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Super twisting sliding mode active disturbance rejection control
strategy for hybrid three-level dual active bridge converter

Liu Chunxi Tian Ying’ao Wang Tao

(Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract: To address the issues of high current stress and poor dynamic response in hybrid three-level dual active bridge ( DAB)
converters, this study proposes an improved extended phase-shift ( EPS) modulation scheme and a minimum current stress control
strategy based on a super-twisting sliding mode active disturbance rejection controller (STSMC-ADRC). First, the EPS modulation is
enhanced by redefining the internal and external phase-shift ratios, ensuring a positive correlation between the phase-shift ratios and
transmitted power while reducing coupling between the ratios. Second, mathematical models of transmitted power and current stress
under different operating modes are analyzed for the improved EPS modulation. The karush-kuhn-tucker (KKT) conditions are applied to
solve for the optimal phase-shift ratio combination that minimizes current stress while satisfying soft-switching constraints. Third, to
simplify calculations, a reduced-order model of the converter is established, and the super-twisting sliding mode control algorithm is
integrated with active disturbance rejection technology to enhance dynamic performance. Finally, experimental validation is conducted
using a prototype. Results demonstrate that compared to traditional ADRC, the proposed STSMC-ADRC reduces the regulation time by
72.4% and voltage fluctuation by 51. 7% during sudden load resistance reduction. For input voltage step changes, the regulation time is
shortened by 73. 7% and voltage fluctuation decreased by 60%. Additionally, the strategy effectively reduces current stress and achieves
soft switching. Compared to single phase-shift modulation, efficiency improves by 15% at low power and 9% at high power.

Keywords : super twisting sliding mode control; active disturbance rejection control; hybrid three-level dual active bridge converter;

improved extend phase shift control; current stress

Llﬂﬁ H . 2024-08-01 Received Date: 2024-08-01
S H AL TR EE TR & H (LIKMZ20220683 ) % )



-210 - LSRR R e o

539 &

0 35l

il

B A TR IR S R IR Y Ol M R g s
A1 HL B T A 5 O B 2 A Sk b X v T
RE TR & HL 1S 2ot o 1) 670 THT 52 ), 6 BB 3R 4 © 8k il AR
REURIE A I OCE R R . LA RE R M fkiz 17, B
A BE XA AL 5 RE T 1 D) AR S R ATl e iR
JEAT (dual active bridge, DAB) A8 #4s B A FF A0 %K 5 |
A AR FEAR DA% B i | PR B PR RE G LA S vl T
e (ZVS) S FERBRE SRS 22 N

SRIMAE F AR D395, DAB 28485 i T ¢
EARZHIEAL, AE M TR E R RMRERS. X
BR[ 5 ¥ 21> DAB BLHL A i AN R IR, 48 i T G i I
MR BE T BRI 2% M R G liA . SCHR[ 6] 25
W ZHF- DAB B4 25 7F = e K TR & R H . 3¢
MR[ 717 DAB A dnrh g | A = HPHF R iR G 1
FER 108N, 9870 DAB BRI AR s 85

IRA = HF DAB 2 # g fE MR RE Rt 5 B
W Z [R] R A7, 8 B R A 0 25 AR e AR 8l 25 g 7
TERRAS PR BB J5 T, A (9 98 1) 5 1% 02 B A1 (single-
phase-shift, SPS) JH ], (H i F HA— A W&, S H
VLI 7 B A B T B AR X X By 3 A% e E AT AR, S
k[ 8 17E SPS FE il (1 HeAily -, >R FH AU B AR I 1, 8 3 5|
NEHMARS AR ok 3 s 2 il i B el B (E P 4 1 N
AR FCAR IR 745 R Gk, SCHR[ 9 i = H AL AH A
il 28 112 MO R L ) BAETERE AR 2 T B
FEPEZE R IR T, SCHER[ 10 ] 4 ™ e R ARl , AR 4R 1%
TR AN [R]  TAE A5, RS I/ N L IR 7 45 I Bl 3
SCHR[ 11 PR AR g TAEB 0 IR SO0, 42 8 1 —F
IR R b L I (ER (R (AR 2 s Wl NG RN VAR TR B 5
Ko SCHR[ 12 ]380 F8 e LR AR L, 48t T e R
FHTA ST (4 DAB 22 $e 25 i 840 D) i i R
FE AR LI 56 ZR T faT 3

