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Gearbox oil status recognition method based on PCA feature
optimization and adaboost ensemble learning

Chen Xiaoben' Huang Cailun'  Zhao Yanming’  Li Zhijing' Nan Maoyuan' Tian Yongjun’

(1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411100, China;
2. Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Xiangtan 411100, China;
3. School of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411100, China)

Abstract: A gearbox oil state recognition method based on PCA feature optimization and AdaBoost ensemble learning is proposed to
address the problems of low accuracy and limited generalization ability in traditional gearbox oil analysis methods. Firstly, the multi
parameter oil data is cleaned using box plots and SMOTE interpolation to improve the quality of the oil data; Secondly, PCA is used for
oil product feature optimization to obtain a subset of oil product feature optimization that is helpful for identification. While effectively
integrating multi parameter information of oil, it can significantly reduce the time complexity of model operation; Then, a basic model for
oil state recognition is established using BP neural network, and the GWO wolf pack optimization algorithm is introduced to optimize the
model. A weak classifier GWO-BP with optimal initial weights and thresholds is constructed, and an adaptive boosting AdaBoost
algorithm is adopted to combine multiple weak classifiers GWO-BP, integrating them into a strong classifier with strong robustness.
Finally, the experimental data was applied for verification and analysis. The experimental results showed that the proposed method had
the best performance, with an average recognition rate of 99.30 = 0. 16% and an average time of 32.77 + 1.27 seconds. It could
quickly, efficiently, and accurately identify the oil state of the gearbox lubricating oil, laying a good foundation for realizing online oil
state recognition of gearboxes and having important engineering application value.
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Table 3 Various oil parameter parameters
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Table 5 Performance comparison of various models
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Fig. 12 Confusion matrix of modeling results for different classifiers
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