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摘　 要:针对输电线路中防震锤尺寸小,图像背景复杂,防震锤缺失难以检测的问题,提出一种轻量化 YOLOv8-SPH 的防震锤缺

失检测模型。 通过在 YOLOv8n 网络的颈部引入 160×160 和 320×320 的浅层尺度特征图,并在检测头中融入相应尺度的目标检

测模块,提升了特征图之间的上下文信息融合能力,有效扩大了模型的感受野,使得模型能够捕捉到更多防震锤缺失的特征语

义信息。 还创新性地提出了多尺度高效特征提取模块(MultFaster),通过部分卷积、多级特征提取和残差连接机制,在保持防震

锤特征检测精度的同时,减少网络的计算量和参数量。 此外,在颈部网络中引入动态上采样算子,提高重建特征图的分辨率,提
高了该模型对防震锤缺失检测的精度,同时,将原模型解耦式检测头更换为轻量化检测头,降低了模型计算的复杂度并提升检

测效率。 最后对改进后的网络进行基于幅值的层自适应稀疏化剪枝,进一步减小模型参数及计算量。 在针对自制防震锤缺失

数据集的测试中,YOLOv8-SPH 表现卓越,其 mAP @ 0. 5 达到了 91. 51%,相比原始 YOLOv8n 提高了 6. 3%,参数量减少了

80. 73%,计算量减少了 48. 14%,模型尺寸减少了 62. 41%。 该模型在计算量和参数量降低的同时,提高了检测精度,充分满足

了对输电线路中的防震锤进行高效和准确检测的需求,具有实用性。
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Abstract:
 

To
 

address
 

challenges
 

in
 

detecting
 

missing
 

Shockproof
 

Hammers
 

on
 

transmission
 

lines
 

due
 

to
 

their
 

small
 

size,
 

complex
 

image
 

backgrounds,
 

and
 

subtle
 

presence,
 

this
 

study
 

proposes
 

a
 

lightweight
 

YOLOv8-SPH
 

model
 

for
 

damper
 

absence
 

detection.
 

The
 

model
 

introduces
 

shallow-scale
 

feature
 

maps
 

of
 

160 × 160
 

and
 

320 × 320
 

within
 

the
 

neck
 

of
 

the
 

YOLOv8n
 

network
 

and
 

integrates
 

multi-scale
 

detection
 

modules
 

within
 

the
 

detection
 

head.
 

This
 

enhances
 

contextual
 

information
 

fusion
 

across
 

feature
 

maps,
 

effectively
 

expanding
 

the
 

receptive
 

field,
 

enabling
 

the
 

model
 

to
 

capture
 

richer
 

semantic
 

features
 

related
 

to
 

damper
 

absence.
 

An
 

innovative
 

multi-scale
 

high-
efficiency

 

feature
 

extraction
 

module
 

( MultFaster)
 

is
 

also
 

introduced,
 

utilizing
 

partial
 

convolutions,
 

multi-level
 

feature
 

extraction,
 

and
 

residual
 

connections.
 

This
 

structure
 

maintains
 

detection
 

accuracy
 

for
 

damper
 

features
 

while
 

reducing
 

computational
 

complexity
 

and
 

parameter
 

load.
 

Additionally,
 

a
 

dynamic
 

upsampling
 

operator
 

is
 

incorporated
 

into
 

the
 

neck
 

network
 

to
 

improve
 

feature
 

map
 

resolution,
 

improving
 

the
 

model’ s
 

accuracy
 

in
 

detecting
 

missing
 

Shockproof
 

Hammers.
 

To
 

further
 

optimize,
 

the
 

original
 

model’ s
 

decoupled
 

detection
 

head
 

is
 

replaced
 

with
 

a
 

lightweight
 

detection
 

head,
 

reducing
 

computational
 

complexity
 

and
 

boosting
 

detection
 

efficiency.
 

The
 

enhanced
 

network
 

undergoes
 

amplitude-based
 

layer-adaptive
 

sparse
 

pruning,
 

significantly
 

reducing
 

model
 

parameters
 

and
 

computational
 

load.
 

