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芯片多参数一致性的筛选方法∗
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摘　 要:由于制造工艺的偏差,芯片有些参数值离散性较大,为了提高电子系统的稳定性和可靠性,设计一种提高芯片一致性的

多参数低相关聚类优选(multi-parameter
 

low-correlation
 

clustering
 

selection,MLCS)算法。 该算法首先计算参数间的斯皮尔曼秩

相关系数,选择相关性小的测试参数进行筛选,提高选择的效率,然后对多个参数分别用 1 维 K-means 方法进行 3 级聚类,再综

合它们的分类结果,筛选出集中于聚类中心的芯片。 实验结果表明,该算法能够实现测试芯片的自动筛选,位于中间聚类中心

的芯片参数值都在均值附近,上下不偏离 1 个方差,且分类界限清晰、聚类效果不受筛选参数个数的限制;894 个样本按照 2 个

参数筛选,散点图显示的效果明显优于常规的二维模糊聚类和二维 K-means 算法;所用时间约 0. 04
 

s,而模糊聚类算法耗时超

过 12
 

s。 该算法具有良好的适应性,能够有效选出多种参数值都接近均值的芯片。
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Abstract:
 

Due
 

to
 

manufacturing
 

process
 

deviations,
 

some
 

parameter
 

values
 

of
 

chips
 

have
 

large
 

discreteness.
 

In
 

order
 

to
 

improve
 

the
 

stability
 

and
 

reliability
 

of
 

electronic
 

systems,
 

this
 

paper
 

designs
 

a
 

multi
 

parameter
 

low
 

correlation
 

clustering
 

selection
 

(MLCS)
 

algorithm
 

to
 

enhance
 

chip
 

consistency.
 

The
 

algorithm
 

first
 

calculates
 

the
 

Spearman
 

rank
 

correlation
 

coefficient
 

between
 

parameters,
 

selects
 

test
 

parameters
 

with
 

low
 

correlation
 

for
 

screening,
 

improves
 

the
 

efficiency
 

of
 

selection,
 

and
 

then
 

uses
 

1D
 

K-means
 

method
 

to
 

perform
 

3-level
 

clustering
 

on
 

multiple
 

parameters.
 

Based
 

on
 

their
 

classification
 

results,
 

chips
 

concentrated
 

in
 

the
 

cluster
 

center
 

are
 

selected.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

algorithm
 

can
 

achieve
 

automatic
 

screening
 

of
 

test
 

chips.
 

The
 

parameter
 

values
 

of
 

chips
 

located
 

in
 

the
 

middle
 

cluster
 

center
 

are
 

all
 

around
 

the
 

mean,
 

with
 

no
 

deviation
 

of
 

one
 

variance,
 

and
 

the
 

classification
 

boundary
 

is
 

clear.
 

The
 

clustering
 

effect
 

is
 

not
 

limited
 

by
 

the
 

number
 

of
 

screening
 

parameters;
 

894
 

samples
 

were
 

screened
 

according
 

to
 

2
 

parameters,
 

and
 

the
 

scatter
 

plot
 

showed
 

significantly
 

better
 

results
 

than
 

conventional
 

2D
 

fuzzy
 

clustering
 

and
 

2D
 

K-means
 

algorithm;
 

The
 

time
 

taken
 

is
 

about
 

0. 04
 

seconds,
 

while
 

the
 

fuzzy
 

clustering
 

algorithm
 

takes
 

over
 

12
 

seconds.
 

This
 

algorithm
 

has
 

good
 

adaptability
 

and
 

can
 

effectively
 

select
 

chips
 

with
 

multiple
 

parameter
 

values
 

that
 

are
 

close
 

to
 

the
 

mean.
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0　 引　 言

　 　 集成芯片测试的目的在于确保芯片的性能、功能、可

靠性和安全性满足设计要求和实际应用需求,它对于提

高芯片良率和降低生产成本具有显著意义。 近年来,自
适应测试技术因其动态优化能力成为研究热点,其核心

目标在于提升测试效率并压缩成本[1] ,现有方法可以分
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为 4 类:1)测试流程优化,如利用重排序改善测试向量混

