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摘　 要:高质量的全局路径规划是无人船艇(unmanned
 

surface
 

vehicle,
 

USV)自主航行的关键技术之一。 针对 USV 复杂障碍环

境下全局路径规划问题,提出一种基于多策略优化黏菌算法(multi-strategy
 

enhanced
 

slime
 

mould
 

algorithm,
 

ME-SMA)的全局路

径规划方法。 ME-SMA 针对黏菌算法(slime
 

mould
 

algorithm,
 

SMA)存在初始种群分布不均、收敛速度慢及易陷入局部最优等问

题,通过改进的 Logistic 混沌映射优化种群初始化,增强全局搜索能力;结合遗传算法(genetic
 

algorithm,
 

GA)的交叉、变异及选

择策略,提升局部开发效率;引入黄金正弦策略动态调整搜索方向,避免早熟收敛。 为验证 ME-SMA 的有效性,在 9 类基准测试

函数上进行了测试。 实验结果表明,相较于原始 SMA 及其他对比算法,ME-SMA 展现出较好的收敛精度与稳定性。 在相同复杂

障碍环境下进行的仿真实验表明,ME-SMA 在收敛速度、任务完成时间及航行距离等方面均有显著提升,与其余实验算法进行对

比,路径长度均值平均减少 1. 8%,稳定性平均提升 28. 22%,凸显了其在 USV 全局路径规划应用中的高效性与工程实用价值。
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Abstract:
 

High-quality
 

global
 

path
 

planning
 

is
 

one
 

of
 

the
 

key
 

technologies
 

enabling
 

autonomous
 

navigation
 

of
 

unmanned
 

surface
 

vehicles
 

(USVs).
 

To
 

address
 

the
 

global
 

path
 

planning
 

problem
 

for
 

USVs
 

in
 

complex
 

obstacle
 

environments,
 

this
 

paper
 

proposes
 

a
 

global
 

path
 

planning
 

method
 

based
 

on
 

the
 

multi-strategy
 

enhanced
 

slime
 

mould
 

algorithm
 

( ME-SMA).
 

To
 

overcome
 

SMA’ s
 

limitations
 

such
 

as
 

uneven
 

initial
 

population
 

distribution,
 

slow
 

convergence
 

speed,
 

and
 

proneness
 

to
 

local
 

optima,
 

ME-SMA
 

employs
 

several
 

enhancements:
 

it
 

optimizes
 

population
 

initialization
 

using
 

improved
 

Logistic
 

chaotic
 

mapping
 

to
 

enhance
 

global
 

exploration;
 

incorporates
 

crossover,
 

mutation,
 

and
 

selection
 

strategies
 

from
 

genetic
 

algorithms
 

to
 

improve
 

local
 

exploitation
 

efficiency;
 

and
 

introduces
 

the
 

golden
 

sine
 

strategy
 

to
 

dynamically
 

adjust
 

the
 

search
 

direction,
 

thereby
 

avoiding
 

premature
 

convergence.
 

To
 

validate
 

the
 

effectiveness
 

of
 

ME-SMA,
 

we
 

tested
 

it
 

on
 

nine
 

types
 

of
 

benchmark
 

functions.
 

The
 

results
 

show
 

that
 

ME-SMA
 

achieves
 

superior
 

convergence
 

accuracy
 

and
 

stability
 

compared
 

to
 

the
 

original
 

SMA
 

and
 

other
 

comparative
 

algorithms.
 

Simulation
 

experiments
 

in
 

identical
 

complex
 

obstacle
 

environments
 

further
 

demonstrate
 

that
 

ME-SMA
 

significantly
 

improves
 

convergence
 

speed,
 

task
 

completion
 

time,
 

and
 

navigation
 

distance.
 

