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摘　 要:针对强海杂波背景下传统方法难以检测海面微弱目标信号的问题,研究了混沌相空间重构理论和改进牛顿-拉夫逊优

化算法(NRBO),提出了一种基于优化双向长短时记忆网络(BiLSTM)的混沌背景下微弱信号检测方法。 将重构的相空间信号

作为 BiLSTM 网络的输入,通过嵌入维度和延迟时间确定训练数据的长度,利用改进牛顿-拉夫逊优化算法优化 BiLSTM 模型的

参数,使用自适应加权误差(AWE)损失函数训练模型,提高模型预测精度与运行速度,降低目标检测门限,结合 BiLSTM 模型进

行单步预测,根据预测误差从强混沌背景噪声下检测微弱目标信号。 以 Lorenz 混沌系统作为混沌背景设计仿真实验,对叠加的

微弱信号进行检测,结果表明所提方法能有效检测微弱信号。 使用 IPIX 实测数据和烟台对海探测数据进行预测实验,进一步

证明了其有效性。
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Abstract:
 

To
 

address
 

the
 

challenge
 

of
 

detecting
 

weak
 

target
 

signals
 

on
 

the
 

ocean
 

surface
 

under
 

strong
 

sea
 

clutter
 

backgrounds,
 

this
 

study
 

investigates
 

the
 

theory
 

of
 

chaotic
 

phase
 

space
 

reconstruction
 

and
 

the
 

improved
 

Newton-Raphson
 

optimization
 

algorithm.
 

A
 

novel
 

method
 

for
 

weak
 

signal
 

detection
 

in
 

chaotic
 

backgrounds
 

is
 

proposed,
 

based
 

on
 

an
 

optimized
 

bidirectional
 

long
 

short-term
 

memory
 

network
 

(BiLSTM).
 

The
 

reconstructed
 

phase
 

space
 

signal
 

is
 

used
 

as
 

the
 

input
 

to
 

the
 

BiLSTM
 

network,
 

with
 

the
 

length
 

of
 

the
 

training
 

data
 

determined
 

by
 

the
 

embedding
 

dimension
 

and
 

delay
 

time.
 

The
 

parameters
 

of
 

the
 

BiLSTM
 

model
 

are
 

optimized
 

using
 

the
 

improved
 

Newton-
Raphson

 

optimization
 

algorithm,
 

and
 

the
 

model
 

is
 

trained
 

with
 

an
 

adaptive
 

weighted
 

error
 

(AWE)
 

loss
 

function.
 

Both
 

approaches
 

work
 

together
 

to
 

enhance
 

prediction
 

accuracy,
 

improve
 

runtime
 

speed,
 

and
 

reduce
 

the
 

detection
 

threshold.
 

A
 

single-step
 

prediction
 

is
 

performed
 

using
 

the
 

BiLSTM
 

model,
 

and
 

weak
 

target
 

signals
 

are
 

detected
 

from
 

strong
 

chaotic
 

background
 

noise
 

by
 

analyzing
 

the
 

prediction
 

errors.
 

Simulation
 

experiments
 

were
 

conducted
 

using
 

the
 

Lorenz
 

chaotic
 

system
 

as
 

the
 

chaotic
 

background
 

to
 

detect
 

superimposed
 

weak
 

signals.
 

The
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

effectively
 

detects
 

weak
 

signals.
 

Further
 

validation
 

was
 

carried
 

out
 

using
 

the
 

IPIX
 

radar
 

dataset
 

and
 

sea
 

surface
 

detection
 

data
 

from
 

Yantai,
 

confirming
 

the
 

method ’ s
 

robustness
 

and
 

effectiveness.
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0　 引　 言

　 　 随着科技的不断发展,对海洋的认知与监测可以通

过雷达来实现。 雷达是海洋战场和对海探测场景的“眼

睛”,若需进一步提升雷达的对海探测能力,对海杂波特

性的深度化认知、精细化感知和充分化利用至关重要[1] 。
海杂波是指在雷达系统中,来自海面的反射的杂波信号,
这些信号对探测海面物体(如船只、小艇或浮标等)造成

干扰,降低雷达系统的性能。 因此,研究海杂波背景下的

微弱信号检测方法有着重要意义。
海杂波背景下的弱、慢、小目标检测一直是信号处理

领域的一个难点。 其检测困难主要来源于 4 个方面[2] :
1)海杂波具有非线性、非平稳、非均匀特性,难以建模;
2)强海杂波背景噪声下,微弱信号的回波被噪声淹没,信
噪比低;3)海浪的运动姿态多变,有时会遮蔽和淹没目