乱问题[2] ,或利用实时自适应策略降低测试逃逸率[3] ,它
们的优点是能够显著缩短测试时间;缺点是未解决参数

离散性问题;2)工艺偏差补偿,如基于晶圆级性能预测站

点间差异[4] ;结合自适应算法提升良率[5] ,它们能够缓解

制程波动影响,但对多参数协同一致性改善有限;3)故障

诊断增强,如哈里斯鹰优化方法用于电路故障定位[6] ,提
升了故障检出精度,但未覆盖参数一致性控制;4)特征选

择优化,采用 mRMR 算法筛选高区分度测试项[7] ,该方

法能够降低测试维度,却忽略了参数间相关性对系统级

匹配的影响。
芯片测试包含数百项参数(电流、电压和其他参数

值),每个测试项提供了上、下限测试规范,当且仅当芯片

通过所有测试项目时,才被视为通过[8] ,但如果某个测试

参数的上下限差值比较大时,测试通过的芯片间该参数

值离散性就很高,导致参数一致性劣化。 芯片参数一致

性是指芯片的各项参数在不同批次、不同芯片之间保持

高度一致的特性。
在芯片应用中,参数一致性对于系统的稳定性和可

靠性至关重要[9] 。 例如,在多芯片系统中,采用芯粒技术

的芯片,参数不一致可能导致各芯片间无法高效协同工

作,从而影响系统整体性能;在构建复杂系统时,参数不

一致的芯片可能难以进行无缝适配和协同工作,导致系

统兼容性降低,如为了达到电流额定值,基于 Si
 

MOSFET
或 IGBT 的系统需要多个数量的芯片并联,文献[10-11]
探讨了在短路、未锁定的电感切换等异常情况下器件参

数不均匀性对并联 MOSFET 电热不平衡的影响,然而目

前尚未研究出能有效抑制这些干扰影响的分类方法。
无论是同一块晶圆或者同一个批次,相同参数的测

量值也有变化[12] 。 芯片参数波动本质源于制造工艺偏

差。 集成芯片测试数据通常服从正态分布[13] ,呈现对称

的钟形曲线,在正态分布下,数据落在特定区间内的概率

是已知的,即约 68. 27%、95. 45%及 99. 73%的样本分别

位于均值±1σ、±2σ 与+3σ 区间内,这表明芯片参数值由

于制造工艺的偏差,存在一定的离散性,特别是对于方差

比较大的测试项,实际测量值会有比较大的差值。 芯片

测量数据的统计分析可以帮助筛查潜在的测试漏检,传
统筛选方法聚焦单参数分析[9,14-15] ,如文献[9]利用改进

的导数结合粒子群优化算法( D-PSO)
 

有效地定位数据

中的拐点, 从而筛选出性能相似度较高的芯片。 文

献[15]提出了一种基于转移曲线的新型分类方法,用于

抑制并联碳化硅 MOSFET 间的瞬态电流不平衡现象,该
方法采用传输曲线的距离系数作为分类标准,实现芯片

或器件的有效分类,但它们都是针对一个物理量进行聚

类。 此类方法未考虑多参数耦合效应,难以保障芯片整

体性能一致性。

随着芯片系统复杂度提升,多参数协同一致性已成

为核心挑战:一方面,单一参数优化无法反映综合性能;
另一方面,高维测试数据存在维度灾难与需求异构性问

题[16] 。 为此,本文提出多参数低相关聚类优选( MLCS)
算法,通过构建低相关特征子集,筛选多个参数均集中于

统计分布核心区间的芯片,显著提升参数一致性,为高匹

配度芯片系统提供可靠保障。

1　 常规聚类算法在芯片分类中的应用

1. 1　 模糊聚类( fuzzy
 

C-means,FCM)算法

　 　 模糊聚类是一种无监督聚类算法[17] ,无监督聚类能

较客观地反映样本数据的内在结构,是处理数据集中存

在模糊性或不明确边界的聚类方法。 与传统“硬聚类”
不同,模糊聚类允许数据点以隶属度形式同时属于多个

类簇。
被聚类样本 G 中的一个点 Gi =

 

{G i 1,G i 2,…,G i m
 },

m 表示聚类样本的维度,令聚类中心的个数为 c,聚类中

心为 V =
 

{ V1, V2, …, Vc
 }。 用一个 n × c 的矩阵 U =

[μ i,j]
n×c 描述聚类结果。 其中 μ i,j∈[0,1],表示第 i 个样

本 Gi 属于第 j 类的隶属度。 FCM 算法根据式(1)所示,
通过迭代运算对目标函数 f 进行优化。

f = ∑
n

i = 1
∑

c

j = 1
μ ij

b‖Gi - V j‖
2 (1)

式中:b 为模糊指数,通常取值为 2。 令 f 分别对 μ i,j 与 V j

的偏导数为 0,获得使目标函数为极小值的优化迭代公

式如式(2)和(3)所示[18] 。

V j =
∑

n

i = 1
μ ij

bGi

∑
n

i = 1
μ ij

b
(2)