Compared
 

to
 

the
 

other
 

experimental
 

algorithms,
 

ME-SMA
 

achieves
 

an
 

average
 

reduction
 

of
 

1. 8%
 

in
 

path
 

length
 

and
 

an
 

average
 

improvement
 

of
 

28. 22%
 

in
 

stability,
 

highlighting
 

its
 

high
 

efficiency
 

and
 

practical
 

engineering
 

value
 

for
 

USV
 

global
 

path
 

planning
 

applications.
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0　 引　 言

　 　 近年来,海洋经济的快速发展和无人系统的进步引

起了研究者对无人船艇(unmanned
 

surface
 

vehicle,
 

USV)
的广泛关注。 USV 是一种新型的智能无人水面平台,能
够在复杂的水域环境中完成各种任务[1] ,在资源勘探[2] 、
环境监测[3] 、水面搜救[4] 和军事协同[5] 等领域的应用日
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益广泛。 然而,由于 USV 所行驶环境的复杂性,其航行

路径容易受到障碍物的影响,因此,采取合适的全局路径

规划策略是实现 USV 无人化系统的重要前提条件,这可

以减少航行时间与能耗,提高作业效率和降低航运成

本[6] ,对于 USV 安全和高效完成各项任务完成具有重要

意义。
路径规划算法大致可分为 4 类,图形搜索算法、虚拟

势场法、随机采样算法和群智能算法[7] 。 图形搜索算法,
A∗算法[8] 、Dijkstra 算法[9] 、Floyd 算法[10] 等,这类算法由

于优秀的数学基础与理论,因此在静态环境中表现良好,
但在动态或复杂场景中因计算复杂度高、实时适应性差

而表现欠佳[11] 。 虚拟势场法, 人工势场法 ( artificial
 

potential
 

field,
 

APF ) [12] 、 快 速 行 进 法 ( fast
 

marching
 

method,FMM) [13] ,这类算法可以实时调整路径以避开障

碍物,响应速度较快,在动态环境中表现优异,但在复杂

场景中容易陷入局部最优[14] 。 随机采样算法,如快速随

机搜索树算法( rapidly-exploring
 

random
 

tree,
 

RRT) [15] 、
概率路标算法( probabilistic

 

roadmap
 

method,
 

PRM) [16] ,
这类算法适用于多维空间的全局路径规划,算法搜索路

径速度较快,但由于其使用全局均匀随机采样,在复杂场

景中存在易陷入局部最小值问题[17] 。 群智能算法,粒子

群算法 ( particle
 

swarm
 

optimization,
 

PSO ) [18] 、 蚁群算

法(ant
 

colony
 

algorithm,
 

ACA ) [19] 、 遗 传 算 法 ( genetic
 

algorithm,
 

GA) [20] 等,这类算法对环境适应力强,擅长全

局优化,但计算效率相对较低[21] 。
上述各类算法在路径规划中均有着广泛的应用,其

中群智能算法在复杂环境下的路径搜索问题中展现出显

著优势使其成为全局路径规划的主流方法。 群智能算法

模拟自然界中生物群体的集体行为,通过学习群体内彼

此的经验来寻找最优的解决方案。 常见的群智能算法有

海鸥算法( seagull
 

optimization
 

algorithm,
 

SOA) [22] 、鲸鱼

算法(whale
 

optimization
 

algorithm,
 

WOA) [23] 、人工蜂群算

法(artificial
 

bee
 

colony,
 

ABC) [24] 、麻雀算法等( sparrow
 

search
 

algorithm,
 

SSA) [25] 。 研究者还将灰狼算法( grey
 

wolf
 

optimizer,
 

GWO) [26] 、烟花算法( fireworks
 

algorithm,
 

FWA) [27] 等,这些算法应用于路径规划,取得了良好的

效果。
黏菌算法(slime

 

mould
 

algorithm,
 

SMA) [28] 通过模拟

黏菌觅食行为实现优化,在全局路径规划中展现出巨大

的潜力。 Zheng 等[29] 将 SMA 与自适应技术结合来增强

全局搜索能力,并集成了人工势场以提高动态避障能力。
刘美娇[30] 将黏菌算法与蚁群算法结合,用于机器人足端

路径规划。 但其在初始种群分布不均、收敛速度慢及易

陷入局部最优等方面的不足限制了进一步应用[31] 。 针

对上述问题,研究者们提出了多种改进策略,Zhang 等[32]

