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摘　 要:针对传统齿轮箱油液分析方法存在的精度低和泛化能力有限的问题,提出一种基于 PCA 特征优选和 AdaBoost 集成学

习的齿轮箱油品状态识别方法。 首先,通过箱型图和 smote 插值对油液多参量数据进行清洗以提高油液数据的质量;其次,采
用 PCA 进行油品特征优选,获取有助于识别的油品特征优选子集,在有效融合油液多参量信息的同时,可显著降低模型运行的

时间复杂度;然后,利用 BP 神经网络建立油品状态识别基本模型,引入 GWO 灰狼优化算法对模型进行优化,构建具有最优初

始权值与阈值的弱分类器 GWO-BP,同时采取自适应提升 AdaBoost 算法组合多个弱分类器 GWO-BP,集成为较强鲁棒性的强分

类器。 最后利用实验进行验证和分析,实验结果表明,所提方法效果最优,平均识别率 99. 30±0. 16%,平均用时 32. 77±1. 27
 

s,
能够快速高效、准确识别出齿轮箱润滑油油品状态,为实现在线齿轮箱的油品状态识别奠定了良好基础,具有重要的工程应用

价值。
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Abstract:
 

A
 

gearbox
 

oil
 

state
 

recognition
 

method
 

based
 

on
 

PCA
 

feature
 

optimization
 

and
 

AdaBoost
 

ensemble
 

learning
 

is
 

proposed
 

to
 

address
 

the
 

problems
 

of
 

low
 

accuracy
 

and
 

limited
 

generalization
 

ability
 

in
 

traditional
 

gearbox
 

oil
 

analysis
 

methods.
 

Firstly,
 

the
 

multi
 

parameter
 

oil
 

data
 

is
 

cleaned
 

using
 

box
 

plots
 

and
 

SMOTE
 

interpolation
 

to
 

improve
 

the
 

quality
 

of
 

the
 

oil
 

data;
 

Secondly,
 

PCA
 

is
 

used
 

for
 

oil
 

product
 

feature
 

optimization
 

to
 

obtain
 

a
 

subset
 

of
 

oil
 

product
 

feature
 

optimization
 

that
 

is
 

helpful
 

for
 

identification.
 

While
 

effectively
 

integrating
 

multi
 

parameter
 

information
 

of
 

oil,
 

it
 

can
 

significantly
 

reduce
 

the
 

time
 

complexity
 

of
 

model
 

operation;
 

Then,
 

a
 

basic
 

model
 

for
 

oil
 

state
 

recognition
 

is
 

established
 

using
 

BP
 

neural
 

network,
 

and
 

the
 

GWO
 

wolf
 

pack
 

optimization
 

algorithm
 

is
 

introduced
 

to
 

optimize
 

the
 

model.
 

A
 

weak
 

classifier
 

GWO-BP
 

with
 

optimal
 

initial
 

weights
 

and
 

thresholds
 

is
 

constructed,
 

and
 

an
 

adaptive
 

boosting
 

AdaBoost
 

algorithm
 

is
 

adopted
 

to
 

combine
 

multiple
 

weak
 

classifiers
 

GWO-BP,
 

integrating
 

them
 

into
 

a
 

strong
 

classifier
 

with
 

strong
 

robustness.
 

Finally,
 

the
 

experimental
 

data
 

was
 

applied
 

for
 

verification
 

and
 

analysis.
 

The
 

experimental
 

results
 

showed
 

that
 

the
 

proposed
 

method
 

had
 

the
 

best
 

performance,
 

with
 

an
 

average
 

recognition
 

rate
 

of
 

99. 30
 

±
 

0. 16%
 

and
 

an
 

average
 

time
 

of
 

32. 77
 

±
 

1. 27
 

seconds.
 