μ ij =
‖Gi - V j‖

-2(b-1)

∑
c

s = 1
‖Gi - Vs‖

-2(b-1)
(3)

采用以上模糊聚类用于 2 个测试项的分类,具体步

骤如下:
1) 输入被测芯片两个测试项的测试值,构成 V =

 

{V1,V2
 },剔除测量值超过均值 3 个方差的异常数据;

2) 设定迭代停止阈值 ε 和聚类数 c 的值,本方案

c= 9;
3)随机初始化矩阵 U(k);
4)用式(2)计算聚类中心

 

V(k);
5)用式(3)计算新的隶属度 U(k

 

+
 

1);
6)若‖

 

U(k) -U(k+1) ‖<ε,或者超过最大迭代次

数,则迭代过程结束。 否则,返回步骤 4);
7)按照最大隶属度原则确定样本 G

 

中的每个芯片
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所属类别。
用二维 FCM(m= 2)方法对 894 个芯片的两个测试

项进行分类,结果如图 1 所示。 但从图 1 所示分类结果

看出该方法只是对一个测试项 Iout 进行了 9 级分类,而
纵轴所示测试项 Iop2 对分类不起作用。

图 1　 二维模糊聚类 9 级分类

Fig. 1　 9-level
 

classification
 

of
 

two-dimensional
 

fuzzy
 

clustering

1. 2　 多维 K-means 聚类算法

　 　 K-means
 

算法也是一种无监督学习算法[19] ,是基于

距离的算法,利用数据点到中心点的欧氏距离进行聚类

分配和中心点更新,能够对无标识的对象按照需求进行

聚类。 同一类距离越小,相似度越高;不同类簇的距离越

大,相似度越低[20] 。
被聚类样本 G 中的每一个点(如某个被测芯片)G j,

G j = {G j 1,G j 2,…,G jm
 } (其中 m 表示聚类样本的维度)都

会将其分配给最近的中心点 Xi。 这里的“最近” 是指欧

氏距离最小。
对被测芯片的两个测试项进行 9 级分类,具体步骤

如下:
1) 输入被测芯片两个测试项的测试值,构成 G j =

 

{G j 1,G j 2};
2)设定迭代停止阈值 ε 和聚类数 K 的值,本方案

K= 9;
3)随机分配聚类中心 X i;
4)计算欧氏距离。
计算每个样本与 K 个聚类中心的欧氏距离如式(4)

所示。
distance(G j,X i) = ‖G j - X i‖2 (4)

式中:‖x‖2 表示
 

L2
 

范式(或欧氏距离)。
5)分配聚类,将每个点按照式(5) 分配到与其最近

的中心点相对应的聚类中:
c j = arg

 

min‖G j - X i‖2 (5)
式中: c j 表示数据点 G j 所属群集的索引。

6)重新计算中心点,对于每个聚类,用分配给该聚类

的所有点的平均值重新计算中心点,如式(6)所示。

X i = 1 / | ci | × ∑G j∈ci
(6)

式中: ci 是第 i 个群集; | ci |是其包含的数据点数。
7)迭代,重复上面步骤 4) ~ 6),直到中心点满足

式(7)所列条件或达到预定的迭代次数。

∑ k

i = 1
‖X i

t - X i
t -1‖2 < test( threshold) (7)

式中:X i
t 是第 t 次迭代后的第 i 个中心点。

用二维 K-means 聚类方法对同批 894 个芯片的两个

测试项进行分类,即 1. 2 节中的 m 为 2,结果如图 2 所

示,图 2 中分类结果只是对测试项 Iop2 进行了 9 级分类,
而横轴的测试项 Iout 不起分类作用。

图 2　 二维 K-means 方法 9 级聚类

Fig. 2　 9-level
 

clustering
 

using
 

two-dimensional
 

K-means
 

method

2　 多参数低相关聚类优选(MLCS)算法

　 　 针对 1. 1 和 1. 2 节常规聚类算法对于多个测试参数

分类结果不理想,即有一个参数不能被分级聚类的缺陷,
本文提出了多参数低相关聚类中心优选算法。
2. 1　 测试项相关性分析

　 　 本文采用斯皮尔曼秩相关系数 ( Spearman
 

rank
 

correlation
 

coefficient,
 

SRCC) 的大小来挑选相关性弱的

测试项,减少冗余度,以提高数据分析的准确性和筛选

效率。
SRCC 的计算方法如下:
1)将每个测试项的数据按照大小排序,并分配相应

的秩次;
2)计算每对测试项之间秩次差的平方和;
3)使用式(8)计算 SRCC。

ρ = 1 -
6∑d i

2

n(n2 - 1)
(8)