标;4)高功率的海尖峰随机出现,其时域与频域特征与目

标回波有相似之处,容易导致探测器误报。
针对海杂波背景下的海面微弱信号检测问题,国内

外学者提出了大量研究方法。 早期的研究者对海杂波的

研究集中在统计理论方面[3] ,将其建模为分布模型,如瑞

利分布、对数-正态分布、以及复合 K 分布,但其存在精度

与泛化性的问题。 20 世纪末,Haykin 等[4] 提出海杂波建

模是一个预测问题,并用混沌系统对海杂波进行建模。
随着统计学习理论的发展,支持向量机( support

 

vector
 

machine,SVM)理论出现,为研究小目标检测提供了新的

思路。 2010 年 Xing 等[5] 提出了基于 LS-SVM 模型的微

弱信号检测方法,优化了 SVM 模型,提高了预测精度。
尽管通过核函数,SVM 及其改进算法可以处理一定的非

线性问题,但对于复杂的动态非线性关系,尤其是混沌时

间序列预测,仍存在精度不足的问题。 相比 SVM 等传统

机器学习算法,神经网络在解决数据预测问题上有一定

的优势。 早期使用基于 BP 神经网络的预测模型,可以

检测混沌背景中的微弱信号。 近几年随着神经网络迅速

发展,更多的改进神经网络模型被应用在数据预测问题

上。 递归神经网络( recurrent
 

neural
 

network,RNN) 与长

短期记忆网络(long
 

short-term
 

memory
 

network,LSTM) [6-7]

作为传统神经网络的改进被应用在混沌时间序列预测问

题中。 2022 年,Yan 等[8] 提出了基于 LSTM 误差频域转

换的检测方法,通过计算误差的多普勒频谱,从频域检测

微弱信号,提高了 LSTM 模型的微弱信号检测效果。 De
等[9] 提出 CNN-LSTM 混合架构的监测模型,利用随时间

变化的幅度浮动区分目标。 Abdelkader 等[10] 使用 RNN-
LSTM 混合模型实现时间序列预测,提升了预测精度。
2024 年叶如等[11] 提出基于 SSA-LSTM 的海面微弱目标

检测方法,相较于传统 LSTM 神经网络模型,其预测精度

与检测阈值都得到提升。
在使用 LSTM 模型检测海杂波背景下的微弱信号的

研究中,仍然存在一些问题。 LSTM 具有单向信息处理的

局限性,对数据上下文的建模能力不足。 其迭代次数、学
习率、隐藏层神经元层数与单元数等超参数对预测结果

有一定影响,选择恰当的超参数十分重要,考虑到计算成

本,遍历超参数空间以寻找全局最优解的方法是不现实

的,需要采用元启发式算法寻找最优解。 经典的元启发

式优化算法[12-14] 如遗传算法、鲸鱼算法、麻雀算法、粒子

群算法等虽具潜力,但存在一定缺陷。 基于梯度的方法

往往会收敛到局部最优解,非梯度方法则需要更高的计

算能力,尤其是对于高维空间搜索的问题。 此外,损失函

数是神经网络模型的重要组成部分,而目前采用神经网

络来解决海杂波背景下目标检测问题的研究通常没有对

损失函数的选择与设计进行探讨。
针对以上问题,本文提出一种基于自适应加权误差

损失( adaptive
 

weighted
 

error,AWE) 与改进牛顿-拉夫逊

优化算法( Newton-Raphson-based
 

optimizer,NRBO) 结合

的双向长短时记忆网络 ( bi-directional
 

long
 

short-term
 

memory,BiLSTM) 的海杂波背景下微弱信号检测方法。
使用 BiLSTM 代替传统的 LSTM,并设计适合时序检测的

损失函数,优化训练模型;结合 NRBO 算法优化超参数,
克服梯度算法和非梯度算法的缺点,同时利用基于种群

的优化方法的能力,降低预测成本,提高预测精度。 为验

证检测效果,使用 Lorenz 系统进行仿真实验,并分别采用

IPIX 海杂波数据集与烟台对海数据集的真实数据作为

样本,检验不同海域下模型检测能力。

1　 基本理论

　 　 在混沌时间序列的研究中,传统的线性方法往往无

法有效揭示系统的复杂非线性特征,相空间重构技术通

过时间延迟嵌入法将原本复杂的动态系统转化为可以进

行分析的多维空间。 此外,随着深度学习方法的发展,神
经网络,特别是双向长短时记忆网络在序列数据处理中

的优势逐渐显现,其能够捕捉序列中的长期依赖关系,是
处理时间序列预测问题的重要工具。
1. 1　 混沌时间序列相空间重构

　 　 混沌系统是非线性动力学中的一种动态系统,其表

面上似乎随机,但实际上是由确定性的规则所支配的。
混沌系统的微小初始差异会随着时间推移被无限放大,
导致系统的演化轨迹完全不同。 混沌系统的演化轨迹并

不周期性重复,但它们通常会收敛到一个特定的区域,这
些区域称为吸引子(通常是分形结构,如奇异吸引子)。

传统的低维坐标系统无法揭示混沌系统复杂的动力

学特征,因此混沌模型的建立和预测需要结合混沌理论
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中的相空间重构技术。 Takens 定理指出通过时间延迟嵌