It
 

could
 

quickly,
 

efficiently,
 

and
 

accurately
 

identify
 

the
 

oil
 

state
 

of
 

the
 

gearbox
 

lubricating
 

oil,
 

laying
 

a
 

good
 

foundation
 

for
 

realizing
 

online
 

oil
 

state
 

recognition
 

of
 

gearboxes
 

and
 

having
 

important
 

engineering
 

application
 

value.
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0　 引　 言

　 　 齿轮箱作为传动系统关键部件,广泛用于航空、风
电、汽车、农业等领域[1-2] 。 齿轮箱因使用环境复杂极易

出现故障,严重影响设备的安全性和可靠性,必须采取有

效的运维措施。 定期更换润滑油是一种有效的齿轮箱运

维手段,但其效果依赖于维修人员的技术与经验、受限于

对润滑油状态的实时监测和精准判断[3] 。 因此,在齿轮

箱的检修维护中,润滑系统状态监测方法的优化显得尤

为重要。
智能化油液分析技术为齿轮箱的检修维护提供了新

方向。 通过对油液性能参数的精确分析,能够准确地判

断齿轮箱的工作状态,预测潜在故障,为维修决策提供有

力支持。 在磨粒信息研究方面,文献[4] 应用主成分分

析法( principal
 

component
 

analysis, PCA) 和支持向量机

(support
 

vector
 

machines,SVM)实现了滤波后图像的特征

层融合,提高了磨粒信息的综合利用率;文献[5]基于多

光照图像采集与三维曲面重建等光度立体识别方法,实
现了三维图像磨粒特征的识别;文献[6]应用均值偏移

算法建立统计聚类模型,实现了在线监测磨粒的分类识

别。 在维修决策层面,文献[7] 基于模糊逻辑的专家系

统,开发了润滑油状态的智能决策方法;文献[8]基于改

进卷积神经网络提取油液数据特征,能准确识别 TBM 变

速箱的磨损状态;文献[9]通过 SVM 获取指标的显著性

系数计算参数权重,简化了磨损度的指标,提高了风电齿

轮箱的故障诊断效率。 以上利用数据驱动的方式剖析齿

轮箱油液状态,已取得了一定成效,但大多局限于单一油

品指标监测或采用单一学习算法对润滑油液品质进行分

析,其容易受学习的样本分布限制,导致模型泛化性能不

佳,可靠性和精度存在不足。
集成学习能够有效地结合各个算法的互补信息,提

高集成模型的鲁棒性。 目前使用的集成分类方法主要包

括 bagging[10-11] 、 自 适 应 提 升 ( adaptive
 

boosting,
AdaBoost)

 [12-13] 、随机森林[14-15] 、随机子空间[16] 、梯度增

强[17] 等。 其中,AdaBoost 具有良好的理论基础,在实践

中也具备较好的可扩展性。 比如, 文献 [ 18 ] 应 用
 

AdaBoost 集成多个长短期记忆神经网络( long
 

short-term
 

memory
 

network,LSTM)
 

,构建了时序预测集成优化模型,
实践证明效果良好;文献[19]

 

提出基于改进条件生成对

抗网络的不平衡数据集成分类算法,显著提高了不平衡

数据的分类精度;文献[20] 优化集成学习算法结构,有
效识别了核电站事故类型。 本文根据齿轮箱检修维护需

求,为实现准确、高效的齿轮箱油品状态识别,提出一种

基于 PCA 特征优选和 AdaBoost 集成的齿轮箱油品状态

识别方法。 首先对采集的油液多参量数据进行清洗,采

用 PCA 对油品特征进行提取,获取有助于分类的油品特

征优选子集;然后利用 BP 神经网络建立油品识别基本

模型,采用灰狼优化算法( grey
 

wolf
 

optimizer,GWO) 对

BP 初始权值与阈值进行搜索寻优,克服传统 BP 神经网

络超参数选择困难、易陷入局部极小等缺点,同时采取自

适应提升 AdaBoost 算法对模型进行优化,进一步提高模

型的精度。

1　 PCA-GWO-BP-AdaBoost 识别模型

1. 1　 PGBA 模型结构

　 　 基于齿轮箱运维工作中对油品状态识别的实际需

求,将齿轮箱油品分为正常、轻度变质、重度变质、严重变

质等 4 个状态,提出图 1 所示的 PGBA 识别模型结构。
由数据清洗模块( data

 

cleaning
 

module,DCM)、油品特征

优选模块( oil
 

product
 

feature
 

selection
 

module,OPFSM)、
GWO-BP 识别模块( gwo-bp

 

recognition
 

module,GBRM)、
自适应提升集成模块( adaboost

 