R AR R S AR RE, SCER[ 13 ]2 T H 4R
RPN WS (AAE 57 2 S AR A O T Tk A R AR 4
wrBlSYERE, HY) 2 RAENTS B, SCHR[ 14 ]
FIARE ST g ), (BB s B R 22, X
B[ 15-16 1 JE ML 6 T DAB AR ¥ 2%, il RGN S5k
ALFAMNTE T EA R AF & Bk, 2 R G 98 T B A7
TERHRAGIAIRT, SCHR[ 17 J42 ) T X5 DAB 78 ff 45 4aj i
R ] 5 B SRR 3 T A A ] T — i R 2
fife Y PHIR )R (E T SR T A 2 T 008 JBl 85 A8 18 42 )y v 4
YR AR EE . SCHRT 18 ] SR FH A MR i 1 A5 45 1 ( super
twisting sliding mode control , STSMC ) FiF DAB A8 #e4% | fx
KPR BEHuH 55 1 RHRBON , $2 w5 1 R GRS EUB &

Betk, SCak [ 19] K A ¥ 48 % il (active disturbance
rejection control , ADRC) 5| AZE# 2% | #& & RE P T
REJ) B HPGE TR RE R 2%

ST, LIRS = B S 45 7 A DAB ( neutral
point clamped hybrid three-level DAB, NPCH3L-DAB ) ZZ #t
RTINS G BOHE G A A BT S A
TR MR I AR, TR IR R AR IE M R B HL
PL(STSMC-ADRC) Jrik 5 LT AL SE &, sl 4
SKLIN 25K 2 52 14 P AR Bl FIRE AL S HOA I 28 PEAL 3
SREN , R PR IR 5 5 A St S RGBS
PERERI AL A IR N ) i, et S 6 X L 36
TS A5E i T3 S R 5 T AT

1 NPCH3L-DAB T z3 it ¥ R 1A &
S

NPCH3L-DAB 2 &5 FMA5 g an &l 1 s, Hh U,
FLU, 43 51 A% A R ARG F e 0 AT v ] 1 A8
JERR R AR A N nos 1 CHLEMERL & =
U,/nU, ;S,~Sy h=H PR M8, Q, ~Q, I
LSRR A JF A8 5 D, ~ D, Fos T 48 Wi 19 27 42—
WA, L 37N Bl R R A R 25 B 81 3 A 0 1 Ve R
Ml €, M C, HEAMSZEFRES, C, MM SR,
Uy, R U, 2050 Wi oA i) AR L
P LTI o

Siy Ss4
Gl P e QHE’} Qs
T HADA ¢ 1
Ts Ss n:l " ol o
J; Qe 3L Yol
1Ua + U | |§ Uea . = ~u
G| D, Ssz DA S QZ{ﬁ Qu
Sii Sy’

1 NPCH3L-DAB ZEH284h b4kt
Fig. 1 Topology of NPCH3L-DAB converter

LG SRR AR B A4 40 DR AR L E =X (1)
R, dydy, RN MRS M0<d, <d, < 1H,
LRI RIEE N - 0.5 < p < 0.5, Al REGAFAEIIH L
L4 ) R, B8 o, d, R R 0 ek AL 4 T % —
HNIE, 39NN AMEAH L SRR R 2 B C R,
WO T B MERE

Rttt WAL G R AR R AT G, T, A
TR, 2 UMM D, =1 - d,, FRBE U,
15 2 e BAMNEALL D, = d, — d, /2, FRBIE U, 5
U, ZIEI 55, D, RN SERThFIERE JF Y
D, AIER] , BELRAIEAL fiy 4 i 1 {2



5510 3]

TR = AL U TR A2 s B R E PR 19 Ot o S - 211 -

2(-d} +2d,d, - d, -2d> +2d,),
0<sd <d, <1
b= 4(d2—%d1)(1—d1), (1)
0<sd,<d <1
W U, 5 U, Wiy S B 5 FR T E L
TAEREA, BC A BAHILER (1 -D)/2<D, < (1+
D)) /2, B WM IE N O0< D, < (1-D,) /2,
X CHBHMILERS (1 +D)/2<D, <1, 4D, >
0.5 BF, A BRI G, K IL, 78 07 A R i e #h 1
PEREEC, HAREC A b D, 19 BB 0.5, Bou A= A (B i
175381, NPCH3L-DAB 78 e 2% 76 Ul 4 J A% AH A il T
B TAEBIE i 2 Fos .,

A A
S..Sg SHSH S..Sg SISS
s,.s; S S,.8 | S5.Sk
QJ,Q4 Qz,Qz leQl Q2>Q3
% n1./2| [, U PYRE) o,
DT :l_ D12 1:]—
higl >« I
Ud > Ua ¢ >/
He \\\//N "R \"\/" >
ly hlhlyyly 1y o bty w 31y
(a) BRA (b) #:\B
(a) Model A (b) Model B

B2 BOAY REBARTAS T A2 fds TR IR
Fig. 2 Improved extended phase-shift control

down converter operating waveform
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