 表示安全距离; ω 3

表示障碍物代价的权重; ω 31 表示单个障碍物的权重系

数。 这项代价能够保证规划的路径尽可能的远离障碍

物。 类似的,速度规划中采用以参考速度代价、加速度代

价、障碍物代价组成的代价函数。
2. 4　 基于终点代价的二次规划算法

　 　 如图 5 所示,蓝色曲线为动态规划得到的路径,通过

将障碍物进行隔离,得到能够进行二次规划的凸空间(即

红色虚线内)。

图 5　 路径二次规划空间

Fig. 5　 Path
 

quadratic
 

programming
 

space

本文引入规划终点时的路径状态代价以及动态规划

的结果代价,因此,本文采用以下的目标函数:
C = Csmooth + Ccenter + Cdp + Cend (12)

式中: Csmooth 表示平滑性代价; Ccenter 表示凸空间中心代

价; Cdp 表示动态规划代价; Cend 表示终点代价对于平滑

性代价。

Csmooth = ω 41∑
i
l2
i + ω 42∑

i
l′2

i + ω 43∑
i

l″2
i +

ω 44∑
i

( l″i +1 -l′i)
2 (13)

为了简化计算,以前向差分 ( l″i +1 - l′i) 作为三阶导

数计算其代价,这项代价保证规划结果更加平滑并且更

接近参考线。 凸空间中心代价为:

Ccenter = ω 5∑
i

( l i -
lmini + lmaxi

2
) 2 (14)

这项代价保证规划结果更加接近凸空间中心。 动态
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规划代价为:

Cdp = ω 6∑
i

( l i - ldpi ) 2 (15)

式中: ldpi 动态规划得到的路径的横向位置。 这项代价保

证结果更加接近动态规划路径。 终点代价为:
Cend = ω 7( l

2
n +l′2

n +l″2
n) (16)

这项代价保证规划终点的状态更加接近原点的

状态。
二次规划等式约束主要是对于 l i 的连续性约束。 由

于 l i 的三阶导数变化较小,因此假设连接 ( si,l i)和( si +1,
l i +1) 之间的曲线的三阶导数恒为常数 ( l″i +1 -l″i) / Δs,其
中 Δs = si +1 - si, 则这两点处的高阶导数均为 0,根据泰勒

展开并对两边同时求导,有:

1 Δs 1
3

Δs2 - 1 0 1
6

Δs2

0 1 1
2

Δs 0 - 1 1
2

Δs

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

l i
l′i
l″i
l i +1

l′i +1

l″i +1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=
0
0

é

ë
êê

ù

û
úú

(17)
以此类推可以得到所有 l i 所对应的约束条件。
不等式约束则是二次规划的范围不能超过动态规划

所开辟的凸空间范围。 考虑在实际中,车辆是有大小的,
因此需要建立车辆模型来对二次规划进行约束。

如图 6 所示,将无人车辆视为一个长方体模型。 其

中,点 P 为车辆质心,坐标为 ( si,l i),h1 和 h2 分别为质心

到车头和车尾的距离, d 为车辆宽度, θ 为车头方向与 s
轴之间的夹角, Q1、Q2、Q3、Q4 为车辆的四个顶点。 则能

够计算出 4 个顶点的 l 方向的坐标为:

lQ1
= l i + h1sinθ + d

2
cosθ

lQ2
= l i + h1sinθ - d

2
cosθ

lQ3
= l i - h2sinθ - d

2
cosθ

lQ4
= l i - h2sinθ + d

2
cosθ

ì

î

í

ï
ï
ï
ï
ï

ï
ï
ï
ïï

(18)

即对于每一个 l i 满足式(19)即可。
lminQ j

< lQ j
< lmaxQ j

,j = 1,2,3,4 (19)