integrated
 

module,AIM) 4
个部分组成。 DCM 采用箱型图和 smote 插值对输入的油

液数据集依次进行缺失值及重复值的清洗、异常值的识

别与修正,为后续油品特征优选提供良好的数据基础;
OPFSM 能以较低的信息损失优选出有助于识别的油品

特征优选子集;GBRM 对输入的油品特征优选子集进行

初步处理,训练可识别正常、轻度变质、重度变质、严重变

质四类油品状态的 BP 基识别器;AIM 将设置的 Q 个

GWO-BP 识别模块作为弱分类器进行训练,使其相互补

充,集成为具有较强鲁棒性的强分类器,并最终输出油品

状态的判断结果。
1. 2　 OPFSM

　 　 OPFSM 采用 PCA 算法
 [21] ,基于方差度量原始信息

的变异程度,以大于 95%的信息保留率,优选出 k 个主成

分为基,以投影方差最大化为目标,对原始数据进行线性

变换,提取油品特征优选子集 U。 具体实现步骤如下:
1)计算清洗后数据集 X 每个特征的样本均值 x-m 和

标准差 σm ,并对所有特征去中心化和标准化得到规范化

矩阵 X∗ ,公式如下:

x-m =
∑

d

j = 1
x j

d

σm =
∑

d

j = 1
(x j -x-m) 2

d - 1

x̂m =
xm -x-

m

σm

ì

î

í

ï
ï
ï
ï
ï

ï
ï
ï
ïï

(1)

式中:d、n 分别为数据集 X 的样本数和特征数, j = 1,2,
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图 1　 PGBA 模型结构

Fig. 1　 PGBA
 

Model
 

structure

…,d 为样本序号, m = 1,2,…,n 为特征序号。

2)将协方差矩阵 Rcov = 1
n - 1

X∗TX∗ 正交对角化,分

解为特征值 λ = {λ 1,λ 2,…,λ n} 和对应的特征向量 ζ =
{ζ 1,ζ 2,…,ζ n} 。

3)按照特征值从大到小对特征向量排序得到主成分

组 ϕ = {ϕ1,ϕ2,…,ϕn} 。
4)计算主成分组的累计方差贡献率 θ s ,选择前

k(k<n)个主成分组成投影矩阵 D,对 X∗进行投影变换,
公式如下:

 

θs =
∑

k

s = 1
λs

∑
n

s = 1
λs

× 100% ≥ 95% (2)

U = DX∗ (3)

1. 3　 GBRM
　 　 GBRM 由 BP 基识别器、权值与阈值优化模块组成。
基于 BP 神经网络结构简单、非线性映射能力强、自适应

良好等优势,将其用于油品状态的初步分类与识别;权值

与阈值优化模块采用 GWO[22] 算法强化 BP 基识别器的

精度,解决
 

BP 神经网络算法随机选取初始权值和阈值

而导致的模型低精度问题,具体实现步骤如下:
1)初始化灰狼种群个数 P,最大迭代次数 T 和随机

向量 A、C。
2)随机初始化灰狼个体位置。
3)计算每个灰狼的适应度值,并依次保存适应度值

最优的 α 狼、β 狼、γ 狼的位置信息。
4)更新灰狼个体的位置。
5)更新参数 A 和 C。
6)计算全部灰狼的适应度值,并更新三匹头狼的最

优位置。
7)重复执行步骤 2) ~ 6)直到达到最大迭代次数 T,

输出最优权值 W 与阈值 B。
8)将 W、B 赋予 BP 神经网络进行训练。
9)训练完成后,计算 BP 基识别器的分类精度。

1. 4　 AIM
　 　 AIM 采用 AdaBoost 集成学习框架如图 2 所示,在迭

代训练过程中,根据上一个 GBRM 的分类错误率调整样
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本数据的权重分布,使得下一个 GBRM 训练时更关注分

类错误率较大的样本,并根据每个 GBRM 弱分类器的分

类误差进行自适应加权进一步提升模型精度。

图 2　 AIM 框架

Fig. 2　 AIM
 

framework

具体实现步骤如下:
1)输入数据集 U = {u1,u2,…,u i′} ,并设置弱分类器

个数为 Q、初始化样本权重 w i′ = 1 / N。 其中,i′ = 1,2,…,
N 为样本序号,N 为样本数。

2)使用权重 w i′ 的数据集 Um′ 训练弱分类器 Gm′(u)
其中, m′ = 1,2,…,Q 为基学习器序号。

3)计算弱分类器 Gm′(u) 的分类错误率 em′ :

em′ =
∑

N

i′ = 1
w i′􀰒[Gm′ ≠ y i′]

∑
N

i′ = 1
w i′

(4)