入法可以重构出与原系统拓扑等价的相空间。 主流的相

空间重构方法有 G-P 法、曹氏法、伪临近法和 C-C 法等。
采用 C-C 法求解海杂波时间序列的嵌入维度 m 和延迟

时间 ,对于海杂波时间序列 {x( i),i = 1,2,3,…,N} 的

重构空间序列 {Xn( i) = xn( i),xn( i + ),…,xn( i + (m -
1) )}(n = 1,2,…,M) ,利用关联积分求解混沌特征奇

异吸引子的关联维度,并根据关联指数饱和值求得嵌入

维度和嵌入延时窗。
1. 2　 双向长短时记忆网络

　 　 长短期记忆神经网络[15] 解决了传统递归神经网络

中的梯度爆炸问题,使得网络的学习更加的稳定。 LSTM
网络通过使用 LSTM 单元取代了一般 RNN 的隐藏单元,
使用输入门、遗忘门和输出门控制 LSTM 单元的状态更

新。 LSTM 的独特之处在于它包括 3 个门:输入门 i t 、遗
忘门 ft 和输出门 o t ,这些门结构使得网络能够更有效地

捕捉长距离的依赖关系,具体工作原理如式(1) ~ (6)
所示。

ft = σ(Wf·[h t-1,x t] + bf) (1)
i t = σ(Wi·[h t-1,x t] + b i) (2)

C
~

t = tanh(WC·[h t-1,x t] + bC) (3)

C t = ft·C t-1 + i t·C
~

t (4)
o t = σ(Wo·[h t-1,x t] + bo) (5)
h t = o t·tanh(C t) (6)

式中: h t-1 为前一时刻隐藏层状态; h t 为当前时刻隐藏层

状态; x t 为当前时刻输入; C
~

t 为临时单元状态; C t 为当

前时刻单元状态; C t-1 为上一时刻单元状态; σ为激活函

数。 遗忘门用于决定遗忘和丢弃的信息,记忆门通过

sigmoid 函数和 tanh 函数决定需要更新的单元和更新的

单元信息,输出门根据单元状态,通过 sigmoid 函数和

tanh 函数确定输出值。 LSTM 的网络结构如图 1 所示。

图 1　 LSTM 的网络结构

Fig. 1　 The
 

network
 

structure
 

of
 

LSTM

双向长短时记忆网络[16] 相较于传统的单向 LSTM,
通过同时引入正向和反向两个 LSTM 模块,能够捕获序

列数据的前后文信息,显著增强对上下文依赖的建模能

力,其结构如图 2 所示。 这种双向信息流机制使得

BiLSTM 在自然语言处理、序列标注和时间序列分析等需

要全局语境理解的任务中表现更优。 同时,通过将正反

向 LSTM 的输出进行结合,BiLSTM 能够生成更全面的特

征表示,尽管计算开销有所增加,但其性能提升在许多应

用场景中尤为显著。 考虑到海杂波序列属于时间序列信

号,因此用 BiLSTM 来进行预测具有高度适配性。

图 2　 BiLSTM 的网络结构

Fig. 2　 The
 

network
 

structure
 

of
 

BiLSTM

1. 3　 自适应加权误差损失函数

　 　 在深度学习任务中,损失函数用于衡量模型预测值

与真实值之间的差异。 传统的损失函数,如均方误差、交
叉熵等通常对所有样本或误差项赋予相同的权重,但在

实际应用中,不同样本或误差项的重要性可能不同。
自适应加权误差损失函数通过动态调整不同样本或

误差项的权重,使模型能够更关注关键样本或误差较大

的区域,从而提高模型的鲁棒性和泛化能力。 其计算公

式如式(7) ~ (9)所示。

L(y,ŷ) = 1
N ∑

N

i = 1
w i(y i -ŷ i)

2 (7)

w i = 1 + α·exp( y i -ŷ i ) (8)

L(y,ŷ) = 1
N ∑

N

i = 1
(1 + αe

yi- ŷ i )(y i -ŷ i)
2 (9)