2. 5　 虚拟障碍物决策策略

　 　 传统的两阶段轨迹规划方法是通过动态规划来完成

无人车辆的决策模块(即开辟凸空间)。 动态规划是一

种轻决策方法,这种决策方法虽然能够处理一些复杂场

景,但是在实际场景中不能很好的符合人类的驾驶习惯。
在图 7 所示场景中,自车(绿车)遇到障碍物车辆(蓝车)
时候,可以选择超车、跟车或者停车等决策,动态规划模

图 6　 车辆模型

Fig. 6　 Vehicle
 

model

块会根据障碍物车辆与自车的相对位置进行决策,然而

在实际中,驾驶人应根据障碍物车辆和自车速度的相对

关系执行不同的决策,而传统的阶段轨迹规划方法缺少

此环节。 因此,本文加入虚拟障碍物决策模块完成对自

车决策的优化。

图 7　 实际道路中的决策

Fig. 7　 Decision-making
 

in
 

real-world
 

roads

决策树是一种以树形数据结构来展示决策规则和分

类结果的模型,其通过对单个节点路径上的特征进行一

系列测试来实现分类, 因此被广泛用于建模决策过

程[15] 。 将多个决策树结合在一起,则形成了随机森林模

型[16] 。 对于分类模型,随机森林会将所有决策树中分类

结果数目最多的作为最终结果。 本文引入此模型完成对

虚拟障碍物的决策。 决策树模型分为迭代二叉树三

代(iterative
 

dichotomiser
 

3,ID3) 算法[17] 、C4. 5 算法[18] 、
分类回归树( classification

 

and
 

regression
 

tree, CART) 算

法[19] 等,这些算法各有特点,考虑到实际情况,本文采用

CART 算法。 CART 算法采用基尼指数作为分裂标准,其
决策树规模较小、生成决策树的效率较高,适合在实时运

行的无人车辆中完成决策。 在分类问题中,假设在样本

T 有 n 种类别,则基尼指数为:

G(T) = ∑
n

i = 1
p i(1 - p i) = 1 - ∑

n

i = 1
p2
i = 1 - ∑

n

i = 1
(
N i

S
) 2

(20)
式中: p i 表示类别 i在样本 T中出现的频率; N i 表示类别

i 在样本 T 中的个数; S 表示 T 中样本的个数。 具体的决

策流程即将自车速度、前车速度、两车间距等数据输入到



· 80　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

训练好的随机森林模型中,从而得到相应的决策(超车、
跟车或停车),并通过调整参考速度来指导速度规划进行

相应的决策。 此外,当决策模型判断需要超车时,会将前

车视作多个静态虚拟障碍物,从而采用 AAS 方法进行采

样,完成超车行为。

3　 实验验证

　 　 本文实验验证采用 Python 语言,在 Ubuntu 系统

Carla(car
 

learning
 

to
 

act)仿真器中完成仿真测试。 Carla
是在虚幻引擎 4( unreal

 

engine
 

4,
 

UE4)基础开发的一种

开源模拟器,能够很好地应用到自动驾驶各个模块的测

试和研究中[20] 。 设置 3 组仿真实验和实车测试完成对

本文算法的验证。 仿真实验平台的 CPU 为 Intel
 

Core
 

i9-
10940X,GPU 为 NVIDIA

 