式中: y i′ 为真实值。
4)更新弱分类器 Gm′(u) 的权重系数 gm′ :
 

gm′ = log
1 - em′

em′
( ) + log(p - 1) (5)

式中:p 为类别数。
5)更新样本分布并归一化权重:

w i′ = w i′exp(gm′·􀰒[Gm′ ≠ y i′]) (6)

6)重复执行步骤 2) ~ 5),完成 Q 个 GBRM 弱分类器

的训练。
7)根据权重系数组合 GBRM 弱分类器,构建最终的

强分类器 O final :

O final = sgn∑
Q

m′ = 1
gm′Gm′(u) (7)

8)重复执行步骤 2) ~ 7)直到模型精度满足要求,输
出 O final 。

2　 评价指标与实验设置

2. 1　 油品监测指标选取

　 　 粘度是衡量油液内摩擦力的关键指标,不仅反映了

油液的使用性能,更直接关系到其流动性;粘度过高或过

低都可能影响润滑效果,甚至导致设备故障。 密度作为

　 　 　 　

润滑油的一项基本物理性能指标,直接反映了润滑油及

侵入杂质的密集程度。 水分即润滑油的含水量,是评价

润滑油性能优劣的关键性指标。 水活性即润滑油中水分

的相对含量,直接关联着润滑油中水分的存在状态。 温

度既是保障齿轮箱系统正常运行的关键因素,也是粘度、
密度、水分、水活性的影响因素。 结合设备生产运营的实

际需要和油液各参量间的相互影响情况,选取了油液的

温度、粘度、密度、水分、水活性 5 个参量作为监测指标。
2. 2　 油品状态等级划分

　 　 齿轮箱油品状态等级的划分参考标准 SH / T0475 如

表 1 所示。 结合上节确定的监测指标,考虑粘度作为润

滑油的根本特性,选择粘度作为换油标准,可依次根据粘

度进行区间划分。 根据齿轮箱检修维护需求,将齿轮箱

油品分为:正常(新油)、轻度变质(可正常工作,对齿轮

箱损耗影响较小)、重度变质(对齿轮箱损耗影响较大,
需更换)、严重变质(会造成齿轮箱损坏,引发安全事故)
等 4 种状态,确定齿轮箱油品状态等级划分表如表 2 所

示,以此作为后续油品状态识别的分级标准。

表 1　 齿轮箱换油指标

Table
 

1　 Gearbox
 

oil
 

change
 

indicators
分析项目 换油指标

运动粘度(100℃ )变化率 / % >20
水分 / % 1. 0

酸性增加值 / % 0. 5
铁含量 / % 0. 5

正戊烷不溶物 2. 0

表 2　 齿轮箱油品状态等级划分表

Table
 

2　 Classification
 

of
 

oil
 

Status
 

levels
 

for
 

gearboxes

油品状态 正常
轻度
变质

重度
变质

严重
变质

划分等级 Ⅰ Ⅱ Ⅲ Ⅳ
运动粘度(100

 

℃ )
变化率

0% ~ 5% 5% ~ 10% 10% ~ 15% 15% ~ 20%

2. 3　 样品制备与数据清洗

　 　 为了模拟齿轮箱正常运行时润滑油液的劣化情况,
搭建齿轮箱油液在线监测实验平台如图 3( a)所示,由齿

轮箱、油液监测传感器、24
 

V 直流电源、RS485 通信模块、
上位机组成。 由油液监测传感器采集齿轮箱油液处于正

常、轻度变质、重度变质、严重变质 4 种状态下(记为 I ~
IV 级)的温度、水活性、水分、粘度、密度数据,各状态油

样如图 3(b)所示。 油液监测传感器采集各参量参数如

表 3 所示。
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图 3　 实验装置及样品

Fig. 3　 Experimental
 

setup
 

and
 

samples

表 3　 各油液参量参数

Table
 

3　 Various
 

oil
 

parameter
 

parameters
测量指标 测量范围 分辨率 单位

温度 0 ~ 100 0. 1 ℃
水活性 0~ 1 0. 001 Aw
水分 0 ~ 30

 

000 1 mg / L
粘度 1 ~ 400 0. 1 mPa·s
密度 600 ~ 1

 