式中: y i 为真实值; ŷ i 为预测值; w i 为权重;L 为损失函

数; N 为样本点数;α 为控制加权强度的超参数。
1. 4　 改进牛顿-拉夫逊优化算法

　 　 牛顿-拉夫逊法( Newton-Raphson
 

method,NRM)是一

种常用的求解方程根的方法,而改进牛顿-拉夫逊优化算

法是在 NRM 基础上发展起来的一种新型元启发式优化

算法[17] 。 NRBO 方法主要使用 Newton-Raphson 搜索规

则(Newton-Raphson
 

search
 

rule,NRSR) 和陷阱规避算子

(trap
 

avoidance
 

operator,TAO)两种方法。 其中,NRSR 将

NRM 拓展到多维度,使用有限差分法近似梯度,并基于

梯度信息快速逼近局部最优解;TAO 引入临时吸引点,通
过吸引当前个体向临时吸引点移动以更新个体位置[18] 。
算法实现步骤如下。



　 第 6 期 基于 AWE-NRBO-BiLSTM 的海面微弱目标检测 ·187　　 ·

1)设置初始参数:确定种群规模、设置最大迭代次

数、定义决策因子。
2)初始化种群:随机生成初始种群的位置向量,作为

初始解的集合。
3)评估适应度函数:计算种群每个个体的适应度值,

记录当前最优个体与次优个体。
4)应用 NRSR 规则更新个体的位置。 NRSR 表示

如下:

NRSR = randn ×
(Xw - Xb) × Δx

2 × (Xw + Xb - 2 × xn)
(10)

式中:randn 表示均值为 0 且方差为 1 的正态分布随机

数; Xw 表示最差位置; Xb 表示最佳位置; xn 为当前位置;
Δx 为扰动值。

5)在 NRSR 迭代过程中,使用 TAO 方法检测并避免

陷入局部最优解。 当检测到局部最优时,TAO 通过结合

当前向量和最优向量的位置,探索更优解,从而有效跳出

局部最优解的困境。
6)重复迭代步骤,直到达到最大迭代次数或适应度

值收敛。
NRBO 算法通过引入 NRSR 利用梯度信息快速逼近

局部最优解,通过 TAO 动态调整搜索方向,有效避免陷

入局部最优陷阱,从而增强全局搜索能力。 这种结合局

部精确搜索与全局探索的机制,使得 NRBO 能找到局部

最优解,而且较大概率能收敛到全局最优解。

2　 基于 AWE-NRBO-BiLSTM 的海杂波背景
下微弱目标检测方法

　 　 海杂波信号通常表现出复杂的动态特征,利用混沌

系统的相空间重构方法,可以有效捕捉海杂波的短时变

化特征,并使用神经网络模型进行短期预测。 基于上述

理论,本文提出一种新的海杂波背景下微弱信号检测方

法。 设计 AWE-NRBO-BiLSTM 模型对重构后的海杂波信

号进行短时预测,并绘制相对幅度差值曲线。 所提模型

能够以较低的误差预测海杂波混沌系统,但不会预测叠

加在杂波中的微弱目标信号。 对于海杂波系统,模型的

预测误差较小,而对于目标回波。 模型会产生较大预测

误差,因此借助误差峰值可以直观区分含有目标回波的

信号和纯海杂波信号。 当差值曲线中出现明显的误差尖

峰时,可判定目标信号存在。 尽管误差峰值判断方法直

观有效,但其依赖人工观察,效率较低。 因此,定义均方

根误差(root
 

mean
 

square
 

error,RMSE)量化误差以提高检

测效率。 比较不同距离门的 RMSE 值,发现含有目标回

波的距离门的 RMSE 值较大。 基于此差异可以确定一个

阈值用于区分目标门与杂波门。 检测流程如图 3 所示。
基于 AWE-NRBO-BiLSTM 的海面微弱信号检测具体

步骤如下。
1)选择雷达数据的若干个连续点,以 2 ∶ 1 划分训练

集与测试集,通过 C-C 法确定嵌入维度与延迟时间,嵌入

维度 m 为 3,延迟函数 为 11,进行相空间重构。
2)对数据进行归一化处理,输入 BiLSTM 模型中进

行单步预测。
3)初始化 NRBO 参数,确定种群规模为 30,设置最

大迭代次数 50,以模型预测结果的 RMSE 为适应度函

数值。
4)根据 NRSR 规则探索新解,使用陷阱规避操作避

免陷入局部最优。 对于第 t 次迭代中的第 n 个超参数

组,应用 NRSR 规则探索个体位置,新位置表达式为:
x t +1
n = r1[ r1X1 t

n + (1 - r2)X2 t
n)] + (1 - r2)X3 t

n

(11)
式中: x t +1

n 为应用 NRSR 规则搜索的新位置; X1 t
n、X2 t

n、
X3 t

n 分别为由当前位置更新得到的 3 个位置; t 和 n 分别

为迭代次数和个体序号; r1 和 r2 分别代表 0 ~ 1 之间的随

机数。 引入的 TAO 通过将最佳位置 xb 和 NRSR 得到的

矢量位置 x t +1
n 组合,生成具有增强质的解决方案 x t

TAO 。
通过比较随机数 rand 和 DF 的值,产生新的值,其中随机

数 rand 取 0 ~ 1 之间的值,DF 表示控制 NRBO 性能的决

定因素,其值通常为 0. 6。 产生新的值为:
x t +1
n = x t

TAO, rand < DF

x t +1
n = x t +1

n , rand ≥ DF{ (12)