TITAN
 

RTX。 实验中所使用的

车辆型号均为预设的 “ tesla
 

model
 

3”,车辆长度约为

4. 8
 

m,车辆宽度约为 2. 1
 

m。
3. 1　 静态多障碍物避障实验

　 　 分别用快速搜索随机树 ( rapidly-exploring
 

random
 

trees,RRT ) 算 法、 人 工 势 场 引 导 下 的 RRT ( artificial
 

potential
 

field-RRT, APF-RRT ) 算 法、 最 大 期 望 规

划(expectation
 

maximum
 

planner,EM-planner)算法以及本

文方法在不同的静态障碍物场景下进行 100 次实验,测
试 4 种算法的性能。

在实际中,避障路径的安全性能是首要考虑的,因此

提出距离障碍物最短距离(minimum
 

distance
 

of
 

obstacles,
MDO)参数来表示安全性能,该项数据通过计算所有规

划路径点(即车辆中心点)中距离最近障碍物中心点距

离的最小值得到,若 MDO 值过小,则实际控制中则有出

现碰撞的风险,平均 MDO 能够反映算法的安全性能,而
MDO 方差能够反映算法在安全性能上的稳定性,成功率

则直观反映了 100 次实验中“成功”规划路径的比例。 此

外,平均路径长度和平均路径曲率也能直观反映该条路

径的质量。 因此,分别测试不同算法的路径长度、路径曲

率、平均 MDO、MDO 方差以及成功率等指标。

　 　 1)复杂城市场景

首先测试算法在复杂城市场景下的性能,在 Carla 中

使用预设的场景“ Town05”,该场景为城市场景,道路较

为宽阔,设置复杂的障碍物来测试算法性能。 在道路中

设置了 4 辆障碍物车。
如图 8(a)所示,由于 RRT 算法的采样存在随机性,

因此得到的路径较为曲折,在实际中难以采用;如图

8(b)所示,在人工势场算法的引导下,RRT 算法的采样

随机性得到了改善,但是得到的路径质量依然较差;如图

8(c)所示,EM-planner 算法能够得到一条质量较好的路

径,然而由于其采样未考虑障碍物车辆,导致其规划的路

径出现了贴近障碍物的情况;如图 8( d)所示,本文方法

结合了 AAS 方法以及在动态规划、二次规划方面的改

进,得到的路径平滑性较高的同时,也兼顾了其安全性。

图 8　 Carla 复杂城市场景不同算法路径对比图

Fig. 8　 Comparison
 

of
 

paths
 

of
 

different
 

algorithms
for

 

complex
 

urban
 

scenes
 

in
 

Carla

由表 1 可得,本文方法相较于 RRT 算法、APF-RRT
算法和 EM-planner 算法,平均路径长度分别减少了约

12. 4%、11. 4% 和 9. 5%;平均路径曲率分别减少了约

95. 1%、 93. 0% 和 71. 5%; 平 均 MDO 分 别 提 高 了 约

14. 6%、3. 2%和 20. 6%;MDO 方差分别降低了约 79. 7%、
51. 9%和 44. 9%;成功率分别提高了 44%、36%和 20%。
整体看来,本文方法在路径长度、平滑性、安全性能、规划

成功率都相较于传统方法有显著提升。

表 1　 复杂城市场景不同算法性能对比

Table
 

1　 Performance
 

comparison
 

of
 

different
 

algorithms
 

in
 

complex
 

urban
 

scenes
算法 平均路径长度 / m 平均路径曲率 / m-1 平均 MDO / m MDO 方差 / m2 成功率 / %
RRT 92. 35 0. 75 1. 99 3. 69 45

APF-RRT 91. 26 0. 53 2. 21 1. 56 53
EM-planner 89. 41 0. 13 1. 89 1. 36 69

本文 80. 88 0. 037 2. 28 0. 75 89

　 　 2)狭窄乡村场景

在 Carla 中使用预设的场景“ Town07”,该场景为乡

村场景,存在狭窄的道路,适用于测试本文算法的性能。
在狭窄的道路上设置 3 辆障碍物车辆。
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如图 9(a)、( b) 所示,RRT 算法的随机性仍然使得

