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改进 YOLOv5s 的接触网小零件检测方法∗
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摘　 要:铁路接触网是向电力牵引车辆供电的核心设备,其状态直接影响列车运行安全。 在 6C 系统检测接触网状态时,准确定

位各类零部件的位置是首要任务。 针对铁路接触网关键小零件(开口销、管套和定位器支座的螺母)因尺寸小、环境复杂导致

难以精确定位的问题,提出了一种基于改进 YOLOv5s 的小目标检测方法。 首先,将特征提取网络的 C3 模块与线性可变形卷

积(LDConv)结合,设计出新的 C3_LD 模块。 该模块通过可变形卷积核自适应调整感受野,有效捕捉小目标的几何形变特征,
提高特征提取能力的同时降低了参数量;其次,替换原本快速空间金字塔池化(SPPF)结构设计了 SPPFCSPC_group 结构,通过

分组卷积与多尺度空间金字塔结合,提高了网络多尺度特征表达能力;最后,将原损失函数替换为 SIoU 函数,通过预测框和真

实框之间的空间约束来提高边界框的回归精度。 消融实验和对比实验结果表明,改进后的算法在接触网小零件检测任务中实

现了 93. 2%的平均精度均值(mAP)和 93. 1%的召回率,相较于原算法分别提高了 1. 9%和 3. 6%,有效缓解了接触网小零件的

漏检和误检问题。
关键词:

 

铁路接触网;小目标检测;YOLOv5;线性可变形卷积;空间金字塔结构

中图分类号:
  

U225. 4;TN911. 73　 　 　 文献标识码:
 

A　 　 国家标准学科分类代码:
 

520. 2060
 

Detection
 

method
 

for
 

contact
 

mesh
 

small
 

parts
 

based
 

on
 

improved
 

YOLOv5s

He
 

Yifei　 Liu
 

Xiaodong　 Zhao
 

Xing　 Wu
 

Tong　 Li
 

Hua
(School

 

of
 

Zhan
 

Tianyou,
 

Dalian
 

Jiaotong
 

University,
 

Dalian
 

116000,China)

Abstract:
 

Railway
 

catenary
 

system
 

is
 

the
 

core
 

equipment
 

to
 

supply
 

power
 

to
 

electric
 

traction
 

vehicles,
 

and
 

its
 

state
 

directly
 

affects
 

the
 

safety
 

of
 

train
 

operation.
 

In
 

order
 

to
 

solve
 

the
 

problem
 

that
 

the
 

key
 

small
 

components
 

( split
 

pin,
 

tube
 

sleeve
 

and
 

nut
 

of
 

positioner
 

bracket)
 

in
 

the
 

railway
 

catenary
 

are
 

difficult
 

to
 

accurately
 

locate
 

due
 

to
 

their
 

small
 

size
 

and
 

complex
 

environment,
 

a
 

small
 

target
 

detection
 

method
 

based
 

on
 

improved
 

YOLOv5s
 

is
 

proposed.
 

Firstly,
 

the
 

C3
 

module
 

of
 

the
 

feature
 

extraction
 

network
 

is
 

combined
 

with
 

the
 

linear
 

deformable
 

convolution
 

(LDConv)
 

to
 

design
 

a
 

new
 

C3_LD
 

module.
 

The
 

proposed
 

module
 

employs
 

deformable
 

convolution
 

kernels
 

to
 

dynamically
 

adjust
 

receptive
 

fields,
 

which
 

effectively
 

captures
 

geometric
 

deformation
 

characteristics
 

of
 

small
 

targets.
 

This
 

design
 

not
 

only
 

enhances
 

feature
 

extraction
 

capability
 

but
 

also
 

reduces
 

parameter.
 

Secondly,
 

the
 

SPPFCSPC_group
 

structure
 

is
 

designed
 

to
 

replace
 

the
 

original
 

SPPF
 

structure,
 

and
 

the
 

multi-scale
 

feature
 

expression
 

ability
 

of
 

the
 

network
 

is
 

improved
 

by
 

combining
 

group
 

convolution
 

with
 

multi-scale
 

spatial
 

pyramid.
 

Finally,
 

the
 

original
 

loss
 

function
 

is
 

replaced
 

by
 

spatial
 

intersection
 

over
 

union
 

( SIoU),
 

which
 

enhances
 

bounding
 

box
 

regression
 

accuracy
 

through
 

spatial
 

constraints
 

between
 

predicted
 

and
 

ground-truth
 

boxes.
 