设计了一种新的自适应柯西突变算子用于增强种群多样

性;Houssein 等[33] 将自适应引导差分进化算法( AGDE)
与 SMA 结合,利用 AGDE 的变异策略增强局部搜索能

力;Hassan 等[34] 引入正弦-余弦算法( SCA)的扰动机制,
动态调整解的更新方向,改善全局收敛性; Samantaray
等[35]与 Chakraborty 等[36] 分别使用与 PSO 进行融合的方

法和二次项逼近的策略增强 SMA 的局部搜索能力;
 

Chauhan 等[37] 将算术优化算法 ( arithmetic
 

optimization
 

algorithm,
 

AOA)和透镜成像对立学习策略与 SMA 进行

融合,提高了 SMA 的局部收敛性;Xiong 等[38] 将差分进

化策略和莱维飞行策略与 SMA 结合提高了算法的求解

精度。
上述研究虽取得显著进展,但在路径规划任务中仍

面临些许挑战,如路径连续性难以保证、避障能力不足、
计算效率低下等。 为解决所述不足,提出一种多策略优

化的黏菌算法( ME-SMA),通过有机融合多种互补性强

的优化策略,系统性解决 SMA 的部分不足,并针对性地

提升其在 USV 全局路径规划任务中的综合性能(如路径

质量、平滑性、安全性和计算效率等)。
本文使用改进的 Logistic 混沌映射初始化种群,增加

初始种群分布的离散性和均匀性,克服随机初始化分布

不均的问题,确保种群多样性,相较于标准 SMA 及单一

混沌初始化策略效果更优,提高算法后续的寻优效率;结
合交叉、变异等遗传操作,增强算法的全局搜索能力,并
利用黄金分割系数和正弦函数的非线性特性,分割搜索

空间的同时避免算法出现早熟现象,引导种群收敛至最

优区域,区别于仅使用固定参数或简单线性调整的策略,
该策略有效防止算法后期停滞;使用三次样条对规划路

径进行平滑处理,减少不必要的转向点,缩短路径长度。
在相同复杂障碍环境下进行的仿真实验表明,ME-

SMA 在 USV 全局路径规划应用中效率较高,具有良好的

工程实用价值。

1　 多策略优化的黏菌算法

1. 1　 黏菌算法

　 　 黏菌算法通过模拟自然界中黏菌生物的捕食行为来

实现智能寻优功能。 假设黏菌种群数量为 N,每个个体

均包含 D 个维度,则可以将整个种群表示为:

X =

x1
1 x2

1 … xD
1

x1
2 x2

2 … xD
2

︙ ︙ ︙
x1

N x2
N … xD

N

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

X1
→

X2
→

︙

XN
→

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

(1)

适应度和黏菌在接近食物的过程中的位置更新方式

可以分别表示为:
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f(X) = [ f X1
→

( ) ,f X2
→

( ) ,…,f XN
→

( ) ] (2)

X t + 1( )
→=

rand × (ub - lb) + lb, r < z

Xb( t)
→ +vb→ × W→ ×XA( t)→ -XB( t)→( ) , r < p

vc→ ×X( t)→ ,r ≥ p

ì

î

í

ï
ï

ï
ï

(3)