得到的路径较为曲折,这会为无人车辆的控制模块带来

很大的困难;如图 9( c)所示,EM-planner 算法虽然能够

成功规划一条平滑性较好的路径,但在狭窄的道路中,其
采样方法的局限性被放大,在规划中容易出现贴近障碍

物的情况;如图 9( d)所示,本文方法即使在狭长的空间

中,依然能够通过 AAS 方法进行自适应采样,并通过改

进的动态规划以及二次规划,得到一条质量较高的路径。
此外,在狭窄的空间中,EM-planner 算法的成功率仅为

58%,且平均 MDO 仅有 1. 99
 

m,而本文方法则达到了

83%和 3. 69
 

m,这表明本文方法更加适用于狭窄区域。
由表 2 可知,本文方法相较于上述算法,平均路径长

度分别减少了约 14. 1%、8. 1%和 2. 4%;平均路径曲率分

别减少了约 93. 9%、94. 1%和 85. 6%;平均 MDO 分别提

高了约 22. 6%、23. 4%和 85. 4%;MDO 方差分别降低了

约 84. 8%、78. 3% 和 56. 6%;成功率分别提高了 59%、
51%和 25%。

表 2　 狭窄乡村场景不同算法性能对比

Table
 

2　 Performance
 

comparison
 

of
 

different
 

algorithms
 

in
 

narrow
 

rural
 

scenes
算法 平均路径长度 / m 平均路径曲率 / m-1 平均 MDO / m MDO 方差 / m2 成功率 / %
RRT 120. 31 0. 75 3. 01 4. 55 24

APF-RRT 112. 54 0. 79 2. 99 2. 13 32
EM-planner 105. 93 0. 32 1. 99 1. 59 58

本文 103. 38 0. 046 3. 69 0. 69 83

图 9　 Carla 狭窄乡村场景不同算法路径对比

Fig. 9　 Comparison
 

of
 

paths
 

of
 

different
 

algorithms
for

 

narrow
 

rural
 

scene
 

in
 

Carla

3. 2　 虚拟障碍物决策实验

　 　 1)数据集处理

NGSIM(next
 

generation
 

simulation) 数据集包含了美

国公路上的所有车辆在一个时间段内的车辆数据[21] 。
本文使用 NGSIM 城市数据集作为原始数据。

为了将数据分为跟车、超车、停车 3 种类型,需要对

原有数据进行筛选。 本文分别参考文献[22-23]对车辆

跟驰行为和换道超车行为的研究方法对数据集进行处

理,筛选原则如表 3 所示。
表 3　 车辆行为的筛选原则

Table
 

3　 Screening
 

criteria
 

for
 

vehicle
 

behaviors

车辆行为 筛选原则

跟车行为

1. 自车与前车在同一车道

2. 车辆速度高于 4
 

km / h
3. 车头间距在 0~ 100

 

m 之间

4. 跟车时间在 20
 

s 以上

超车行为
1. 自车车道发生变化

2. 筛选出换道时刻前 10
 

s 的车辆数据

停车行为

1. 车辆速度低于 4
 

km / h
2. 自车与前车距离小于阈值

3. 筛选出停车时刻前 10
 

s 的车辆数据

　 　 通过筛选,得到跟车数据 135
 

387 个,超车数据

90
 

990 个,停车数据 62
 

313 个。 之后,对该数据进行处

理,得到自车速度、前车速度、与前车间距等作为随机森

林模型的输入。
2)模型训练及验证

将上述数据以 4 ∶ 1 的比例划分为训练集和测试集,
并通过 5 折交叉验证的方法对模型进行性能评估。

利用 python 中 sklearn 工具箱建立随机森林训练模

型。 为了寻求决策树中树的最大深度( max_depth,参数

A)、分割内部节点所需最小样本数(min_samples_split,参
数 B)、叶节点上所需的最小样本数(min_samples_leaf,参
数 C) 3 种参数的最优组合值,本文引入网格搜索算

法[24] 。 结果如表 4 所示,其中随机森林模型采用 10 个

决策树结合。
由表 4 可知,基于网格搜索算法的随机森林模型在

对车辆行为决策的预测准确率达到 72. 18%,相较于标准

决策树模型预测准确率提高了 11. 19%。
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表 4　 交叉验证集得分对比

Table
 

4　 Cross-validation
 

set
 

scores
 

comparison
模型 A B C 得分(预测准确率) / %

决策树
- - - 60. 99

36 244 56 71. 31( +10. 32)

随机森林
- - - 67. 63( +6. 64)

36 244 56 72. 18( +11. 19)