The
 

results
 

of
 

ablation
 

experiments
 

and
 

comparison
 

experiments
 

show
 

that
 

the
 

improved
 

algorithm
 

in
 

this
 

paper
 

achieves
 

93. 2%
 

mean
 

average
 

precision
 

(mAP)
 

and
 

93. 1%
 

recall
 

rate
 

in
 

the
 

detection
 

task
 

of
 

railway
 

catenary
 

mesh
 

small
 

components,
 

which
 

are
 

1. 9%
 

and
 

3. 6%
 

higher
 

than
 

those
 

of
 

the
 

original
 

algorithm,
 

which
 

effectively
 

alleviates
 

the
 

missed
 

detection
 

and
 

false
 

detection
 

problems
 

of
 

railway
 

catenary
 

small
 

components.
Keywords:railway

 

catenary;
 

small
 

object
 

detection;
 

YOLOv5;
 

linear
 

deformable
 

convolution;
 

spatial
 

pyramid
 

structure



　 第 9 期 改进 YOLOv5s 的接触网小零件检测方法 ·151　　 ·

0　 引　 言

　 　 作为电气化铁路的重要组成部分,接触网的工作状

态直接影响着机车能否获得充足的电能。 而接触网装置

的零部件长期工作在复杂的室外环境,难免会发生脱落、
断裂等故障,这些安全隐患将严重影响高速列车的稳定

运行,日常维护接触网状态的检查尤为重要[1-2] 。 接触网

支撑装置的组成复杂,共包含 40 多种不同尺寸的零部

件[3] 。 在 2012 年我国就采用了高速铁路供电系统安全

检测监测(6C 系统),其中 4C 系统是利用安装在检测车

顶部上的高清摄像机对不同角度的接触网支撑零部件进

行拍摄,再通过人工对照片中的接触网支撑装置零部件

状态进行判别。 4C 系统虽然节省了人工巡视的人力物

力,但还需要人工进行筛查,人工检测容易受主观因素的

影响,很可能导致接触网小零件漏检与误检[4] 。
随着技术的发展,接触网检查方法逐渐趋向智能化、

自动化。 深度学习的出现推动了机器视觉和人工智能等

领域的深刻变革,目标检测算法也取得了显著突破。 国

内外研究人员正尝试将基于深度学习的目标检测算法应

用于铁路接触网零部件的检测。 目前,基于深度学习的

目标检测算法可分 One-stage 和 Two-stage 检测算法。
One-stage 目标检测算法以 SSD 和 YOLO 系列为代表。
Wang 等[5] 提出了一种基于改进 YOLOv3 算法的两阶段

定位开口销的方法,第 1 阶段用于定位支撑装置上的 5
个关节组件,第 2 阶段在关节组件图像中定位开口销,可
以有效地解决开口销尺寸太小而难以精确定位的问题。
石强等[6] 基于 YOLOX 模型,引入了卷积块注意力机制

模块(convolutional
 

block
 

attention
 

module,CBAM) [7] 关注

图像重要区域,并设计了 SC-PAN( skip
 

connection
 

PAN)
结构来增强特征表达能力,从而实现了 U 型抱箍开口销

的精确检测。 Two-stage 目标检测算法以 R-CNN、Faster
 

R-CNN 等为代表。 王昕钰等[8] 提出三级级联架构检测

开口销缺陷,该架构通过 Faster
 

R-CNN 实现定位,利用深

度卷积生成对抗网络(DCGAN)扩充缺陷数据集,最后基

于 VGG16 网络训练分类模型以检测开口销缺陷;顾桂梅

等[9] 通过 K 均值聚类算法优化 Faster
 

R-CNN 中区域候

选网络( region
 

proposal
 

network, RPN) 层生成的 anchor
 

boxes 比例及面积,实现了管帽的精准定位;Tan 等[10] 提

出一种基于掩膜区域卷积神经网络( MASK
 

R-CNN) [11]