Testing
 

on
 

a
 

custom
 

damper
 

absence
 

dataset
 

demonstrates
 

YOLOv8-SPH
 

exhibited
 

remarkable
 

performance,
 

achieving
 

an
 

mAP@
0. 5

 

of
 

91. 51%,
 

which
 

marks
 

a
 

6. 3%
 

improvement
 

over
 

the
 

original
 

YOLOv8n.
 

Additionally,
 

parameter
 

count
 

is
 

reduced
 

by
 

80. 73%,
 

computational
 

load
 

by
 

48. 14%,
 

and
 

model
 

size
 

by
 

62. 41%.
 

The
 

model
 

achieves
 

improved
 

detection
 

accuracy
 

while
 

reducing
 

computational
 

complexity
 

and
 

parameter
 

size,
 

effectively
 

meeting
 

the
 

demands
 

for
 

efficient
 

and
 

precise
 

detection
 

of
 

Shockproof
 

Hammers
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in
 

transmission
 

lines,
 

showcasing
 

significant
 

practical
 

value.
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0　 引　 言

　 　 输电线路作为电力输送的主要通道,其可靠性和稳

定性直接关系到电力供应的安全和经济性。 然而,输电

线路常年暴露在野外环境中,面临着诸如风振、冰雪负

载、雷击等多种自然灾害的威胁[1] 。 为了确保输电线路

的安全运行,各种防护装置应运而生,其中防震锤[2]

(Shockproof
 

Hammer)是关键的防护设备之一。 防震锤是

一种振动减缓装置,主要作用是抑制导线在风力作用下

产生的振动,以防止导线因长期振动而导致疲劳断裂[3] 。
防震锤的缺失会显著增加输电线路的安全隐患,引发严

重的电力事故。 因此,及时发现防震锤的缺失具有重要

的实际意义。
传统的输电线路巡检主要依赖于人工检查,不仅耗

时耗力,而且受限于地形和气候条件,难以实现对大范围

输电线路的高效监测。 近年来,随着无人机巡检和深度

学习的快速发展,基于深度学习的无人机巡检能够实现

对图像数据的智能检测,为实现大范围输电线路的智能

化检测提供了重要的基础[4] 。
周景等[5] 通过 e-fficientNet 网络提取特征并进行

BiFPN 网络融合,虽然提升了防震锤的检测精度但模型

变得更加复杂。 梁华刚等[6] 使用 3 个级联检测器并将非

极大值抑制法替换为 Soft-NMS 算法,使得防震锤缺陷检

测的误检率及漏检率均降低,但仍面临参数量大的问题。
苏雨蕾等[7] 通过增加极小目标检测层,引入空间自适应

特征融合检测头和可变形卷积,增强了模型的检测能力,
降低遮挡重叠对检测的影响,但增大了模型的计算量。
卢志博等[8] 通过改进 K-means 算法得到聚类结果,并结

合深度可分离卷积。 使得网络结构轻量化,并提升了检

测效果。 徐业东等[9] 采用 Fasternet 重构 YOLOv5s 特征

提取网络,并引入 ODConv 模块,降低了模型的计算量并

保持较高的鸟巢检测精度。 Dong 等[10] 通过融合 Swin-v2
和特征金字塔来增强现有的 Cascade

 

RCNN 并采用多尺

度变换的数据增强策略,提升了输电线路关键部件和缺

陷检 测 的 精 度。 吕 游 等[11] 引 入 双 通 道 注 意 力 模

块(CBAM),提升了模型检测效果,但增大了模型尺寸。
Yuan 等[12] 通过引入注意力机制( SEnet) 和小目标检测

层,提高了输电线路小目标检测效果。 赵振兵等[13] 在主

干提 取 网 络 中 引 入 了 具 有 自 注 意 力 机 制 的 AFF-
Transformer 模块和双向加权特征融合机制,有效缓解了

输电线金具在密集状态下的误检、漏检等问题。 宋立业

等[14]在 BiFPN 融入小一级尺度的特征层,并在主干网络

引入坐标注意力机制,提高了输电线路元件缺陷检测的

精度,但对分布密集的小目标检测效果仍不理想。 Guo
等[15] 利用多尺度卷积核,并将不同尺度的信息进行融

合,增大了模型的感受野,提高了防震锤缺失检测的精

度,但改进后模型的计算量依然显著。
上述文献多采用引入注意力机制和改变网络融合机

制的方法改进基准网络模型,取得了较好的效果,但依旧

存在参数量大,计算复杂等问题,不能友好的部署到无人

机等存储空间有限的边缘设备的问题。 针对上述问题,
提出了一种 YOLOv8-SPH 防震锤缺失检测模型。 在

YOLOv8n 模型基础上,通过在颈部网络中将 C2f 替换为

C2f-MultFaster、增加浅层尺度特征融合和小目标检测头、
更换动态上采样算子[16] ( dynamic

 

sampling,
 

DySample)
和 Detect

 