式中: X( t)→表示第 t 次迭代时黏菌的位置向量;Xb( t)
→

表

示第 t 次迭代时食物浓度最高的位置向量;vb→ 和 vc→
为震

荡参数; W
➝

为权重系数,三者影响黏菌的搜索过程; rand
和 r 表示范围[0,1]的随机数; ub 和 lb 表示搜索空间上

界和下界; z 是平衡搜索与开发阶段的参数。
1. 2　 SMA 流程

　 　 SMA 通过模拟黏菌行为实现优化。 首先设定种群

规模、最大迭代次数、变量范围等参数,并随机初始化黏

菌种群的位置;随后进入迭代过程,在每次迭代中计算所

有个体的适应度值,对个体按适应度排序并更新全局最

优解及其对应的最优适应度;然后动态调整惯性权重参

数 W
➝

,再依次更新每个搜索位置的移动参数;最后更新

黏菌个体的位置。 迭代完成后,输出全局最优适应度值

及对应的最优解。 SMA 伪代码如算法 1 所示。
算法 1

 

SMA 伪代码

初始化参数: popsize, IterMax, lb,ub ;

初始化黏菌种群位置
 

Xi( i = 1,2,…,n) ;

While
 

t≤ IterMax

计算所有黏菌个体的适应度;
对黏菌个体进行排序并更新

 

bestFitness,Xb

更新权重系数
 

W
 

;
For

 

each
 

搜索位置

　 　 更新参数
 

p, vb→, vc→  

;
　 　 按照式(3)更新位置;
End

 

For
t

 

=
 

t
 

+
 

1;
End

 

While
Return

 

bestFitness,Xb

2　 多策略改进的黏菌优化算法

2. 1　 Logistic 混沌映射

　 　 种群初始化的情况将会直接影响群智能优化算法的

效率。 SMA 中的初始化种群是随机生成的,随机数法的

缺点是种群无法均匀的分布在搜索空间内,影响后续算

法的求解效率。 混沌运动具有遍历性和不重复性等特

点,适合用来生成种群的初始位置。 因此,本文采用

Logistic 混沌映射产生混沌序列,丰富种群多样性,使种

群均匀分布在搜索空间内,避免算法陷入局部最小值。
其定义如下:

Yn+1 = r × Yn × (1 - Yn) (4)
式中: r 为控制参数,取值为(0,4]。

Logistic 混沌映射具有较好的混沌特性,参数的选取

对其混沌性有着密切的影响,如图 1 所示。 图 1 ( a)
和(b)分别是 Logistic 映射的分叉图和直方图,从分叉图

中不难看出,参数 r 在(0,3)区间内, Y 值最终会收敛到

一个稳定平衡点, r 取值为 3 时,稳定点失衡, r ≈3. 57
时,系统进入混沌状态。 r 的取值越接近 4,其混沌特性越

优秀。 同时 Yn 的值越均匀的分布在[0,1] 区间内。 当

r = 4 时,整个系统处于完全混沌状态。 Logistic 映射的混

沌区间相对较窄,并且由直方图可以看出虽然生成的混

沌序列取值均匀,但概率并不均等,数据出现向区间两端

聚集的现象。 为了克服上述问题,对 Logistic 映射公式进

行改进,改进后如式(5)所示。

Yn+1 = r × 1 - π
sinY2

n
( ) bmod1 (5)

其中,mod 为取模符号。 改进后的分叉图和直方图

如图 1(c)、(d)所示。 从改进后的分叉图中可以看出,改
进后的 Logistic 映射的混沌区间相比之下有了极大的增

加,并且由直方图可以看出混沌序列的取值分布更加均

匀,更便于后续生成随机的初始化种群。
因此,将式(5) 引入 SMA 初始化过程中,如式( 6)

所示。
xd
i = Yd

i × ubd + (1 - Yd
i ) × lbd (6)