式中:d i 为第 i 对数据的秩次差;n 为样本数量。
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SRCC 的取值范围为-1 ~ 1,数值越接近 1 或-1,表
示相关性越强,数值接近 0,则表示相关性较弱。

挑选性能相近的芯片,应该选择受不同的物理机制

或工艺过程影响的参数,而斯皮尔曼秩系数小表示每对

系数之间没有明显的单调相关性,这样可以减少参数之

间的信息冗余,挑选出芯片的一致性会更全面。
2. 2　 单个测试参数分类

　 　 针对芯片实际数据正态分布的特点,本文对单个参

数项应用一维 K-means 算法,即 1. 2 节的 m 为 1。
1)读取芯片的一种测试参数值,指定 3 级分类,随机

选择 3 个初始中心点;
2)用式(4) 计算每个测试结果与聚类中心的欧氏

距离;
3)按照式(5)的原则将被测芯片分配到最近的聚类

中心;
4)按照式(6)重新计算聚类中心;
5)重复步骤 2) ~ 4),当聚类中心的差值小于阈值或

者达到最大迭代次数,结束分类。
对测试项 Iop2 的 894 个测试值按照 3 级分类,分类

结果如图 3 所示,图中的水平线是按照测试结果分类形

成的散点图,因为数据比较集中,大部分连成了一条线。
线条的颜色代表不同的类,很明显分成上、中、下 3 类,中
间聚类集中在均值附近、它们的实际参数值与均值上下

不超过一个标准差,说明位于中间聚类芯片的实际值都

比较接近平均值。

图 3　 单个测试参数 3 级 K-means 聚类结果

Fig. 3　 3-level
 

K-means
 

clustering
 

results
 

of
a

 

single
 

test
 

parameter

2. 3　 MLCS 算法的实现

　 　 芯片的性能可能受到多个因素的综合作用,而非单

一因素的主导,需要对多个关键参数进行严格监控,以确

保芯片的整体性能和质量符合要求,多个参数一致性高

的芯片可以保证电路的稳定性和可靠性更高,本文提出

的 MLCS 算法的具体实现过程如下:
1)输入被测芯片的多个测试项,按照式(8) 计算斯

皮尔曼秩相关系数,选择两个相关性小的测试参数进行

分类;
2)

 

按照 2. 2 节中的方法对一个测试参数 X 进行 3
级分类,每个测试值对应的类索引是 1、2 和 3;

3)
 

按照 2. 2 节的方法对另一个测试参数 Y 进行 3
级分类,该测试值对应的类索引也是 1、2 和 3;

4)
 

综合步骤 2)和 3)的分类结果,就得到被测芯片

关于两个测试项的 9 种结果,如表 1 所示;
　 　 5)用这种类似的方法可以推广到更多个测试项的

分类。
表 1　 由两个分测试项索引得到芯片的分类索引号

Table
 

1　 Classification
 

index
 

numbers
 

of
 

chips
obtained

 

from
 

two
 

sub
 

test
 

item
 

indexes

Y 分类索引
X 分类索引

1 2 3
1 1 2 3
2 4 5 6
3 7 8 9

　 　 图 4 是用 MLCS 方法分类得到的 9 种界限清晰的分

类结果,每个变量都能够很好地被分成 3 类。 位于聚类

中心的芯片就是一致性最好的芯片。

图 4　 本文 MLCS 算法 9 级聚类

Fig. 4　 MLCS
 

algorithm
 

9-level
 

clustering
 

in
 

this
 

article

3　 实验结果与分析

　 　 本文在 Windows10
 

操作平台下基于 MATLAB
 

2024
的运行环境,对测试设备采集的测试数据进行分类。 实

验运行环境为 12th
 

Gen
 

Intel( R)
 

Core( TM)
 

i5-12500H
 

2. 50
 

GHz、4
 

GB 运行内存、Windows
 

10 系统。 实验数据

选自实际工业生产过程中同批次产生的 894 个芯片的测
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试数据。
首先计算这些测试项之间的 SRCC 值,选择 SRCC 值

较小的相关性不大的测试数据,每组数据是两个测试项,
分别如下:1) Iout 和 Iop2,它们间的 SRCC 相关系数为

0. 013
 

4;2)
 

Fosc 和 Ibias,相应的 SRCC 为-0. 001
 

2;3)
 