和图像处理模型的接触网智能缺陷检测算法,利用垂直

投影技术实现绝缘子的单棚定位和精确切割,并通过梯

度、纹理和灰度特征融合结合 K-means 聚类分析模型来

检测破碎绝缘子、 污垢、 异物和闪络; 胡代弟[12] 使用

Faster
 

R-CNN 模型的 9 种不同尺寸比例的目标候选框进

行定位,优化图像的灰度值和增益因子,并结合直方图均

衡化原理进行细节去噪处理,提高了检测开口销的准

确性。
上述研究表明,现有接触网设备的缺陷检测和故障

诊断方法大多属于单个零部件的分析,难以满足实际需

求。 此外,对于小尺寸零件的检测和定位,Two-stage 检

测模型复杂、检测速度慢,而 One-stage 检测算法对小目

标的识别效果较差,且改进后往往导致参数量的增加。
针对上述问题,本文提出一种基于改进 YOLOv5s 的

目标检测算法,并以 3 种接触网上故障高发的小尺寸零

件———开口销、管帽和定位器支座的螺母作为检测对象。
本文设计 C3_LD 模块替代原本的 C3 模块,通过线性可

变形核实现动态感受野调整,在减少参数量的同时提升

特征提取精度;结合分组卷积( group
 

convolution)和快速

空间金字塔池化-跨阶段局部通道(spatial
 

pyramid
 

pooling
 

faster
 

cross
 

stage
 

partial
 

channel, SPPFCSPC ) 构 建 的

SPPFCSPC_group 结构提高了网络多尺度特征表达能力;
引入 SIoU 损失函数建立空间约束,显著提升定位精度。
实验结果表明,本文改进后的 YOLOv5s 算法能实现对多

种小尺寸零件的高精度检测。

1　 YOLOv5 网络

　 　 YOLOv5 继承了 YOLOv1-v4 的优势,并提高了检测

精 度 与 速 度。 YOLOv5 的 网 络 架 构 包 括 骨 干 网

络(backbone)、颈部网络( neck) 和头部网络( head) [13] 。
YOLOv5 的网络架构如图 1 所示。

在 YOLOv5 中,骨干网络通过 CBS 模块进行基础特

征提取,C3 模块在增加网络深度的同时控制计算量,
SPPF 模块则通过多尺度特征融合提升尺度适应性。 颈

部网络采用 Upsample 上采样和 Concat 特征拼接操作,结
合路径聚合机制实现跨尺度特征融合,可有效捕获大、
中、小目标的语义信息。 最终,检测头通过全卷积结构生

成目标候选框,基于锚框机制完成分类与定位预测。
YOLOv5 供包含 4 种尺寸的网络模型,从小到大为

s、m、l 和 x,其网络结构相同[14] ,准确度随着模型的大小

提升, 速 度 也 随 之 下 降。 本 文 选 择 参 数 量 最 少 的

YOLOv5s 作为基准模型。

2　 改进 YOLOv5s 网络

2. 1　 改进 C3 模块

　 　 卷积核的目的是为了提取输入物的特征。 二维卷积

包括两个步骤:1)在输入特征映射 x 上使用规则网格 R
进行采样;2)对于输出特征图 y 上的每个位置 p0,求采样

值加权 w 的总和。 定义如下:
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图 1　 YOLOV5 算法的网络结构

Fig. 1　 Network
 

structure
 

diagram
 

of
 

YOLOV5
 

algorithm

　 　 R= {( -1,-1),( -1,0),…,(0,-1),(1,1)} (1)

y(p0) = ∑
pn∈R

w(p0)·x(p0 + pn) (2)

式中: pn 为卷积核的位置; w 为卷积核。
传统卷积核的尺寸和权重通常是固定的,这种设计

导致其主要问题是对于未知的变化适应性较差、泛化能

力不足[15] 。
为解决此问题研究者提出了可变形卷积( deformable

 

Conv,DConv)。 可变形卷积通过动态学习采样点的偏移

和权重[16-17] ,如式(3)所示,可灵活调整卷积核的采样形

状,从而更好地适应目标的变化,提高网络特征提取

能力。

y(p0) = ∑
pn∈R

w(p0)·x(p0 + pn + Δpn)·Δmn (3)