250 0. 1 kg / m3

　 　 实验共采集 I ~ IV 级油液样本共 4
 

748 组,删除原始

油液数据集中的缺失值,并删除处于同一温度下的水活

性、水分、粘度、密度重复值。 而原始油液数据中可能存

在受传感器传输过程干扰和齿轮箱运行噪声影响产生的

异常数据,这往往难以直接观察出,通过绘制油液数据箱

形图,能更加准确地了解油液数据分布特点和其中存在

的异常值,在 30 ℃ ~ 70 ℃ 时,I ~ IV 级油液的水活性、水
分、粘度、密度分布如图 4 ~ 5 所示。

图 4　 水活性、水分分布

Fig. 4　 Water
 

activity
 

and
 

water
 

distribution

从图中可以看出,I ~ IV 级油液的水活性、密度分布

中均有离群点,根据箱形图剔除 I ~ IV 水活性、密度数据

中的异常值,并对 I ~ IV 水活性、密度进行 smote 插值均

衡各类数据以提高后续油品状态识别的准确度。 共得到

I ~ IV 级样本共 3
 

920 组,将 I ~ IV 级样本分别标注为 1、

图 5　 粘度、密度分布

Fig. 5　 Viscosity
 

and
 

density
 

distribution

　 　 　 　

2、3、4,构建清洗数据集。
2. 4　 模型评价指标

　 　 模型性能主要通过准确率 Acc 、精确率 Pmacro 、召回率

Rmacro 以及综合评价指标 F1 值衡量,公式如下:

Acc =
L
M

(8)

Pmacro =
∑

4

ζ = 1
TPξ

4∑
4

ξ = 1
TPξ + FPξ

(9)

Rmacro =
∑

4

ξ = 1
TPξ

4∑
4

ξ = 1
TPξ + FNξ

(10)

F1 = 1
4 ∑

4

ξ = 1

2Pξ × Rξ

Pξ + Rξ
(11)

式中:M 为总样本数,L 为各类预测正确的样本数之和,
将第 ξ 类当作正类,其余所有类统一为负类, TPξ 实际为

正类预测为正类, FPξ 实际为负类预测为正类, FNξ 实际

为正类预测为负类,
 

Pξ、Rξ 分别为第 ξ 类按二分类方式

计算的精确率、召回率。
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3　 实验结果与分析

3. 1　 油品特征优选

　 　 采用 PCA 方法对清洗后的油液多参量数据进行特

征优选,得到 I ~ IV 级样本的各主成分贡献率如图 6 所

示。 根据累计方差贡献率>95%的原则,优选出前 3 个主

成分 PC1 ~ PC3 作为投影空间,对各指标进行投影,PCA
三维可视化结果如图 7 所示。 可以观察到,I 级和 II ~ IV
级的样本在以 PC1 ~ PC3 为基的空间中相互独立,II ~ IV
级样本之间具有相关性。