Efficient,最后对改进后的网络结构进行基于层

自适 应 幅 度 的 剪 枝 ( layer
 

adaptive
 

magnitude
 

based
 

pruning,
 

LAMP),建立 YOLOv8-SPH 防震锤缺失检测模

型,使模型提高防震锤缺失检测精度的同时,变得更具轻

量化。

1　 原始模型

　 　 YOLOv8 是 2023 年 Ultralytics 公司推出的 YOLO 系

列目标检测算法,是单阶段目标检测算法的代表,它建立

在 YOLO 系列历史版本的基础上,进一步提升了性能和

效率,在各种计算机视觉任务中表现出色。
YOLOv8 的 结 构 主 要 包 括 3 个 部 分, 主 干 网

络(backbone)、颈部网络( neck)和检测头( head)。 虽然

YOLOv8n 在大、中尺度目标检测方面表现优异,但在防

震锤缺失检测场景中,图像中的防震锤通常非常密集,且
目标的尺度很小。 由于小目标在图像中占据的像素比例

较小,包含的特征信息有限,YOLOv8n 在这种情况下的

检测能力表现相对不足,并且输电线路环境背景复杂,使
得 YOLOv8n 模型容易出现漏检和误检。 此外,原有的上

采样机制无法完全充分重构不同尺度的目标,导致在重

构特征图时小目标容易丢失。 YOLOv8n 的复杂度较高,
参数量大,尽管有较好的检测性能,但也带来了较大的计

算开销和资源需求。
基于上述问题,以提升小目标的检测精度,降低模型

的复杂度,对基准网络 YOLOv8n 进行改进。

2　 改进 YOLOv8 算法网络结构

　 　 为了提升模型检测精度,降低模型参数量、计算量及
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模型尺寸,从 4 个方面对 YOLOv8n 模型进行改进。 改进

后 YOLOv8-SPH 的模型结构如图 1 所示。 YOLOv8n 的

原模型在检测小且密集的防震锤时精度较低, 故在

YOLOv8n 中 Neck 原有的 3 个尺度特征图再增加浅层尺

度的特征图分别是:160 × 160 和 320 × 320 两尺度,并在

Head 增加相应尺度的检测头,同时将原有的上采样算子

换为 DySample,提高防震锤微小特征重建质量,减少采样

过程信息的丢失,从而提高检测的精度。 此外将 Neck 中

C2f 换为计算量及参数量更小且能够多尺度提取防震锤

信息的 C2f-MultFaster,并将原有的两分支解耦头换为更

为高效且轻量化检测头( detect
 

efficient),降低模型计算

的复杂度。

图 1　 改进后 YOLOv8-SPH 的模型结构

Fig. 1　 Model
 

structure
 

of
 

improved
 

YOLOv8-SPH
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2. 1　 增加浅层尺度特征图和小目标检测头