当随机数 μ1 <0. 5 时,得到增强质为:
x t
TAO = x t +1

n + θ1(μ1xb - μ2x
t
n) + θ2δ(μ1Mean(x t) -

μ2x
t
n) (13)
当随机数 μ1≥0. 5 时,得到增强质为:
x t
TAO = xb + θ1(μ1xb - μ2x

t
n) + θ2δ × (μ1Mean(x t) -

μ2x
t
n) (14)

式中: θ1 和 θ2 分别是( -1,1)和( -0. 5,0. 5)之间的随机

数;Mean 函数表示取均值。
5)重复上述步骤,直到达到最大迭代次数或适应度

值收敛为止。 根据所得超参数初始化 BiLSTM 模型,以
AWE 作为损失函数训练模型,得到预测数据。 对预测数

据进行反归一化,计算预测结果与原始信号的幅度相对

差值得到预测误差,根据预测误差判断微弱目标信号是

否存在。
6)计算各个距离门的 RMSE 值, 确定目标门的

RMSE 最小值与杂波门的 RMSE 最大值,其间隔即为检

测阈值可选区间。

3　 实验与分析

　 　 为验证所提 AWE-NRBO-BiLSTM 预测模型的可行性
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图 3　 检测流程

Fig. 3　 Detection
 

flow
 

chart

与有效性,本文设计 3 个实验。 实验 1 使用 Lorenz 混沌

背景噪声 c(n),并将瞬态小信号叠加到 c(n)上,得到观

测序列信号 x(n),使用所提模型对观测信号进行预测,
探究其检测精度与检测阈值;实验 2 使用加拿大 IPIX 数

据集的实测数据,分析所提模型的实际检测效果;实验 3
使用国内的烟台对海数据集,使用 AWE-NRBO-BiLSTM
模型进行预测,分析模型的预测效果,检验模型的鲁

棒性。
3. 1　 Lorenz 混沌背景噪声下微弱信号检测仿真实验

　 　 Lorenz 系统是一个经典的三维混沌系统,其数学描

述如式(15)所示。
x· = σ(y - x)
y· =- xz + rx - y
z· = xy - bz

(15)

式中:系统参数 σ= 16、r = 45. 92、b = 4,系统的初始值 x =
1、y = 0、 z = 0. 1, 采用步长为 0. 01 的四阶龙格库塔

(Runge-Kutta)法求解方程。 舍弃前 3
 

000 点确保系统完

全进入混沌状态后,连续取 6
 

000 样本点,以 2 ∶ 1 的比例

切分训练集和测试集,即使用前 4
 

000 样本点训练预测

模型,后 2
 

000 样本点作为测试样本检验模型预测能力。
在测试集 c(n)的第 150 点周围叠加幅值为 0. 05 的微弱

瞬时信号 x(n),得到叠加信号 x(n),其信噪比( SNR)为

-67
 

dB。 将其输入预测模型,以均方误差( mean
 

squared
 

error,MSE)作为损失函数,得到单步预测结果如图 4 所

示,红色点为真实值,蓝色线为预测值。

图 4　 单步预测结果

Fig. 4　 Single-step
 

prediction
 

of
 

the
 

outcome

经过实验统计分析,当 LSTM 隐藏层为 1 时即可有

效满足混沌时间序列的任务需求,并且最大程度降低计

算成本。 将迭代次数、学习率、隐藏层单元数、batch 数等

超参数展成超参数空间,使用 NRBO 算法在其中寻找局

部最优解。 经过 NRBO 搜索优化参数,得到最优迭代次

数为 100,学习率为 0. 003,隐藏层单元为 64,batch 为 32。
图 5 为预测误差,可以看到,在 150 点附近出现两条明显

的误差尖峰,第 1 条尖峰是目标信号产生,第 2 条尖峰是

由目标信号经过相空间重构的时间延迟产生,由此可以

判断该区域内有微弱瞬时信号的存在。

图 5　 预测误差

Fig. 5　 Prediction
 

error

神经网络可以对混沌系统进行拟合,实现短时预测,
因此整体预测误差很小,而微弱信号属于叠加在混沌系

统上的外来信号,无法被神经网络检测出,因而在该处会

出现较大误差。 传统的损失函数,如 MSE 等,直接计算

预测值与真实值的相对误差,并以此为损失计算梯度下

降,此方法对所有误差一视同仁,当微弱目标的误差较小

时,容易被忽略。 因此,提出以 AWE 损失代替原本的

MSE 损失,提高检测精度。
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　 　 由 AWE 公式可知,使用 AWE 作为损失函数时,当
预测误差较小时权重约为一,此时与标准 MSE 类似,不
改变权重。 当预测误差较大时,权重增大,使得模型更关

