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Detection of missing shockproof hammers based on YOLOvS8-SPH
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Abstract: To address challenges in detecting missing Shockproof Hammers on transmission lines due to their small size, complex image
backgrounds, and subtle presence, this study proposes a lightweight YOLOv8-SPH model for damper absence detection. The model
introduces shallow-scale feature maps of 160X 160 and 320x320 within the neck of the YOLOv8n network and integrates multi-scale
detection modules within the detection head. This enhances contextual information fusion across feature maps, effectively expanding the
receptive field, enabling the model to capture richer semantic features related to damper absence. An innovative multi-scale high-
efficiency feature extraction module ( MultFaster) is also introduced, utilizing partial convolutions, multi-level feature extraction, and
residual connections. This structure maintains detection accuracy for damper features while reducing computational complexity and
parameter load. Additionally, a dynamic upsampling operator is incorporated into the neck network to improve feature map resolution,
improving the model’ s accuracy in detecting missing Shockproof Hammers. To further optimize, the original model’ s decoupled
detection head is replaced with a lightweight detection head, reducing computational complexity and boosting detection efficiency. The
enhanced network undergoes amplitude-based layer-adaptive sparse pruning, significantly reducing model parameters and computational
load. Testing on a custom damper absence dataset demonstrates YOLOv8-SPH exhibited remarkable performance, achieving an mAP@
0.5 of 91. 51%, which marks a 6. 3% improvement over the original YOLOv8n. Additionally, parameter count is reduced by 80.73%,
computational load by 48.14%, and model size by 62.41%. The model achieves improved detection accuracy while reducing

computational complexity and parameter size, effectively meeting the demands for efficient and precise detection of Shockproof Hammers
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in transmission lines, showcasing significant practical value.
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Table 3 Comparison of different algorithms

Params/

F R

Model mAP@O0. 5/% R R F/MB
(x10%) GGFLOP
Faster-RCNN 86. 82 41.35 124.9 315.0
Mask-RCNN 91.1 43.97 150. 4 335.9
YOLOv8n 85.21 3.01 8.1 5.96
YOLOv5s 91.51 7.1 15.8 13.7
YOLOv9-t 80. 76 2.61 10.7 5.8
YOLOv7-tiny 87.93 6.01 13.2 12.3
YOLOv8-SPH 91.51 0.58 4.2 2.24
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