　 　 3)测试结果

利用训练的模型,在 Carla 中对其进行测试,结果如

图 10 所示。

在图 10(a)中,车辆先加速到参考速度,在感知到前

车后虚拟障碍物模块作出超车的决策,车辆则加速进行

超车,完毕后再减速到原有速度;在图 10( c)中,车辆在

感知到前车后虚拟障碍物模块作出跟车的决策,车辆则

减速至前车速度相同后保持;在图 10(e)中,车辆在感知

到前车后虚拟障碍物模块作出减速避让的决策,在减速

避让前车后,在加速到参考速度继续行驶。 结果表明虚

拟障碍物决策模块能够正确根据前车与自车关系完成相

应的决策。

图 10　 车辆不同行为图及速度变化图

Fig. 10　 Vehicle
 

behavior
 

diagrams
 

and
 

speed
 

profiles

3. 3　 动态多障碍物避障实验

　 　 最后测试本文方法在动态多障碍物场景下的性能从

而验证其有效性,由于 RRT 算法和 APF-RRT 算法难以

对动态障碍物进行处理,因此分别用 EM-planner 算法以
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及本文方法在不同的动态障碍物场景下进行 100 次实

验,测试两种算法的性能。
1)复杂城市场景

在 Carla“Town05”世界地图中设置 3 辆动态车辆,其
中两辆车以相同的速度并排行驶,另一辆车以较快的速

度行驶,测试不同算法性能。 图 11 所示为本文方法在动

态避障的全过程。 在图 11( a)中,车辆感知到前方两辆

车的位置和速度等信息,进行超车的决策;在图 11( b)
中,车辆根据规划的轨迹两个动态障碍物之间穿过,完成

超车的决策,并且在超车后感知到第 3 个动态障碍物,重
新进行轨迹规划;在图 11(c)中,车辆最终完成与 3 个动

态障碍物的交互,继续正常行驶。
由表 5 可得,本文方法相较于 EM-planner 算法,平均

路径长度减少了约 2. 9%; 平均路径曲率减少了约

74. 1%;平均 MDO 提高了约 55. 3%;MDO 方差降低了约

79. 7%;成功率提高了 29%。 整体看来,本文方法在路径

长度、平滑性、安全性能、规划成功率都相较于传统方法

有显著提升。
表 5　 复杂城市场景不同算法性能对比

Table
 

5　 Performance
 

comparison
 

of
 

different
 

algorithms
 

in
 

complex
 

urban
 

scenes
算法 平均路径长度 / m 平均路径曲率 / m-1 平均 MDO / m MDO 方差 / m2 成功率 / %

EM-planner 95. 63 0. 32 1. 23 1. 66 57
本文 92. 87 0. 083 1. 91 0. 82 86

图 11　 复杂城市场景动态多障碍物避障 Carla 仿真实验

Fig. 11　 Simulation
 

experiment
 

of
 

dynamic
 

multi-obstacle
avoidance

 

in
 

complex
 

urban
 

scene
 

in
 

Carla

　 　 2)狭窄乡村场景

在 Carla“Town07”世界地图中设置 3 辆相向的动态

车辆,测试不同算法性能。 图 12 所示为采用本文方法避

障的全过程,无人车辆能够在狭窄的道路中与 3 辆相向

而来的障碍物车辆正确进行交互,安全到达终点。
由表 6 可得,本文方法相较于 EM-planner 算法,平均

路径长度减少了约 8. 3%; 平均路径曲率减少了约

76. 4%;平均 MDO 提高了约 78. 2%;MDO 方差降低了约

45. 3%;成功率提高了 36%。 在狭窄空间进行动态障碍

物避障,AAS 方法能够完成对采样方式进行自适应调整,
因此本文方法得到的路径的平滑性和安全性能相较于传

统方法大幅度提升;其次虚拟障碍物决策策略能够保证

无人车辆做出较为合理的决策,使得本文方法的规划成

功率得到大幅度提升。

表 6　 狭窄乡村场景不同算法性能对比

Table
 

6　 Performance
 

comparison
 

of
 

different
 

algorithms
 

in
 

narrow
 

rural
 

scenes
算法 平均路径长度 / m 平均路径曲率 / m-1 平均 MDO / m MDO 方差 / m2 成功率 / %

EM-planner 61. 22 0. 39 1. 19 1. 79 43
本文 56. 13 0. 092 2. 12 0. 98 79

3. 4　 实车测试

　 　 为测试本文提出的方法的有效性,将其部署到实车

进行测试。 本文使用的无人车辆配备定位、感知、规划、
控制一体化工控机,工控机 CPU 型号为 Intel

 