其中, {Δpn | n = 1,…,N},N =| R | ,Δpn 为偏移量,
Δmn 为介于 0 ~ 1 的权重系数。

但 DConv 只能定义 k × k 的卷积操作来提取特征,未
能探索不同初始样本形状对网络性能的影响,而且参数

量的增加呈平方级增长,导致计算复杂度上升。 针对上

述问题,本文引用了线性可变形卷积( linear
 

deformable
 

conv,LDConv) [18] 。 与传统的固定采样形状相比,LDConv
通过重采样动态调整每个位置的采样形状,使卷积参数的

数量呈线性上升或下降趋势,从而有效减少参数量和计算

开销。 以大小为 5 的卷积核为例,其结构如图 2 所示。

图 2　 线性可变形卷积算法的结构

Fig. 2　 Structure
 

diagram
 

of
 

LDConv
 

algorithm

　 　 LDConv 将初始采样坐标分配给任意大小的卷积,并
通过可学习的偏移量来调整采样形状。 LDConv 首先通

过卷积运算生成偏移量,其运算维度为 (B,2N,H,W) ,
其中 N 为卷积核大小。 然后将偏移量和原始坐标相加,

得出调整后的采样坐标 (p0 + Δpn) 为解决不规则卷积核

采样位置特征提取困难的问题,将特征转换为四维张

量(C,N,H,W),然后利用步长和卷积大小 (N,1,1) 的

三维卷积 Conv3d 进行特征提取,降维至 (C,H,W) 。 最
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后在列方向上堆叠重新采样的特征,并应用大小为 (N,
1) 和 (1,N) 的行卷积,LDConv 就可实现不规则卷积特

征的提取。
检测接触网小零件过程中存在不同目标的尺寸不同

的问题,LDConv 通过动态调整采样形状,能有效提高模

型对多尺度目标的检测精度,同时降低了模型的计算复

杂度。
为进一步增强 YOLOv5s 特征提取能力, 本文将

LDConv 与 C3 模块结合,构建新的 C3_LD 模块,其结构

如图 3 所示。
2. 2　 改进 SPPF 模块

　 　 SPPFCSP [19] 融合了 YOLOv5 中 SPPF 结构高效提取

尺度特征的能力和 SPPCSPC 模块[20] 的跨级部分通道思

想, SPPCSPC 模 块 如 图 4 ( a ) 所 示。 SPPFCSPC 将

SPPCSPC 中的 3 个不同尺寸的最大池化操作统一为相

　 　 　

图 3　 C3_DL 模块和 DL_Bottleneck 模块

Fig. 3　 C3_DL
 

module
 

and
 

DL_Bottleneck
 

module

同尺寸的最大池化,在保持多尺度特征提取能力的同时

简化了计算流程,其结构如图 4(b)所示。

图 4　 空间金字塔网络结构

Fig. 4　 Spatial
 

pyramid
 

network
 

structure
 

diagram

　 　 本文结合了 SPPFCSPC 结构和分组卷积,在增强特

征融合能力的同时压缩参数,从而在保持感受野不变的

情况下实现了速度提升。
分组卷积是一种卷积操作的变体,将输入和卷积核

分成多个组后,每组分别进行卷积操作,最后将结果拼接

起来。

假设 输 入 特 征 图 为 x ∈ RCin×H×W , 卷 积 核 为

w ∈ R
Cout×

Gin
g ×k×k

,群卷积 Y 的输出为:
Y = Concat(y1,y2,…,yg) (4)

式中: C in 为输入特征图通道数; Cout 为输出特征图通道

数; k × k 为卷积核大小; g 为分组数;
C in

g
为每组输入的

通道数。 第 i(1 ≤ i ≤ g) 组的输出 y i 为:
y i = x i·ci (5)

式中: x i 大小为
C in

g
× H × W;w i 大小为

C in

g
×
Cout

g
× k × k。

标准卷积参数量为 Cout × C in × k × k ,分组卷积参数量则

为 Cout ×
C in

g
× k × k。

SPPFCSPC_group 模块的流程步骤如下:
1)输入特征:
x(B,c1,H,W)。
2)分支 1 处理:
(1) x 依次经过卷积 Conv(c1,c - ,k = 1,s = 1,g),

Conv(c - ,c - ,k = 3,s = 1,g),Conv(c - ,c - ,k = 1,s = 1,g) ,
输出 x1;

(2)多级池化:对 x1 进行 3 次级联最大池化 (k = 5,
s = 1) ,生成 x2、x3、x4;
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(3)特征拼接与融合:将 x1、x2、x3、x4 拼接,依次经过