注这些点,增强模型训练效果,提高检测能力。 相比 MSE
等传统损失函数,AWE 损失函数含有超参数 α 以控制加

权强度,通过 NRBO 优化算法得到其最佳值。 当 α = 0. 7
时,使用 BiLSTM 模型,与传统损失函数对比结果如表 1
所示。

表 1　 不同损失函数的模型性能对比

Table
 

1　 Comparison
 

of
 

the
 

performance
 

of
 

different
loss

 

functions
 

in
 

model
 

training
损失函数 AWE MSE MAE Huber

 

Loss
SNR / dB -74. 30 -67. 12 -65. 30 -69. 61
RMSE 0. 000

 

1 0. 005
 

0 0. 005
 

0 0. 001
 

0

　 　 表 1 中 SNR 为微弱信号与杂波比值的对数,RMSE
为检测误差,MAE 为平均绝对误差损失,Huber

 

Loss 是改

进的 MAE 损失函数,它结合了 MSE 和平均 MAE 的优

点,在误差较小的时候类似 MSE,而在误差较大的时候则

类似 MAE。 其公式如下:

Lδ(y,ŷ) =

1
2

(y -ŷ) 2, y -ŷ ≤ δ

δ· y -ŷ - 1
2
δ( ) , y -ŷ > δ

ì

î

í

ï
ï

ï
ï

(16)

式中:y 是真实值; ŷ 是预测值; δ 是一个超参数,用于控

制损失函数的平滑过渡,< δ 的误差使用平方损失,> δ 的

误差则使用线性损失。
使用 AWE 作为损失函数,在测试集 c( n) 的第 150

点周围叠加幅值更小的微弱瞬时信号 x(n),其信杂比达

到-74
 

dB,仍能检测出微弱信号。 从表 1 中可以看出,使
用 AWE 作为损失函数,能适应更低的信杂比条件,检测

精度更高,可以在更强的噪声背景环境中检测到微弱目

标信号。
与 SVM、RBF 神经网络等[19] 混沌序列模型性能对

比,结果如表 2 所示。 相对于传统的支持向量机以及

RBF 神经网络,所提模型可以在最低的信杂比环境下以

较低的误差检测出目标信号,证明其对混沌系统的预测

效果与微弱信号的检测能力都更高。 本实验验证了所提

模型对于微弱信号的检测能力。
3. 2　 IPIX 海杂波背景下微弱信号检测

　 　 为验证基于 AWE-NRBO-BiLSTM 的微弱信号检测方

法的实用性,使用实测的 IPIX 海杂波数据[20] 进行试验。
本文使用 IPIX 雷达的达特茅斯 1993 年数据集。 该数据

是在加拿大东海岸使用 IPIX 雷达从新斯科舍省达特茅

斯附近的悬崖顶收集的,雷达发射频率为 9. 3
 

GHz,脉冲

重复频率为 2
 

000
 

Hz,采样距离间隔为 15
 

m,极化方式为

HH、VV、HV、VH
 

4 种,待测目标是直径 1
 

m 的铝丝包裹

的小球。

表 2　 混沌序列模型性能对比

Table
 

2　 Comparison
 

of
 

the
 

performance
 

of
chaotic

 

sequence
 

models
模型 本文 LSSVM SVM RBF-NN

SNR / dB -74. 30 -62. 82 -54. 60 -30. 20
RMSE 0. 000

 

1 0. 022
 

0 0. 049
 

0 0. 058
 

0

　 　 使用 IPIX 数据集的 HH 极化模式的第 17、26、54 组

数据,其包含了不同海况、信杂比情况,具有代表性。 采

用 C-C 法确定嵌入维度 m 与延迟时间 ,计算得到嵌入

维度 m 为 3, 延 迟 函 数 为 11, 由 此 确 定 时 间 步

(Timesteps)为 m 与 的乘积。 根据 NRBO 优化算法确定

最优迭代次数为 250,学习率为 0. 001,隐藏层单元为 74,
batch 为 32。 训练样本设置为 5

 

000 个,测试样本设置为

2
 

500 个。 实验结果如图 6 所示。
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图 6　 海杂波与含有目标回波信号的预测误差

Fig. 6　 Prediction
 

error
 

of
 

sea
 

clutter
 

and
 

target
 

echo
 

signals

　 　 雷达的距离门是指测量的距离单位,IPIX 数据库中

不同的数据集测量的距离范围不同,但均被划分为 14 个

距离门。 图 6 中的“纯杂波” 子图指的是无目标的距离

门,表示只检测到海杂波的区域;而“含目标回波” 子图

指的是主目标距离门,即目标所在的距离范围。 以 IPIX
数据库的#17 数据集为例,该数据集共有 14 个距离门,
其中 9 号距离门为主目标距离门,8、10、11 号距离门为