选取式(5)产生的初始变量值,然后利用式(6)映射

到黏菌个体上,产生多样性较好的初始种群。 令搜索上

下界分别为 1 和 0,维度为 1,个体数量设置为 600,随机

策略与该策略在搜索空间生成的初始化种群如图 2
所示。

从图 2 可以看出,改进 Logistic 策略生成的初始化种

群分布较随机策略的种群分布更加均匀,因此在标准黏

菌算法中融入改进 Logistic 混沌映射,确保种群多样性,
提高算法的寻优效率。
2. 2　 遗传学习策略

　 　 SMA 中,新个体主要通过 XA 和 XB 在全局范围内生

成,优良个体的引导作用没有很好的发挥出来,进化存在

盲目性,影响算法的收敛速度。 与之相比,遗传算法中的

选择、交叉、变异操作使得 GA 具有更强的全局搜索能

力。 因此,引入遗传学习策略,提高 SMA 的性能。
1)交叉操作。 个体 i 的优秀后代 Ii = [ Ii1,Ii2,Ii3,…,

IiD] 通过式(7)得到。

Inewid =
r × Ibid + (1 - r) × Ibd, f( Ibi ) < f( Ibk)

Ibkd, 其他{ (7)
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图 1　 混沌映射分岔图和直方图

Fig. 1　 Chaos
 

map
 

bifurcation
 

diagram
 

and
 

histogram

图 2　 初始化方法效果对比

Fig. 2　 Comparison
 

of
 

initialization
 

method
 

effects

式中: r是分布在[0,
 

1]之间的随机数; k是集合{1,2,3,
…,N}中的随机数; Ibid 是个体 i的历史最优位置的 d维的

值; Ibi 、I
b
k 分别是个体 i和个体 k的历史最优位置; Ibd 是全

局最优个体的 d 维的值。 交叉操作通过计算 Ibid 和 Ibd 的

凸组合,使个体向最优个体靠近,整合局部与全局个体的

位置信息,加快算法收敛。
2)变异操作。 后代第 d 维的变异具体操作如式(8)

所示。

Inewid =
r × ubd + (1 - r) × lbd, r < pm

Iid, 其他{ (8)

式中: ubd 和 lbd 分别是搜索空间的上界与下界的 d 维约

束; pm 是变异概率。 变异操作通过对个体 d 维的扰动,
提高种群多样性,避免算法陷入局部最优解。

3)选择操作。 对个体精英后代的选择具体操作如

式(9)所示。

IEi
→ =

Inewi
→, f Inewi

→
( ) < f IEi

→
( )

IEi
→, 其他

{ (9)

选择操作使得个体子代适应度优于父代。 改进后的

更新公式如下:
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X t + 1( )
→=

rand × (ub - lb) + lb, rand < z

Xb( t)
→ +vb→ × W→ ×XA( t)→ -IE( t)→( ) , r < p

vc→ ×X( t)→, r ≥ p

ì

î

í

ï
ï

ï
ï

(10)
2. 3　 黄金正弦学习策略

　 　 引入遗传策略后,每个子代的适应度都优于父代,但
会导致算法出现早熟现象。 因此, 引入黄金正弦算

法(golden
 

sine
 

algorithm,
 

GSA) [39] ,利用正弦函数结合黄

金正弦分割比例,来提升寻优性能的一种方法。 在迭代

过程中,融入黄金分割系数,使算法不断缩小搜索空间,
在很大程度上提升了种群的搜索效率,使其具有鲁棒性

高、收敛快、精度高等特点。 通过随机方式生成数量为 N
的初始候选解以填充搜索空间,提升黏菌算法的搜索效

率,黄金正弦算法更新策略如下:
V t +1

i = V t
i sinr1 - r2sinr1 | x1D

t
i - x2V

t
i | (11)

式中: V t+1
i 和 V t

i 分别是第 i 个个体第 t + 1 迭代和第 t 次
迭代的位置;Dt

i 是第 i 个个体第 t 次迭代的最优位置;r1

为区间[0,
 

2π]内的随机数; r2 为区间[0,
 

π]内的随机

数; x1、x2 为黄金分割系数。 相关表达式如式(12) ~ (14)
所示。

x1 = - π + × 2π (12)
x2 = - π + (1 - ) × 2π (13)