2 次卷积 Conv(4c - ,c - ,k = 1,s = 1,g),Conv(c - ,c - ,k =
3,s = 1,g) ,输出 y1。

3)分支 2 处理:
x 经过卷积 Conv(c1,c - ,k = 1,s = 1,g) 输出 y2。
4)最终输出:
拼接 y1 和 y2,经过卷积 Conv(2c - ,c2,k = 1,s = 1,g),

输出特征 y(B,c2,H,W) 。 其中, c1 和 c2 分别是输入、输
出特征图的通道数, g = 4 为分组数, c - = int(2·c2·e) 为

隐藏通道数,( e 为扩展因子)。 每个 Conv 都将输入通道

分为 4 组,每组使用独立的 k × k 卷积核后输出 1 / 4 的输

入通道,最后将所有组的输出在通道维度拼接,计算量减

少了 1 / 4。
原始 SPPFCPCF 结构和具有分组卷积的 SPPFCSPC

结构的参数比较如表 1 所示。 从表 1 可以看出,具有分

组卷积的 SPPFCSPC 模块相较于原模块,参数量减少了

5. 31×106,计算量减少了 4. 2
 

GFLOPs。

表 1　 SPPFCSPC 和 SPPFCSPC_group 的参数

Table
 

1　 Parameters
 

of
 

SPPFCSPC
 

and
 

SPPFCSPC-group
模型 参数量 / ( ×106 ) 计算量 / GFLOPS

YOLOv5s(SPPF) 7. 02 15. 8
YOLOv5s+SPPFCSPC 13. 46 21. 1

YOLOv5s+
 

SPPFCSPC_group 8. 15 16. 9

2. 3　 改进损失函数 Loss
　 　 交并比(intersection

 

over
 

union,IoU)是一种计算两个

区域重叠比例的算法,广泛用作深度学习领域的目标检

测或语义分割任务的评估指标,定义为:

IoU =
Iarea

Uarea
(6)

式中: Iarea 为区域相交面积; Uarea 为区域并集面积。
YOLOv5 采用 CIoU

 

Loss ( complete
 

intersection
 

over
 

union
 

loss) [21] 计算边界框损失。 CIoU
 

Loss 考虑了预测

框与真实框的重叠面积,同时还引入了中心点距离和长

宽比的相似性,定义为:

LCIoU = IoU - ρ2(b,bgt)
C2

- α·v (7)

式中: b 和 bgt 分别代表实际框和预测框; ρ2(b,bgt) 表示

两个框中心点的欧氏距离; α 是权重函数; ν 是用来度量

长宽比的相似性。

α = v
(1 - IoU) + v

(8)

v = 4
π2 (arctan wgt

hgt
- arctan w

h
) 2 (9)

式中: wgt、w、hgt、h 代表真实框、预测框的宽度和高度。

由上述公式可知,CIoU 考虑了边界框的中心点距

离、对角线距离和宽高比惩罚项,能在一定程度上加快预

测框的回归收敛过程。 然而,参考文献[22] 可知,当收

敛到预测框和真实框的宽和高呈现线行比例时,就会导

致预测框回归时的宽和高无法同时增大或者减少,从而

影响 回 归 精 度。 为 解 决 这 一 问 题, 本 文 采 用 SIoU
 

Loss(scylla
 

intersection
 

over
 

union
 

loss) [23] ,其通过引入向

量角度,重新定义了惩罚指标。 SIoU
 

Loss 由角度代价、
距离成本、形状成本和 IoU 组成,定义如下:

LSIoU = 1 - IoU + Δ + Ω
2

(10)

式中:Δ 为距离成本; Ω 为形状成本。
距离成本计算公式如下:

Δ = ∑
t = x,y

(1 - e
-γρt) (11)

其中, ρx = (
bgt
cx
- bcx

cw
) 2,ρy = (

bgt
cy
- bcy

ch
) 2,γ = 2 - Λ,

Λ 为角度代价,公式如下:

Λ = 1 - 2sin2(arcsin(
Ch

ρ2(b,bgt)
- π

4
)) = sin2α

(12)
形状成本定义为:

Ω = ∑
t = x,y

(1 - e
-wt) ϑ (13)

式中: ϑ 的值定义了形状成本; ww = | w - wgt |
max(w,wgt)

;wh =

| h - hgt |
max(h,hgt)