　 　 原有的 YOLOv8n 网络的 Neck 及 Head 中只有 20×
20、40×40、80×80 这 3 个尺度,其感受野较小,表达的语

义信息少,这些劣势限制了对于防震锤缺失小目标的特

征提取能力。 小目标检测通常需要从高分辨率特征图中

提取信息,并在不同尺度上进行充分的特征融合。 如果

模型多尺度特征利用不充分,小目标的信息容易在提取

过程中丢失,导致难以捕捉到小目标的细节信息,从而影

响检测精度。 而防震锤在输电线路中非常密集,尺寸很

小,且有遮挡的情况。 此外防震锤的图片背景非常复杂,
使得防震锤检测难度进一步增加。

如图 2 所示,在 YOLOv8n 中 Neck 原有的 3 个尺度

特征图再增加浅层尺度特征图分别是 160×160 和 320×
320 两尺度,并在 Head 增加相应的尺度的检测头,提升

感受野及语义表达。 多个检测头能够覆盖更广泛的尺度

范围,使得模型可以在更多尺度的特征层上进行融合,这
样能够更好地利用特征图中的细节和上下文信息去捕捉

尺寸大小不同的目标物体,并提高模型检测的精度。 在

增加浅层尺度特征图和小目标检测头后,模型具备更强

的小目标检测能力,在应对复杂场景和变化多样的目标

时更加稳定和可靠。 有效地改善了防震锤检测网络对远

处的小目标的误检、漏检的问题。

图 2　 增加多尺度融合与小目标检测头

Fig. 2　 Adding
 

multi-scale
 

fusion
 

and
 

small
 

object
 

detection
 

heads

2. 2　 改进 YOLOv8n 中 Neck 的上采样算子

　 　 在原始 YOLOv8n 网络中,Neck 的上采样算子通常

用于将低分辨率的特征图扩展到更高分辨率用于恢复丢

失的空间信息,从而提高模型对细节和局部特征的捕捉

能力。 而原模型中采用的是最近邻插值法进行上采样,
这种方法会导致上采样后的图像出现明显的锯齿状边缘

和模糊的纹理,无法捕捉到防震锤及缺失的微小特征,会
导致信息的丢失。 因此引入 DySample,使其更好地感知

到防震锤缺失的特征,提高模型对微小细节的捕捉能力。
如图 3 所示基于 Pytorch 的动态上采样过程。

x 为输入的特征图,其形状为 H × W × C,x′为采样输

出。 x 通过采样点生成器生成动态采样集 S 大小为 sH ×
sW × 2g 。 每个采样点由 2g个坐标(图像的像素坐标)表
示,因此有 2g 维的深度。 网格采样(grid

 

sample,
 

G)使用

动态采样集对输入 x 的特征值进行插值计算,从而生成

上采样后的特征图。 其过程如式(1)所示。
x′ = grid sample(x,S) (1)
如图 4 所示,DySample 中的采样点生成器。 图 4 中

图 3　 动态上采样

Fig. 3　 Dynamic
 

upsample

S 为偏移量 O 和原始网格采样进行逐元素相加。 其中偏

移量是用线性层(linear)生成的。 其过程可表示为:
O = linear(x) (2)
S = G + O (3)
输入图像 x 经过两个线性变换,输出两个特征图。

这 两 个 特 征 图 通 过 逐 元 素 乘 法 ( element-wise
 

multiplication)进行融合,并乘以缩放因子 0. 5α 。 经过缩

放后的特征图进行像素洗牌( Pixel
 

Shuffle),生成偏移量

O 的尺寸为 sH × sW × 2g 。 像素洗牌将特征图的深度信

息重新分配到空间维度上,以提高特征图的空间分辨率。
该方法通过动态生成采样点,提高防震锤的微小特
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图 4　 DySample 中的采样点生成器

Fig. 4　 Sampling
 

point
 

generator
 

in
 

DySample

征重建质量。 使得在检测防震锤缺失过程中能够关注到

小目标的细节特征,在采样过程中减少信息的丢失,从而

提高检测的精度。
2. 3　 改进 C2f 网络模型

　 　 在增加目标检测层之后,Neck 部分的 C2f 模块由原

来的 4 个增加到了 7 个,并且上采样以及卷积层都有所

增加,使得模型的大小以及参数量计算量都增大。 基于

以上原因,引入 FasterNet[17] 的核心算子部分卷积( partial
 

convolution,PConv),并设计一种全新的多尺度高效特征

提取模块( multi-scale
 

faster,MultFaster)。 如图 5 所示,
MultFaster 模块通过部分卷积、多级特征提取和残差连接

机制,能够在减少计算复杂度的同时高效提取图像中的

多尺度特征信息并进行防震锤缺失的特征学习和信息

传递。
首先对输入特征 X 进行 PConv,输出特征图的通道

数被减少到一半:
XConv1 = PConv(X)　 XConv1 ∈ RC / 2×H×W (4)
再次进行 PConv,输出通道再次减半:
XConv2 = PConv(XConv1)　 XConv2 ∈ RC / 4×H×W (5)
再次经过 PConv:
XConv3 = PConv(XConv2) (6)
将经过不同阶段的特征进行拼接,组合形成更高维