= 5 - 1
2

(14)

通过每次迭代对搜索空间的缩减,引导黏菌算法不

断向最优解趋近。
2. 4　 ME-SMA 算法

 

　 　 改进后算法首先通过混沌映射初始化黏菌种群的位

置,然后在每次迭代中计算个体适应度并更新全局最优

解;基于动态调整的权重参数优化搜索方向,结合精英

种群策略保留优质解,并通过两阶段位置更新公式分

别实现全局探索与局部开发。 算法在达到最大迭代次

数后输出最优适应度值及对应解。 ME-SMA 伪代码如

算法 2 所示。

3　 ME-SMA 性能测试分析

3. 1　 测试函数

　 　 为了验证 ME-SMA
 

寻优能力的强弱,选取了一组基

准测试函数对算法性能优劣进行比较,函数由 3 种类型

的问题组成:可扩展单峰函数(F1 ~ F3 )、可扩展多峰函

数(F4 ~F6)、固定维的多峰函数(F7 ~ F9 )。 测试函数的

具体描述如表 1 所示。

算法 2
 

ME-SMA 算法

初始化参数: popsize, IterMax, pm, lb,ub
 

;

融合改进的 Logistic 混沌映射方法初始化黏菌种群的位置
 

Xi( i = 1,

2,…,n);
While

 

t≤ IterMax

计算所有黏菌个体的适应度;
更新

 

bestFitness,Xb

更新权重系数
 

W
 

;
For

 

each
 

搜索位置

　 更新精英种群
 

IEi
→

 ;

　 更新
 

p,vb→, vc→  

;
　 按照公式(10)更新位置;
End

 

For
按照公式(11)更新位置;
t

 

=
 

t
 

+
 

1;
End

 

While
Return

 

bestFitness,Xb

3. 2　 参数分析

　 　 参数 z 是平衡搜索与开发阶段的参数。 利用 9 个测

试函数来评估参数 z对算法的影响。 参数 z 的范围为[0,
 

0. 1],设置 11 个值,每个值的间隔是 0. 01。 在其他条件

不变的情况下,在 9 个测试函数中测试了参数 z 的不同

值,结果如表 2 所示。 表 2 中的值表示运行某一函数时,
不同 z 值的排名。

通过对表 2 的实验结果分析,可以发现当参数
 

z =
0. 03

 

时,该算法能够更有效地平衡搜索能力与优化效率

之间的关系,从而获得更优的性能表现。
为深入探究种群规模

 

( population)
 

和最大迭代次

数
 

(iteration)
 

对算法性能的影响,选取基准测试函数 F1

作为评估对象,对上述两个参数进行了测试。 具体实验设

计为:种群规模分别设置为
 

5、10、50、100、300
 

和
 

500;最大

迭代次数分别设置为
 

50、100、200、500、1
 

000 和 2
 

000。 为

确保结果的统计可靠性,每个参数组合进行
 

30
 

次独立重

复实验,并计算其寻优结果的平均值作为最终结果。
测试结果如图 3 所示,从图 3 可以看出,在迭代初

期,增大种群规模有助于显著提升算法的全局搜索效率。
相应地,增加迭代次数则对算法在优化后期的局部搜索

精度具有明显的促进作用。
由于算法在迭代前期已能较快地收敛至近似最优解

区域,当种群规模与迭代次数持续增大并超过某一阈值

后,性能的进一步改善变得极其有限,呈现出显著的边际

效益递减现象。
3. 3　 实验验证

　 　 利用 9 种测试函数评估 ME-SMA 的性能,实验算法

选择 SMA、 GSA、 蝴蝶优化算法 ( butterfly
 

optimization
 

algorithm,
 

BOA) [40] 、SOA 以及 WOA 进行对比评估。
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表 1　 测试函数相关参数