图 6　 各主成分贡献率

Fig. 6　 Contribution
 

rate
 

of
 

each
 

principal
 

component

图 7　 PCA 特征优选结果

Fig. 7　 PCA
 

feature
 

optimization
 

results

3. 2　 模型训练及参数确定

　 　 数据集划分为训练集 2
 

744 组、测试集 1
 

176 组,在
MATLAB 中构建 3 层 BP 神经网络进行训练,将 PCA 特

征优选后的融合特征作为 BP 基识别器的输入,将油品

状态值(分类值 1、2、3、4)作为识别模型的输出,通过文

献[23]的经验公式及试凑法确定最佳隐含层节点数为

7。 选择分类误差作为 GWO 的适应度函数,将 BP 网络

各神经元的初始权值与阈值编码为实数串,作为 GWO
中的个体,输出最优 BP 初始权值与阈值给 BP 基识别器

训练,建立 GWO-BP 弱分类器。
弱分类器的叠加效果决定最终强分类器的分类能

力,因此弱分类器数量的确定标准为强分类器在测试集

的准确率。 设置 GWO-BP 弱分类器开始数量为 1,随后

在 5 ~ 50 之间取步长 5,依次进行实验,强分类器在训练

集、测试集上的准确率表现如图 8 所示。

图 8　 准确率表现

Fig. 8　 Accuracy
 

performance

初始阶段强分类器在测试集上的准确率随弱分类器

数量增加呈现较为明显的震荡变化,在弱分类器数量达

到 10 之后准确率稳定在 99. 3%左右。 因此,选择 10
 

个

弱分类器进行自适应加权集成,获得最终的 PGBA 模型,
其参数如表 4 所示。

表 4　 模型参数

Table
 

4　 Model
 

parameters
模型 参数

PGBA
模型

输入层节点数:3 输出层节点数:4 隐含层节点数:7
BP 迭代次数:100 BP 学习率:0. 1 目标误差:1×10-6

GWO 种群数:10 GWO 最大迭代
次数:10

GWO 优化
节点总数:60

GWO 优化目标
参数下限:-1

GWO 优化目标
参数下限:1

弱分类器
个数:10

　 　 GWO 优化 BP 过程如图 9 所示,在训练集和测试集

识别结果分别如图 10 ~ 11 所示。 AdaBoost 集成模型在

训练集、测试集上的准确率分别为 99. 49%、99. 31%,可
见分类效果良好。
3. 3　 各模型性能对比

　 　 为了验证所提模型的优越性,分别训练了 SVM、
KNN、BN、RBF、BP、GA-BP、PSO-BP、GWO-BP、GWO-BP-
AdaBoost 模型用于油品状态识别,使用清洗后的油液数

据对 10 种模型算法进行测试,重复 10 次实验取平均值,
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图 9　 GWO 优化 BP 过程

Fig. 9　 GWO
 

optimization
 

BP
 

process

图 10　 训练集样本识别结果

Fig. 10　 Training
 

set
 

sample
 

recognition

　 　 　 　

图 11　 测试集样本识别结果

Fig. 11　 Test
 

set
 

sample
 

recognition
 

results

具体结果如表 5 所示。
1)GWO 优化有效性验证

GWO-BP 相比 BP、GA-BP、PSO-BP,准确率、精准率、
召回率、F1 值均表现优异,相比 GWO 和 PSO 寻优,GWO
具有较强的全局搜索能力,能找到更高质量的全局最优

解,对 BP 识别精度的提升作用显著。 此外,从算法效率

表现来看,GWO-BP
 

比 PSO-BP 表现出较快的收敛速度,
用时更短,与 GA-BP 用时相当。 综合来看,GWO 优化

BP 初始权值与阈值的策略最优。
2)Adabboost 集成有效性验证

GWO-BP-AdaBoost 相比 GWO-BP,虽然算法的时间

复杂度有所增加,但准确率、精准率、召回率、F1 值均得

到极大提升,AdaBoost 集成多个 GWO-BP 弱分类器,并
　 　 　 　 　表 5　 各模型性能对比

Table
 

5　 Performance
 

comparison
 

of
 

various
 

models
识别模型 运行时间 / s 准确率 / % 精准率 / % 召回率 / % F1 / %

SVM 1. 66±0. 03 65. 09±0. 83 78. 31±2. 01 65. 09±0. 83 59. 34±0. 75
KNN 1. 29±0. 04 65. 26±0. 89 67. 51±1. 34 65. 31±1. 15 64. 77±1. 26
BN 2. 06±0. 04 70. 3±1. 35 74. 8±0. 48 70. 42±1. 28 70. 33±1. 81

RBF 5. 59±0. 33 72. 74±1. 24 72. 14±1. 36 72. 74±1. 24 71. 28±1. 11
BP 3. 57+0. 22 78. 89±1. 87 83. 84±3. 22 78. 89±1. 87 75. 21±4. 33

GA-BP 58. 01±0. 57 85. 21±2. 40 89. 98±0. 96 85. 21±2. 40 83. 81±3. 06
PSO-BP 68. 77±1. 35 82. 62+2. 74 88. 87±1. 10 82. 63±2. 75 80. 27±3. 75
GWO-BP 62. 13±1. 25 91. 96±1. 73 93. 33±1. 21 91. 8±1. 76 91. 75±1. 78

GWO-BP-AdaBoost 71. 36±1. 38 95. 31±0. 83 95. 53±0. 89 95. 30±0. 70 95. 31±0. 86
PAGB 32. 77±1. 27 99. 30±0. 16 99. 33±0. 13 99. 33±0. 15 99. 24±0. 16