度的特征图:
XConcat = Concat(XConv1, XConv2, XConv3) (7)
对高维度的特征图进行通道分割:
v,x = split(XConcat),　 v,x ∈ RC / 2×H×W (8)
通过深度可分离卷积和 v 门控因子的乘法,再与输

入 X 相加,可以动态调整输入的通道量,增强网络的非线

性表达能力。 与标准卷积相比,能够自适应地控制哪些

特征被激活,从而提高模型的表达能力:
X = XDWConv(x) × v + X (9)
如图 5 所示,PConv 对输入的一部分通道应用普通

卷积来提取空间特征,其余通道保持不变。 采用 cp 卷积

通道(cp)作为计算整个特征映射的代表,k 是卷积核大

小。 因此,一个 PConv 的 FLOPs 只有:
h × w × k2 × c2

p (10)

当取常用的取值 r =
cp
c

= 1
4

时, 一个 PConv 的

FLOPs 是一个普通 Conv 的
1
16

,只有:

h × w × 2cp + k2 × c2
p ≈ h × w × 2cp (11)

由此可见 PConv 能够同时减少计算冗余和内存

访问。
将 Neck 中 C2f 的 Bottleneck 模块替换为 MultFaster,

构成 C2f-MultFaster,在保持防震锤特征检测精度的同时,
减小网络的计算成本。

图 5　 MultFaster 与 PConv
Fig. 5　 MultFaster

 

and
 

PConv

2. 4　 轻量化检测头

　 　 在实际进行防震锤的检测时,高效率且轻量化是检

测模型所应具备的能力。 为了提高检测头的性能,重新

设计一种轻量化检测头替换原有的两分支解耦头。
如图 6 所示,在 Head 原有的 Detect 检测头进行检测

时,首先并行通过两个 3 × 3 的 Conv 和一个 3 × 3 的

Conv2d,然后进行分类和回归。 未改进的 YOLOv8n 模型

有 3 个检测头,在 Detect 部分共要进行 12 次 3×3 的 Conv
和 6 次 3×3 的 Conv2d。 在上述改进中,增加多尺度融合

与多个小目标检测头,检测头增加到 5 个(要进行 20 次

3× 3 的 Conv 和 10 次 3 × 3 的 Conv2d 的运算),使得在

Detect 部分堆叠了大量的权重参数,浪费大量的计算资

源,从而导致检测效率的下降。

图 6　 原模型的 Detect
Fig. 6　 Detect

 

of
 

the
 

original
 

model

根据上述中原模型检测头的不足, 重新设计的

Detect
 

Efficient 如图 7 所示。 将原来并行的 3×3 的卷积
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改为由一个组卷积和一个 3×3 的普通卷积串联而成的高

效的特征融合模块( Efficient
 

fusion),极大的简化了原来

Head 部分的复杂结构,减少了其庞大的运算量。

图 7　 Detect
 

efficient
Fig. 7　 Detect

 

efficient

其中, 组卷积 ( convolutional
 

groups,
 

GConv ) 如图

8 所示。

图 8　 组织卷

Fig. 8　 GConv

图中将输入特征图的通道分成了 g 组,同时每组中

卷积核的通道数为 c1 / g,卷积核的大小没有改变,此时每

组中卷积核的个数由原来的 c2 变为了 c2 / g 个。 用每组

的卷积核同它们对应的输入特征图进行卷积,输出的特

征图通道数为 c2 / g。 整个过程并行运算 g 组相同的卷

积。 卷积核大小为:
h1 × w1 × c1 / g (12)
若不进行分组卷积其参数量为:
c1 × h1 × w1 × c2 (13)
若进行分组卷积其参数量为:
g × c1 / g × h1 × w1 × c2 / g (14)
故参数量减小为 g 倍。 因此该高效的特征融合模块

能够极大的缓解原检测头所带的参数尽量大的问题。

3　 模型剪枝

　 　 目标检测模型中并不是所有权值都是重要的,可在
精度基本保持不变的情况下,剪除不重要的连接和冗余

的权重,以达到减小模型的尺寸,计算量和参数。 这种方

法就是剪枝,剪枝是精度无损的模型轻量化方法之一。
LAMP [18] 剪枝算法操作简单且剪枝效果明显,因此

用该方法对改进模型进行剪枝操作。
3. 1　 LAMP 剪枝策略

　 　 给定一个神经网络前向传播,它表示输入 x 经过权

重矩阵和激活函数,直到输出:
f(x;W(1:d) ) = W(d)σ W(d-1)( σ …( W(2)σ W(1)( x) ) )