。

本文采用 SIoU
 

Loss 替换原始 CIoU
 

Loss。 迄今为止

CIoU 和提出其他的方法在计算边界框损失时,都没有考

虑到与实际的边界框与预测的边界框之间的方向偏差。
SIoU 通过在损失函数代价中引入方向性,加快了训练阶

段的收敛速度,推理性能更好。
最终,本文改进的 YOLOv5s 算法网络结构如图 5

所示。

3　 实验结果与分析

3. 1　 数据集、实验环境与超参数配置

1)数据集

本实验数据集源自我国 300
 

km / h 高铁接触网检测

车动态采集系统。 采用 labelImg 软件对图像中的检测目

标进行标注,包括水平 / 垂直于地面的开口销( SP_A / SP_
B)、管帽 ( TC)、 定位器支座的螺母 ( DB _ N) 和绝缘

子(IST),如图 6 所示。 其中,SP _A / SP _B / TC / DB_N 为

小尺寸目标,IST 作为大尺寸目标用于模拟实际检测场
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图 5　 改进的 YOLOv5s 算法网络结构

Fig. 5　 Network
 

structure
 

diagram
 

of
improved

 

YOLOv5s
 

algorithm

景中的尺寸差异。 本文数据集共包含 2
 

000 张图像,按
8 ∶ 2 分为训练集和验证集。

图 6　 目标零件标注图

Fig. 6　 Target
 

part
 

marking
 

drawing

　 　 2)实验环境配置

本文实验是在云服务器 AutoDL 上进行,镜像环境为

python3. 8、pytorch1. 9、cuda11. 1,实验配置的 CPU 型号为

7 核
 

Intel( R)
 

Xeon( R)
 

CPU
 

E5-2680
 

v4
 

@
 

2. 40
 

GHz,
GPU

 

RTX3060,显存 12
 

GB。
3)超参数配置

实验超参数配置如下:本文使用随机梯度下降法优

化参数,学习率为 0. 01,学习率动量为 0. 937,置信度阈

值为 0. 5,训练批次设置为 120,输入图像大小为 640 ×
640,批数量为 4。
3. 2　 评价指标

　 　 本文采用召回率( recall,R)、平均精度均值( mean
 

average
 

precision,mAP)、参数量、浮点计算量和迭代完成

时间 T
 

5 个指标对模型进行性能评估。 其定义如下:

P = TP
TP + FP

× 100% (14)

R = TP
TP + FN

× 100% (15)

AP = ∫R

0
PdR (16)

mAP =
∑

k

i = 1
AP i

i
(17)

式中: TP 为正确识别且分类准确的零件数量; FP 为误

检为其他类别的零件数量; k 为类别数; FN 为未检出到

真实零件数量。 召回率反应模型对 TP 的查全能力,mAP
综合评估模型在多类别场景下的检测精度。
3. 3　 消融实验

　 　 为验证本文提出的改进 YOLOv5s 的有效性, 在

YOLOv5s 的基础上对改进模块进行消融实验,依次引入

C3_DL、SPPFCSPC_group 和 SIoU 改进组件,实验结果如

表 2 所示,其中“Π”表示使用对应改进组件。

表 2　 改进算法消融实验结果

Table
 

2　 Experimental
 

results
 

of
 

improved
 

algorithm
 

ablation

+C3_LD +SPPFCSPC_group +SIoU 参数量 / ( ×106 )
mAP / %

SP_A SP_B TC DB_N All
× × × 7. 0 91 86. 1 93. 8 94. 2 91. 3
Π × × 6. 7 92. 4 86. 7 94 95. 7 92. 2
Π Π × 7. 5 92. 6 87 94. 3 95. 9 92. 5
Π Π Π 7. 5 93. 3 88. 8 94. 5 96. 2 93. 2

+C3_LD +SPPFCSPC_group +SIoU
计算量 /
GFLOPs

T / h
R / %

SP_A SP_B TC DB_N All
× × × 15. 8 10. 14 91. 2 84. 1 90. 9 92. 1 89. 5
Π × × 14. 6 10. 01 91. 5 84 91 95. 2 89. 7
Π Π × 15. 5 10. 35 91. 9 84. 3 91. 6 95. 7 90. 9
Π Π Π 15. 5 10. 25 92. 5 87. 5 95. 5 97 93. 1
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　 　 实验结果表明,本文提出的改进算法提升了检测效