次目标距离门,其他距离门则为纯杂波距离门。 主目标

距离门代表目标的实际位置,次目标距离门是雷达回波

可能受到目标影响的距离,而杂波门则表示仅检测到海

杂波的区域。
从图 6 可以看出,在第 17、26 和 54 组的条件下,无

目标距离门与主目标距离门之间的预测误差存在明显差

异。 在无目标距离门中,预测误差未出现尖峰,而在主目

标距离门中,则能清晰地看到明显的尖峰,表明存在微弱

目标信号。 通过图 6 可以验证海杂波数据中确实存在微

弱信号,尽管这一现象在图形上较为直观,但需要依赖人

工观察和主观判断,无法满足实际工程中对雷达自动化

处理的需求,需要一种客观的指标来量化目标与杂波之

间的差异,因此选用了 RMSE 作为衡量指标。 表 3 为第

17 组数据的归一化 RMSE。
表 3　 第 17 组数据所有距离门的 RMSE

Table
 

3　 #17
 

data
 

RMSE
 

for
 

all
 

distance
 

gates
距离门 归一化 RMSE

1 0. 000
 

3
2 0. 022

 

8
3 0. 049

 

6
4 0. 004

 

4
5 0. 000

 

0
6 0. 080

 

5
7 0. 006

 

8
8 0. 564

 

4
9 1. 000

 

0
10 0. 735

 

5
11 0. 239

 

3
12 0. 008

 

2
13 0. 026

 

1
14 0. 013

 

9

　 　 从表 3 可以看出,模型在杂波门的预测效果最佳,
RMSE 值较小。 这是因为海杂波作为一种混沌系统,具
有较强的时序规律性,适合通过神经网络进行短时预测。
而模型在目标门的预测效果较差,RMSE 值较大,原因在

于目标信号是叠加信号,不存在周期规律。 为利于观察,
由表 3 的数据可以得到折线图如图 7 所示。

图 7　 第 17 组数据所有距离门 RMSE
Fig. 7　 RMSE

 

of
 

all
 

distances
 

for
 

group
 

17
 

data

考虑到 RMSE 反映了模型对混沌系统拟合的程度,
但雷达系统中的问题本质上是二分类问题———即区分有

目标与无目标,所以更应关注的是目标门与杂波门之间

的差异性特征。 图 7 中,含有目标信号的回波用红色点

标出,纯杂波信号用蓝色点标出,虚线区域为可选阈值空

间。 可以看出主目标距离门 RMSE 值最大,显著高于杂

波门,而次目标距离门和杂波门的差值相对较小,因此影

响目标检测的关键因素是目标距离门的最小值与杂波距

离门最大值之间的差异。 由于 RMSE 值较小,定义目标
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门 RMSE 的最小值与杂波门 RMSE 的最大值之比作为衡

量指标,称为“RMSE 最值比”,如式(17)所示。

ExRatio =
RMSEmin

target

RMSEmax
clutter

(17)

式中: ExRatio 表示 RMSE 最值比; RMSEmin
target 表示目标门

RMSE 最小值; RMSEmax
clutter 表示杂波门 RMSE 最小值。

RMSE 最值比可以量化目标与杂波之间的区分度,其值

越大,表明微弱信号与海杂波的区分度越高,模型的容错

能力和检测效果也越好。 比较几种 LSTM 方法的特点如

表 4 所示。
表 4　 不同检测方法比较

Table
 

4　 Comparison
 

of
 

various
 

detection
 

methods
#17 ExRatio 预处理(去噪) 迭代次数

LSTM[8] 1. 60 否 10
 

000
WOA-LSTM[21] 2. 32 是 300

本文 2. 97 否
 

200

　 　 表 4 中,WOA-LSTM 方法在预测前经过小波去噪处

理,计算成本比其他方法更高。 而本文所提方法 RMSE
最值比最大,使用的迭代次数最少,对于目标信号的区分

效果和运行效率都较高。 传统 LSTM 方法无法直接从时

域检测出第 54 组的微弱信号,需要结合频域共同分析,
而所提方法可以直接从时域检测到微弱信号,且训练模

型使用的迭代次数显著降低,从 10
 

000 次降低至 200 次,
需要的训练集长度更少,从 10

 