Table
 

1　 Related
 

parameters
 

of
 

test
 

functions
函数类型 表达式 维度 全局最优值

单峰测试函数

F1(x) = ∑
n-1

i = 1
[100(xi+1 - xi)

2 ] + (xi - 1) 2 30 0

F2(x) = ∑
n

i = 1
(xi + 0. 5) 2 30 0

F3(x) = ∑
n

i = 1
ix4

i + random[0,1) 30 0

多峰测试函数

F4(x) = ∑
n

i = 1
(x2

1 - 10cos(2πxi) + 10) 30 0

F5(x) = - 20exp - 0. 2
1
n ∑

n

i = 1
x2
i( ) - exp

1
n ∑

n

i = 1
cos(2πxi)( ) + 20 + e 30 0

F6(x) = 1
4000∑

n

i = 1
x2
i - ∏

n

i = 1
cos

xi
i( ) + 1 30 0

固定维多峰

测试函数

F7(x) =
1

500
+ ∑

25

j = 1

1

j + ∑2

i = 1
(xi - aij)

6
é

ë
êê

ù

û
úú

-1

2 1

F8(x) = - ∑
4

i = 1
ciexp - ∑

6

j = 1
aij(x j - pij)

2[ ] 6 -3. 32

F9(x) = - ∑
10

i = 1
((X - ai)(X - ai)

T + ci)
-1 4 -10. 536

 

3

表 2　 不同 z 值产生的结果排名

Table
 

2　 Ranking
 

of
 

results
 

generated
 

by
 

different
 

Z-values
函数 z= 0 z= 0. 01 z= 0. 02 z= 0. 03 z= 0. 04 z= 0. 05 z= 0. 06 z= 0. 07 z= 0. 08 z= 0. 09 z= 0. 1
F1 6 5 4 8 9 2 10 11 7 3 1
F2 10 11 3 9 7 8 6 4 5 2 1
F3 10 11 3 9 7 8 6 4 5 2 1
F4 3 8 4 1 6 5 2 7 11 10 9
F5 7 1 9 6 8 3 2 4 5 10 11
F6 1 1 1 1 1 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 1 1 1
F8 1 1 1 1 1 1 1 1 1 1 1
F9 2 5 8 1 3 4 6 9 10 11 7

平均值 3. 78 3. 78 3. 67 3. 56 5 4 4 5. 11 5. 22 5. 44 4. 11
排名 3 3 2 1 8 5 5 9 10 11 7

图 3　 种群规模与迭代次数对结果的影响

Fig. 3　 The
 

influence
 

of
 

population
 

size
 

and
iteration

 

times
 

on
 

results

　 　 图 4 ~ 6 所示分别为 9 种测试函数的搜索空间拓扑

结构,以及各算法在
 

30
 

次独立运行中适应度值(Fitness)
随迭代次数 t 的演化曲线。 从图 4 ~ 6 可以看出,ME-SMA

 

在绝大多数函数上表现出更快的收敛速度和更优的最终

精度。
表 3 为 30 次重复实验的统计指标,包括最优适应度

值、平均适应度值和适应度值的标准差。 从寻优结果可

以看出,ME-SMA 在除一个测试函数外(其寻优结果略逊

于标准 SMA),在其余所有测试函数上的寻优结果均优

于其他对比算法,同时,ME-SMA 在绝大多数函数上表现

出更小的标准差,充分验证了改进策略能有效提升算法

的鲁棒性。
图 7 所示为在 9 个测试函数上 6 种对比算法性能排
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图 4　 单峰函数搜索空间与各算法收敛曲线

Fig. 4　 Search
 

space
 

of
 

unimodal
 

functions
 

and
 

convergence
 

curves
 

of
 

various
 

algorithms

图 5　 多峰函数搜索空间与各算法收敛曲线

Fig. 5　 Search
 

space
 

of
 

multimodal
 

functions
 

and
 

convergence
 

curves
 

of
 

various
 

algorithms
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图 6　 固定维多峰函数搜索空间与各算法收敛曲线