在迭代中更关注易分错的样本,对 GWO-BP 识别精度的

提升作用显著。
3)PCA 特征优选有效性验证

PGBA 相比 GWO-BP-AdaBoost,准确率、精准率、召

回率、F1 值分别提高了 3. 99%、3. 8%、4. 03%、3. 93%,运
行时间极大减少,进一步分析原因可知,前期的数据清洗

虽然清除了一些明显的异常值,却难以完全清除噪声,在
PCA 进行特征优选的过程中,最小的特征值所对应的特



　 第 10 期 基于 PCA 特征优选和 AdaBoost 集成学习的齿轮箱油品状态识别方法 · 65　　　 ·

征向量往往与噪声有关,将它们舍弃在一定程度上削减

了噪声的影响,而 AdaBoost 分类器对噪声敏感,PCA 在

保留主要特征的同时抑制了噪声特征的影响, 对

AdaBoost 识别精度和效率的提升具有显著作用。
4)常见模型对比验证

结合 表 5 可 知, PGBA 集 成 模 型 准 确 率 高 达

99. 30%,较其他 8 种单一分类器 SVM、KNN、BN、RBF、
BP、GA-BP、PSO-BP、GWO-BP 准确率显著提高,分别提

高了 34. 21%、34. 04%、29%、26. 56%、20. 41%、14. 09%、
16. 68%、7. 34%,说明了 PCA 特征优选、GWO 优化 BP 和

AdaBoost 集成策略的有效性。
SVM、KNN、BN、RBF、BP 运行时间均在 6 s 以内,但

准确率均低于 80%。 优化后的 BP 模型准确率均有所提

升,但运行时间均高于 50 s。 PGBA 模型的运行时间为

32. 77±1. 27 s,显著优于 GA-BP、PSO-BP、GWO-BP,体现

了 PCA 在提取高维度数据特征方面所具有的优良性能,
不仅最大限度保留了数据信息,同时降低了模型的时间

复杂度。
5)分类效果对比验证

为了进一步观察各模型对不同等级油样的分类效

果,进行了各个模型的混淆矩阵计算,如图 12( a) ~ ( j)
所示,其中混淆矩阵对角线位置的数据为各类预测正确

的样本数。 由图 12 可知,PGBA 集成学习模型表现出良

好的分类性能,识别结果最佳,对等级 I ~ III 样品的识别

率均达到 100%, IV 级样品中有 8 个被误判为 III 级

样品。
另外,对 I 级样品的识别率较分类器 SVM、 KNN、

BN、RBF、PSO-BP、GWO-BP-AdaBoost 分别提高了 98%、
69. 5%、7. 5%、20. 1%、22. 8%、4. 4%,对 II 级样品的识别

率较分类器 SVM、BN 分别提高了 0. 3%、3. 5%,对 III 级

样品的识别率较分类器 SVM、KNN、BN、RBF、BP、PSO-
BP、 GWO-BP、 GWO-BP-AdaBoost 分 别 提 高 了 4. 1%、
40. 2%、60. 9%、63. 9%、85. 7%、31%、34. 9%、12. 2%,对

IV 级样品的识别率较其他 8 种分类器( a) ~ ( e)、( g) ~
(i) 分别提高了 30. 7%、19. 3%、45. 4%、21. 9%、0. 5%、
0. 1%、0. 2%、0. 5%,表明基于 PCA 特征优选和 AdaBoost
算法的集成分类器能够较好地实现对齿轮箱润滑油油品

状态的检测。
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图 12　 不同分类器建模结果混淆矩阵

Fig. 12　 Confusion
 

matrix
 

of
 

modeling
 

results
 

for
 

different
 

classifiers

4　 结　 论

　 　 针对齿轮箱检修维护的实际需求,提出一种基于

PCA 特征优选和 AdaBoost 集成的齿轮箱油品状态识别

方法。 该方法通过箱型图和 smote 插值对油液多参量数

据进行清洗提高油液数据的质量;采用 PCA 对油品特征

进行提取,获取有助于分类的油品特征优选子集;利用

BP 神经网络建立油品识别基本模型,采用灰狼优化算法

对 BP 的初始权值与阈值进行搜索寻优,克服传统 BP 神

经网络超参数选择困难、易陷入局部极小等缺点,同时采

取自适应提升 AdaBoost 算法对模型进行优化,进一步提
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高模型的精度。 实验结果表明,与其他 9 种模型相比,
PGBA 模型效果最优,平均识别率 99. 30±0. 16%,平均用

时 32. 77±1. 27 s,在优化集成后能以更小的时间代价获

得更高的精度,能够有效地识别齿轮箱润滑油油品状态,
具有较高的实用价值,为实现在线齿轮箱的油品状态识

别奠定了良好基础。 提升模型的运行效率与泛化性,以
及扩大模型在其他关键设备中的应用将是未来的工作

重点。
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