果,其中 mAP 值达到 93. 2%,召回率达到 93. 4%,分别提

升了 1. 9%和 3. 6%,而且对于 YOLOv5s 检测结果中表现

最差的 SP_B,改进算法提升效果最显著。 C3_DL 在提升

检测精度的同时还减少了模型的参数量和浮点数,实现

了模型的轻量化;SPPFCSPC_group 对 mAP 和召回率的

提升都有帮助;SIoU 对 R 值的提升显著,同时还缩短了

迭代完成的时间。 对于大尺寸目标 IST,改进算法保持了

优异的检测性能, mAP 和召回率 分 别 保 持 在 99%
和 99. 5%。

本文改进算法与 YOLOv5s 的检测效果如图 7 所示。

图 7　 检测结果

Fig. 7　 Test
 

result
 

diagram

　 　 当检测场景为多检测目标或有遮挡目标情况时,改
进算法有效解决了漏检问题;在环境昏暗的环境下,改进

算法没有出现误检的问题, 而且整体的置信度都比

YOLOv5s 的高,可以看出本文改进算法在实际应用中有

较好的检测效果。

3. 4　 对比实验

　 　 为了进一步验证本文改进算法的有效性,将其与当

前 主 流 One-stage 目 标 检 测 算 法 ( SSD、 YOLOv3、
YOLOv5s、YOLOv8 ) 以 及 其 他 学 者 改 进 的 YOLO 算

法(YOLOv5s_ECA、YOLOv5s _ SE、 YOLOv5s _ DCN) 进行

了对比实验。 其中, YOLOv5s _ ECA、 YOLOv5s _ SE 和

YOLOv5s_DCN 分别为添加了通道注意力机制( efficient
 

channel
 

attention, ECA) [24] 、 通道注意力机制 ( squeeze-
and-excitation, SE ) [25] 和 引 入 了 可 变 形 卷 积 DCN 的

YOLOv5s,所有实验均在相同超参数设置下进行,实验结

果如表 3 所示。
由表 3 可知,本文改进算法在 mAP 和召回率两项关

键指标达均到最优,其中 mAP 值相较于 SSD、YOLOv5s、
YOLOv5s _ ECA、 YOLOv5s _ SE、 YOLOv5s _ DCN 和 Y

 

OLOv8 的分别高出了 17%、 1. 9%、 1%、 0. 9%、 0. 8% 和

2. 3%,召回率值分别高出了 9. 3%、3. 6%、2. 3%、2. 4%、
3. 4%和 9. 3%。 尽管本文算法的参数量并非最低,但其

综合性能优于其他算法。

表 3　 将改进后的算法与其他算法进行了比较的结果

Table
 

3　 The
 

improved
 

algorithm
 

is
 

compared
with

 

the
 

results
 

of
 

other
 

algorithms
算法 参数量 / ( ×106 ) mAP / % 召回率 / %
SSD 39. 8 76. 2 83. 8

YOLOv5s 7. 0 91. 3 89. 5
YOLOv5s_ECA 7. 0 92. 2 90. 8
YOLOv5s_SE 7. 5 92. 3 90. 7

YOLOv5s_DCN 7. 1 92. 4 89. 7
YOLOv8 11. 1 90. 9 83. 8
本文 7. 5 93. 2 93. 1

4　 结　 论

　 　 本文针对接触网小尺寸零件检测困难的问题,提出

一种改进的 YOLOv5s 算法。 首先,将 YOLOv5s 的骨干网

络的 C3 模块结合线性可变形卷积 LDConv,在增强特征
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提取能力的同时实现了网络的轻量化;其次,将 SPPF 模

块改进为 SPPFCSPC_group 模块,通过分组卷积降低参

数量的同时提高了网络多尺度特征表达能力;最后,采用

SIoU
 

Loss 替换原 CIoU
 

Loss,通过引入方向性和形状惩罚

项,加快了模型的收敛速度并提升了检测精度。 实验表

明,本文改进算法在接触网小零件数据集上的检测精度

mAP 与召回率分别达到 93. 2%和 93. 1%,充分证明本文

改进算法能满足实际检测场景的需求。
下一步工作重点是模型的轻量化,探索动态结构化

剪枝与自适应量化技术,在保证检测精度的前提下研究

更高效、参数更少的检测方法。
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