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Detection method for contact mesh small parts based on improved YOLOvSs

He Yifei Liu Xiaodong Zhao Xing Wu Tong Li Hua
(School of Zhan Tianyou, Dalian Jiaotong University, Dalian 116000, China)

Abstract: Railway catenary system is the core equipment to supply power to electric traction vehicles, and its state directly affects the
safety of train operation. In order to solve the problem that the key small components (split pin, tube sleeve and nut of positioner
bracket) in the railway catenary are difficult to accurately locate due to their small size and complex environment, a small target
detection method based on improved YOLOvS5s is proposed. Firstly, the C3 module of the feature extraction network is combined with the
linear deformable convolution (LDConv) to design a new C3_LD module. The proposed module employs deformable convolution kernels
to dynamically adjust receptive fields, which effectively captures geometric deformation characteristics of small targets. This design not
only enhances feature extraction capability but also reduces parameter. Secondly, the SPPFCSPC_group structure is designed to replace
the original SPPF structure, and the multi-scale feature expression ability of the network is improved by combining group convolution with
multi-scale spatial pyramid. Finally, the original loss function is replaced by spatial intersection over union ( SIoU), which enhances
bounding box regression accuracy through spatial constraints between predicted and ground-truth boxes. The results of ablation
experiments and comparison experiments show that the improved algorithm in this paper achieves 93. 2% mean average precision ( mAP)
and 93. 1% recall rate in the detection task of railway catenary mesh small components, which are 1. 9% and 3. 6% higher than those of
the original algorithm, which effectively alleviates the missed detection and false detection problems of railway catenary small
components.
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Fig. 1 Network structure diagram of YOLOVS algorithm
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SSD 39.8 76.2 83.8
YOLOv5s 7.0 91.3 89.5
YOLOv5s_ECA 7.0 92.2 90. 8
YOLOv5s_SE 7.5 92.3 90. 7
YOLOv5s_DCN 7.1 92.4 89.7
YOLOv8 11.1 90.9 83.8
' 7.5 93.2 93.1
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