(15)
其中,输入为 x,网络层数为 d,W( i) 表示第( i) 层的

权重矩阵,σ 是激活函数。 然后分别计算每层权重张量

W 的 LAMP 分数,式为:

score(u;W): = (W[u]) 2

∑ v≥u
((W[v]) 2)

(16)

v≥u 表示从权重张量 W 的第 u 个权重数值到 W 的

最后一个权重数值。
根据权重的重要性得分,进行权重的大小排序,确定

每层中需要保留的权重,然后进行剪枝:
(W[u]) 2 > (W[v]) 2 → score(u;W) > score(v;W)

(17)

4　 实验结果与分析

4. 1　 数据集

　 　 防震锤数据集由 2
 

417 张高清的无人机巡检图像组

成,其中标签的比例为:完整的防震锤(none_defective) ∶
缺失的防震锤(defective)= 4

 

077 ∶ 3
 

592。 经标注过的数

据集按 8 ∶ 1 ∶ 1 的比例随机分为训练集,验证集和测试

集,其中训练集由 1
 

936 张图片组成,验证集 241 张图片。
4. 2　 实验环境与评估指标

　 　 实验硬件配置为 Xeon( R)
 

Silver
 

4214R 处理器,显
卡 为 NVIDIA

 

GeForce
 

RTX
 

3080
 

Ti, 开 发 语 言 为

python3. 8,CUDA 版本为 11. 3,Pytorch 版本为 1. 11。 模

型训练参数如表 1 所示。
表 1　 训练参数

Table
 

1　 Training
 

parameters
图像尺寸 640×640
训练轮数 240
批量大小 12

初始学习率 0. 01
训练优化器 SGD

amp True

　 　 实验评价指标有精确率( precision, P )、平均精确

率(average
 

precision,AP)、 平 均 精 确 率 均 值 ( mean
 

average
 

precision, mAP )、 参 数 量 ( Params )、 计 算 量

(GFLOPs)、模型尺寸(MB),公式如式(18) ~ (20)所示。

P = TP
TP + FP

(18)

AP = ∫1

0
P(R)d(R) (19)

mAP = 1
N ∑

n

i = 1
AP i (20)
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其中,TP 表示模型正确检测到的正例样本数量,FP
表示模型将负例预测为正例的样本数量,FN 表示将正例

预测为负例的样本数量,N 指类别数量,mAP@ 0. 5 表示

IoU 为 0. 5 时的平均精确率均值。
4. 3　 消融实验

　 　 为了验证改进后模块对模型的提升效果,设计了 10
组消融实验,并将各个改进过程依次叠加。 消融实验结

果如表 2 所示。 第 1 组实验将 Neck 中的 C2f 模块替换

为 C2f-MultFaster,通过 PConv 同时减少计算冗余和内存

访问,计算量减少了 0. 6
 

G,模型存储空间减小了 0. 61
 

MB。 第 2 组实验在 Neck 中结合动态上采样,通过动态

生成采样点生成高分辨率的特征图,进一步提高特征图

的分辨率,更好地还原防震锤缺失特征,增强了模型对细

节的感知能力,使得模型在计算量及参数量不变的情况

下 mAP@ 0. 5 提升 1. 9%。 第 3 组实验增加了两个小目

标检测层,将多尺度特征图充分融合增加了小目标提取

能力,能够捕获更多的细粒度特征,使得 mAP@ 0. 5 提升

了 6. 34%。 第 4 组实验将原来的解耦检测头更换成更为

高效的 Detect
 

Efficient,通过组卷积能够减小计算量,计
算量下降 1. 3

 

G。 综合 4 种改进方案并对上述 4 种改进

后的模型进行剪枝得到最终的改进模型 YOLOv8-SPH,
使得最终模型相比于原模型参数量下降了 80. 73%,计算

量下降了 48. 14%,mAP @ 0. 5 值相比于原模型提升了

6. 3%,模型尺寸下降了 62. 41%。

表 2　 消融实验

Table
 

2　 Ablation
 

experiment

C2f-MultFaster DySample
多尺度特征图和

小目标检测头
Detect

 