Icmax 和 Ibase,SRCC 为 0. 403
 

9,它们的相关性都较小,
这样聚类选出的芯片性能更稳定全面一些。
3. 1　 散点图效果

　 　 图 1、2 和 4 是分别针对 Iout 和 Iop2 两个测试项,用
1. 1、1. 2 和 2. 3 节的 3 种方法的分类结果,图 5 和 6 分别

是针对
 

Fosc 和 Ibias 以及
 

Icmax 和 Ibase 测试项分类的

结果,其中图 5( a) 和 6( a) 是用二维模糊聚类方法,图
5(b)和 6(b)是用二维 K-means 方法分类,它们共同的不

足就是只能在一个方向分类,而另外一个测试项起不到

分类的作用,如图 5( a) 中横向的 Fosc 测试项没有起到

分类作用,图 5( b)中纵向的 Ibias 测试项对分类不起作

用;图 6(a)和(b)存在同样的问题,而图 5( c)和图 6( c)
是用本文的 MLCS 算法分类的结果,每个测试项都能够

分成 3 部分,综合起来得到界限清晰的 9 个聚类结果。

图 5　 按照 Fosc 和 Ibias 两个测试项分类结果

Fig. 5　 Classification
 

results
 

according
 

to
 

Fosc
 

and
 

Ibias
 

test
 

items

图 6　 按照 Icmax 和 Ibase 两个测试项分类结果

Fig. 6　 Classification
 

results
 

based
 

on
 

Icmax
 

and
 

Ibase
 

test
 

items

3. 2　 测试时间

　 　 表 2 是几种分类算法所用时间,二维模糊聚类时间

最长,需要 12
 

s 多,二维均值聚类和本文所提 MLCS 算法

所需时间差不多,在几十毫秒数量级,比模糊聚类时间少

近 3 个数量级。
3. 3　 本文 MLCS 分类算法所得分类中心与测试项的均

值及方差的关系

从表 3 可以看出每个测试项中间聚类中心值都接近

表 2　 不同聚类算法所用时间对比

Table
 

2　 Comparison
 

of
 

time
 

used
 

by
different

 

clustering
 

algorithms (s)

两个测试项
Iout

&
 

Iop2
Fosc
Ibias

Icmax
Ibase

二维模糊 12. 56 12. 41 12. 43
二维均值 0. 055 0. 086 0. 044

MLCS 算法 0. 047 0. 045 0. 042
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表 3　 每个测试项的 3 个分类中心及相应的平均值和方差

Table
 

3　 Three
 

classification
 

centers
 

and
 

their
corresponding

 

mean
 

and
 

variance
 

for
 

each
 

test
 

item

测试项
Iout /
mA

Iop2 /
μA

Fosc /
Hz

Ibias /
μA

Icmax /
mA

Ibase /
mA

平均值 246. 0 624. 5 256. 6 -8 965. 8 59. 1
中间聚类中心 245. 8 615. 6 258. 6 -8 964. 2 59. 1
下聚类中心 243. 2 602. 4 241. 0 -8. 2 941. 9 58. 2
上聚类中心 248. 7 658. 0 284. 0 -7. 8 987. 1 60. 1

方差 2. 28 24. 4 17. 15 0. 15 18. 1 0. 83

它的平均值,上聚类中心值接近平均值加上 1 个方差,而
下聚类中心值接近平均值减去 1 个方差,这样分类比较

科学,位于最核心的分类中心的测试项都在均值附近,如
图 7 中标示的整体聚类中心所示,测试参数都非常接近,
这样使用在特定场合就会更稳定。

图 7　 本文所提方法分类结果位置

Fig. 7　 Location
 

map
 

of
 

the
 

classification
 

results
 

of
the

 

method
 

proposed
 

in
 

this
 

article

4　 结　 论

　 　 针对芯片的性能可能受到多个因素的综合作用,而
非单一因素的主导,需要对多个关键参数进行监控分析,
以确保芯片的整体性能和质量的要求,本文提出芯片多

参数一致性的 MLCS 筛选方法,选择斯皮尔曼秩系数

SRCC 小的测试项,避免分类芯片信息冗余;根据芯片数

据基本服从正态分布的特点,对每个测试参数用一维 K-
means 进行三级聚类;然后综合多个测试项的分类结果,
选出多个测试项都集中于均值附近的芯片。 该算法所用

时间短,效果好,可以方便地扩展到更多个测试参数的筛

选,减少芯片筛选的成本,挑选出的位于聚类中心的芯片

参数比较一致,使用这种芯片可以保证电路工作更趋于

稳定,本文提出的 MLCS 筛选芯片的方法易于实现,能够

提高系统的匹配度和工作稳定性。
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