000 点降低至 5
 

000 点。
相较 LSTM 与 WOA-LSTM,所提方法的检测能力分别提

高了 78%与 28%。
实验证明, 结合相空间重构, 所 提 AWE-NRBO-

BiLSTM 的微弱信号检测方法在不同海况下均能检测到

微弱信号。 本方法显著减少了训练时长,降低了对信号

长度的依赖性,降低了信号的阈值,提高了模型效率与

精度。
3. 3　 烟台海杂波背景下微弱信号检测

　 　 为衡量模型对噪声环境、输入数据质量变化等扰动

的耐受能力,使用国内烟台对海数据集进行实验,检验模

型在复杂环境下的鲁棒性。 该数据集来源于海军航空大

学的“雷达对海探测数据共享计划” [22] 。 采用数据集中

最新的 20221112140039 _ stare 数据。 雷达型号为天奥

SPPR50P,极化方式为 HH,发射的组合脉冲在时间上依

次为单脉冲信号 T1、LFM 脉冲信号 T2 和 LFM 脉冲信号

T3,整体重复频率为 2
 

000
 

Hz,目标为两个钢制灯浮漂,
分别在 2. 97、3. 19

 

nmi ( 1
 

nmi = 1
 

852
 

m) 处,有效浪高

1. 8
 

m,海况等级 4 级。 本文采用 T1 单脉冲信号,检测目

标为浮标 1,回波距离门共有 950 个,目标距离门在 442 ~
454 处,信号长度为 131

 

000,总观测时间为 65. 5
 

s。 杂波

门和目标门的预测结果误差 RMSE 如图 8 所示。
图 8 中,明显观测到目标门在 1

 

800 样本点附近有误

图 8　 烟台数据集预测误差

Fig. 8　 Prediction
 

error
 

of
 

Yantai
 

dataset

差峰出现,其峰值是杂波门该处峰值的约 4 倍,可以判断

该处有微弱信号存在。 由于该数据集的距离门较多,为
与实验二的距离门个数保持一致,采用等间隔抽样的方

式从 950 个距离门中选择 4 个目标距离门与 10 个纯海

杂波距离门进行分析:以 100 个时间单位为间距,等间隔

的取该数据集的 10 个纯杂波距离门,并以 2 个时间单位

为间隔, 取 4 个目标距离门, 得到预测结果误差的

RMSE。 由于该数据初值较大,得到的 RMSE 相对更大,
为了便于观察,对 14 个 RMSE 值做归一化处理,结果如

表 5 所示。
表 5　 烟台数据集部分距离门归一化 RMSE
Table

 

5　 Partial
 

distance
 

gate
 

normalized
RMSE

 

in
 

Yantai
 

dataset
距离门 归一化 RMSE

1 0. 251
 

8
101 0. 208

 

5
201 0. 398

 

2
301 0. 075

 

6
401 0. 291

 

1
445 0. 838

 

8
447 1. 000

 

0
449 0. 681

 

5
451 0. 551

 

6
501 0. 111

 

9
601 0. 078

 

9
701 0. 010

 

7
801 0. 000

 

0
901 0. 006
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　 　 由表 5 数据可以得到折线图如图 9 所示。 图 9 中目

标距离门的 RMSE 显著大于杂波门的 RMSE,目标门的

RMSE 最小值为 0. 551
 

6, 杂波门的 RMSE 最大值为

0. 398
 

2,最值比为 1. 39,虚线之间的范围为可选阈值门

限,显然可选阈值门限范围充裕。 阈值门限设置在

0. 45 ~ 0. 55 即可有效区分目标门与杂波门。

图 9　 烟台数据集部分距离门归一化 RMSE
Fig. 9　 The

 

RMSE
 

of
 

the
 

distance
 

normalization
of

 

the
 

Yantai
 

dataset

综合以上 3 个实验结果可知,所提方法在不同海情

和海域条件下,均能有效从海杂波背景噪声中检测出微

弱目标信号。 模型在面对数据中的噪声、不完全信息及

小的扰动时,依然能够保持良好的表现,展示了其较强的

鲁棒性。

4　 结　 论

　 　 针对强混沌背景噪声下传统方法难以检测微弱目标

信号的问题,本文提出了一种基于 AWE-NRBO-BiLSTM
的海面微弱信号检测方法,借助相空间重构理论得到有

效的数据输入形式,使用改进牛顿-拉夫逊算法获得模型

最优超参数,以自适应权重误差作为损失函数,通过

BiLSTM 模型单步预测,结合预测误差,实现了在不同海

杂波背景下对微弱信号的有效检测。 通过引入 Lorenz 系

统证明了模型的基本检测能力,使用 IPIX 和烟台对海数

据集,检验了所提方法在不同海域、海情的检测能力。 相

比传统 LSTM 与改进 LSTM 模型,检测效果提高 28%
以上。

后续研究可以考虑结合注意力机制,帮助模型更好

地聚焦于重要的信号特征,忽略噪声和无关的信息。 结

合多种深度学习模型,形成混合架构,增强模型的鲁棒

性。 结合信号处理方法,考虑对误差做频域、时频域、
极化域等多域分析,从而进一步提升模型的精度与泛

化性。
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