Efficient LAMP 剪枝 mAP@ 0. 5 / %
Params /

( ×106 )
浮点数 /
GGFLOP

模型尺寸 / MB

- - - - - 85. 21 3. 01 8. 1 5. 96
√ 85. 13 2. 67 7. 5 5. 35

√ 87. 11 3. 01 8. 1 5. 99
√ 91. 55 2. 89 23. 5 6. 35

√ 84. 16 3. 12 6. 8 6. 2
√ √ 90. 12 2. 46 21. 9 5. 55

√ √ 92. 11 2. 9 23. 6 6. 38
√ √ √ 91. 1 2. 48 22 5. 57
√ √ √ √ 92. 41 2. 24 6. 9 5. 09
√ √ √ √ √ 91. 51 0. 58 4. 2 2. 24

　 　 综上,通过此次改进,实现了精度上涨的同时,参数

量计算量及模型尺寸都极大的减小,因此改进后模型可

以更好用于防震锤的检测任务。
4. 4　 模型可视化对比

　 　 如图 9 所示,改进前后模型的 mAP@ 0. 5 曲线对比。
从图中可以明显看到,改进后模型的 mAP @ 0. 5 较原来

的模型有所提升,且收敛速度加快,检测精度也有显著

提高。
如图 10 所示,改进前后混淆矩阵的对比情况。 图中

对角线上的元素表示模型正确预测样本的比例,非对角

线上的元素表示模型误检或漏检样本的比例,其中 A 代

表 none _ defective, B 代表 defective, C 代表 background。
在验证集 241 张图片中, none _ defective 共有 155 个,
defective 有 162 个, 如 图 10 ( a ) 所 示, 其 中 改 进 前

YOLOv8n 对于 none_defective 和 defective 的识别率分别

为 0. 78、0. 8,漏检率较高,正确率较低;如图 10(b)所示,
对于 none_defective 和 defective 的识别率分别为 0. 92、
0. 86 均高于图 10(a)。 表明 YOLOv8-SPH 模型在降低漏

检率方面有显著改善。

图 9　 改进前后模型 mAP@ 0. 5 对比

Fig. 9　 Model
 

before
 

and
 

after
 

improvement
mAP@ 0. 5

 

comparison
 

chart

如图 11 所示,各模块剪枝后及被剪去的通道数量,
并按剪枝率大小进行排序。 其中,图左边是各模块剪枝

后所剩的通道数量,图右边是各模块被剪去的通道数量。
从图中可以看出,剪枝操作显著减少了某些通道的权重
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图 10　 YOLOv8n 及 YOLOv8-SPH 的混淆矩阵

Fig. 10　 Confusion
 

matrix
 

of
 

YOLOv8n
 

and
 

YOLOv8-SPH

参数量,但仍保留了足够的权重以维持模型性能,实现了

模型几乎无精度损失的轻量化。
如图 12 和 13 所示,改进前后算法在检测效果上的

对比。 原始算法在检测过程中存在误检和漏检的问题,
尤其是在复杂背景下,缺失特征与背景难以区分,导致检

测效果不理想。 而经过改进后的 YOLOv8-SPH 模型表现

出了更好的检测能力,几乎能够准确识别出所有缺失和

正常的防震锤。 改进后的模型不仅在复杂背景下表现更

佳,而且整体检测精度也得到了显著提升,明显优于原始

算法。
4. 5　 不同算法对比试验

　 　 将目前各主流算法与改进后算法进行对比实验,对
比结果如表 3 所示。 表中最优的检测结果用红色字体标

出。 改进后模型的 mAP@ 0. 5 为 91. 51%,是所有模型中

最高的,其在防震锤缺失检测任务中的精度最高。 改进

后模型的参数量为 0. 583×106,是所有模型中最少的,相
比 Faster-RCNN[19] 的 41. 35 × 106、 Mask-RCNN[20] 的

43. 97×106、YOLOv9-t[21] 的 2. 61 × 106 和 YOLOv7-tiny[22]

