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Array ultrasonic Rayleigh wave detection of small defects in
thermal barrier coatings of turbine blade
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Abstract: The thermal barrier coating of aviation turbine blades can reduce the surface temperature of the blades and prevent high
temperature corrosion on the surface. The coating defects affect the performance of the blades seriously. The complex blade surface shape
and its matrix structure lead to the difficulty of non-destructive testing of coating defects. In view of the sensitivity of Rayleigh wave to
damage changes such as surface stress and surface micro-cracks, a non-destructive testing method for micro-crack defects on the surface
of turbine blade thermal barrier coating based on generalized Rayleigh wave propagation is proposed. A special ultrasonic array
transducer was designed and a Rayleigh wave detection system was built. The Rayleigh wave detection signal propagating in the back
coating along the width direction of the blade was extracted, and the correlation between the distribution characteristics of the blade
amplitude and the complex structure inside the blade was analyzed. Finally, the influence of artificial narrow slots in the blade on the
propagation characteristics of Rayleigh waves is analyzed, and a generalized Rayleigh wave detection method for coating defects is
proposed. The results show that the complex surface profile and the inner cavity diversion structure of the turbine blade have a significant
effect on the amplitude of the Rayleigh wave. The Rayleigh wave amplitude distribution of the intact blade coating is compared with the
Rayleigh wave amplitude distribution characteristics of the blade coating with a narrow groove (500 wmXx80 wmx20 pwm). The results
show that the ultrasonic amplitude propagating on the path with a narrow groove increases significantly, with an average increase of
54.3 mV. This feature can be used for non-destructive testing of micro-crack defect damage on the surface of turbine blade thermal
barrier coating.
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Fig. 1  Simulation model diagram
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Table 1 Physical parameters of materials

Mo R P G/ GPa JHMA L #5BE/ (kg-m ™)
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W % )2 45 0.11 6 070
(mol% )
jUER NiCoCrAlY 119.4 0.3 7 380
ek DZ125 206 0.3 8 595
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Fig.2 Transient diagram of ultrasonic Rayleigh wave

propagation in thermal barrier coatings
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