Core
 

i9-
10900,显卡型号为 NVIDIA

 

RTX
 

3060,感知模块采用

Intel
 

Realsense
 

D455 相机,测试用小车为 HUNTER 阿克

曼模型可编程无人地面车辆( unmanned
 

ground
 

vehicle,
UGV)。

测试地点选在狭长的走廊,首先测试静态障碍物场

景实验,在走廊中随机设置路障作为障碍物以测试本文

方法性能,测试结果如图 13 和 14 所示,无人车在感知到

障碍物后,本文方法能够规划出一条无碰撞轨迹,从而完

成避障任务。 本文方法在该场景下的性能指标如表 7 所

示,从中能够得出在静态场景下,本文方法能够快速规划

出一条质量较好的轨迹。

表 7　 静态障碍物场景下的性能指标

Table
 

7　 Performance
 

metrics
 

in
 

a
 

static
 

obstacle
 

scenario

平均规划耗时 / s 最大规划耗时 / s 平均跟踪误差 / m 最大跟踪误差 / m
0. 07 0. 16 0. 06 0. 14

　 　 接下来测试动态障碍物场景实验,在走廊中设置另

一辆匀速行驶的无人小车,如图 15 所示,自车在感知到
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图 12　 狭窄乡村场景动态多障碍物避障 Carla 仿真实验

Fig. 12　 Simulation
 

experiment
 

of
 

dynamic
 

multi-obstacle
avoidance

 

in
 

narrow
 

rural
 

scene
 

in
 

Carla

图 13　 静态障碍物场景实际测试结果

Fig. 13　 Actual
 

test
 

results
 

in
 

static
 

obstacle
 

scenarios

前车后,虚拟障碍物决策模块判断进行跟车,自车则在与

前车保持一定距离后,减速至与前车速度相同,保持跟

车。 本文方法在该场景下的性能指标如表 8 所示,从中

能够得出在动态场景下,虚拟障碍物决策模型能够快速

作出合理的决策,从而使得无人车辆完成会车任务。
多次测试结果表明,本文提出的方法能够在狭长空

间不同场景下完成避障任务,从而证明本文方法的有

效性。

图 14　 避障局部规划图

Fig. 14　 Local
 

obstacle
 

avoidance
 

planning
 

diagram

图 15　 动态障碍物场景实际测试结果

Fig. 15　 Actual
 

test
 

results
 

in
 

dynamic
 

obstacle
 

scenarios

表 8　 动态障碍物场景下的性能指标

Table
 

8　 Performance
 

metrics
 

in
 

a
 

dynamic
obstacle

 

scenario
平均规划耗时 / s 最大规划耗时 / s 平均跟踪误差 / m 最大跟踪误差 / m

0. 12 0. 35 0. 05 0. 15

4　 结　 论

　 　 为了解决传统轨迹规划算法在狭长空间规划成功率

低、自适应程度差、不符合人类驾驶习惯等问题,本文提
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出了基于虚拟障碍物决策的自适应两阶段轨迹规划方

法。 首先,本文提出了一种自适应聚集采样策略以及基

于 5 次多项式的动态规划算法和基于终点代价的二次规

划算法,从而提高避障的成功率以及规划路径的质量。
另外,本文还构建了一种基于随机森林的虚拟障碍物决

策模型,使得决策更加合理。 通过 Carla 仿真器进行实

验,在静态多障碍物环境和动态多障碍物环境中分贝在

复杂城市场景和狭窄乡村场景进行测试,本文方法在路

径长度、路径平滑性、规划成功率、安全性及其稳定性方

面均有所提升。 最后,将算法部署到了实际的无人车辆

进行测试,小车能够在狭长的环境中完成避障任务,验证

了算法的有效性。
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