图 11　 各模块剪枝后及被剪去的通道数量

Fig. 11　 The
 

number
 

of
 

channels
 

pruned
 

and
 

pruned
 

for
 

each
 

module

图 12　 YOLOv8n 检测结果

Fig. 12　 YOLOv8n
 

detection
 

results

的 6. 01×106,改进后算法能够大幅减少了模型的复杂

度。 浮点数仅为 4. 2 GGFLOPs,同样是所有模型中最低

的。 相比 Faster-RCNN 的 124. 9
 

GGFLOPs 和 Mask-RCNN
的 150. 4

 

GGFLOPs,改进后显著降低了计算成本。 改进

后模型的尺寸为 2. 24 MB,是所有模型中最小的,使得

YOLOv8-SPH 在内存和存储空间有限的设备上更具优

势。 综上,改进后的模型性能优于其他算法,在保持最高

检测精度的同时,显著降低了模型的参数量、计算量和模

型尺寸,展现出在高效性和实用性上的明显优势,特别适

合在资源有限的边缘设备中应用。
如图 14 所示,不同模型尺寸和精度的对比。 不同模
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图 13　 YOLOv8-SPH 检测结果

Fig. 13　 YOLOv8-SPH
 

detection
 

results

型所对应形状越大,其对应模型尺寸越大,从图中可以看

到改进后模型尺寸很小,精度很高。

表 3　 不同算法对比

Table
 

3　 Comparison
 

of
 

different
 

algorithms

Model mAP@ 0. 5 / %
Params /

( ×106 )
浮点数 /
GGFLOP

模型尺寸 / MB

Faster-RCNN 86. 82 41. 35 124. 9 315. 0
Mask-RCNN 91. 1 43. 97 150. 4 335. 9

YOLOv8n 85. 21 3. 01 8. 1 5. 96
YOLOv5s 91. 51 7. 1 15. 8 13. 7
YOLOv9-t 80. 76 2. 61 10. 7 5. 8

YOLOv7-tiny 87. 93 6. 01 13. 2 12. 3
YOLOv8-SPH 91. 51 0. 58 4. 2 2. 24

图 14　 不同模型尺寸和精度的对比

Fig. 14　 Comparison
 

of
 

different
 

model
 

sizes
 

and
 

accuracies

5　 结　 论

　 　 目前输电线路防震锤缺失检测缺乏有效的方法且不

能友好地部署到无人机等存储空间有限的边缘设备,提
出了一种新型的能兼顾模型尺寸和精度的检测算法来进

行防震锤缺失检测,针对防震锤在图像中小且密集,通过

增加多尺度特征融合和小目标检测头,增强多尺度融合,
提升模型的感受野;针对最近邻插值法进行上采样导致

的特征信息易丢失的问题,引入 DySample,提高模型对细

节和局部特征的捕捉能力;针对网络模型复杂的情况提

出一种新的多尺度高效特征提取模块,能够在减少计算

复杂度的同时高效提取图像中的多尺度特征信息,同时

结合组卷积构建了一种轻量化检测头,极大的缓解原检

测头所带的参数尽量大的问题;对改进后的网络进行基

于幅值的层自适应稀疏化剪枝,进一步减少了模型参数

量和计算复杂度。 通过以上创新性的改进,能够显著提

升模型在防震锤缺失检测任务中的性能和实用价值。
最终改进的模型 mAP@ 0. 5 达到了 91. 51%,相比于

原始模型提升了 6. 3%,相比于原模型参数量下降了

80. 73%,计 算 量 下 降 了 48. 14%, 模 型 尺 寸 下 降 了

62. 41%。 在模型的计算量、参数量和模型尺寸等方面优

于 YOLOv5s 及 YOLOv9-t 等,并有着很高的检测精度。
综上,YOLOv8-SPH 在存储空间有限的边缘设备上有着

实际应用价值,能够满足输电线路防震锤缺失检测要求。
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　 　 在未来的工作中, 研究者将致力于进一步优化

YOLOv8-SPH 模型,通过知识蒸馏技术,进一步提高模型

的检测精度。 同时,深入研究多源数据融合方法和迁移

学习方法,将无人机采集图像与其他传感器数据(如激光

雷达、红外成像)相结合,提升模型在防震锤缺失检测中

的全面性和精确性。
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