Fig. 6　 Search
 

space
 

of
 

fixed
 

dimensional
 

multimodal
 

function
 

and
 

convergence
 

curves

图 7　 各算法在测试函数上的雷达图

Fig. 7　 Radar
 

chart
 

of
 

each
 

algorithm
 

on
 

the
 

test
 

function
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表 3　 测试函数实验结果

Table
 

3　 Experimental
 

results
 

of
 

test
 

functions
函数 算法 最优值 平均值 标准差

单峰函数

F1

ME-SMA 1. 89×10-6 0. 007 0. 012
 

8
SMA 28. 79 28. 95 0. 131
GSA 3. 56×10-5 0. 012

 

5 0. 019
 

7
BOA 28. 8 28. 9 0. 023

 

5
SOA 1. 95×10-6 2. 510 7. 109
WOA 26. 08 27. 47 0. 781

F2

ME-SMA 1. 74×10-6 4. 61×10-4 6. 07×10-4

SMA 0. 097
 

3 0. 338 0. 197
GSA 5. 52×10-9 2. 13×10-4 3. 18×10-4

BOA 2. 81 4. 50 0. 629
SOA 5. 97×10-4 7. 74×10-3 0. 066
WOA 0. 436 1. 020 0. 538

F3

ME-SMA 3. 20×10-6 4. 11×10-4 3. 78×10-4

SMA 1. 76×10-6 8. 73×10-4 8. 62×10-4

GSA 7. 31×10-6 3. 97×10-4 3. 44×10-4

BOA 4. 37×10-5 5. 51×10-4 5. 51×10-4

SOA 9. 07×10-5 8. 40×10-4 5. 52×10-4

WOA 1. 58×10-3 0. 002
 

03 0. 015
多峰函数

F4

ME-SMA 0 3. 67×10-6 1. 10×10-5

SMA 4. 9×10-10 7. 38×10-3 0. 038
 

8
GSA 2. 2×10-11 3. 94×10-4 0. 002

 

07
BOA 181. 971 236. 281 21. 330
SOA 6. 70×10-3 22. 283 33. 969
WOA 2. 8×10-13 4. 31×10-7 2. 30×10-6

F5

ME-SMA 4. 4×10-16 4. 4×10-16 0
SMA 4. 4×10-16 4. 4×10-16 0
GSA 4. 4×10-16 4. 4×10-16 0
BOA 0. 011

 

6 0. 013
 

13 7. 40×10-4

SOA 4. 4×10-16 5. 6×10-16 6. 4×10-16

WOA 0. 021
 

2 1. 271
 

7 3. 603

F6

ME-SMA 0 0 0
SMA 0 0 0
GSA 0 0 0
BOA 3. 13×10-3 3. 91×10-3 4. 52×10-4

SOA 0 0 0
WOA 3. 85×10-3 0. 239

 

2 0. 168
固定维多峰函数

F7

ME-SMA 0. 998 0. 998 9. 8×10-14

SMA 0. 998 0. 998 8. 46×10-7

GSA 0. 998 1. 197 0. 538
BOA 0. 998 1. 104 0. 238
SOA 0. 998 2. 535 2. 950
WOA 0. 998 1. 296 0. 472

F8

ME-SMA -3. 281 -3. 163 0. 262
SMA -3. 322 -3. 282 0. 054
GSA -3. 318 -3. 08 0. 138
BOA -2. 667 -1. 711 0. 493
SOA -3. 197 -2. 736 0. 428
WOA -3. 251 -2. 86 0. 453

F9

ME-SMA -10. 536
 

28 -10. 534
 

69 0. 022
 

3
SMA -10. 536

 

34 -5. 665
 

9 2. 583
 

7
GSA -10. 536

 

35 -10. 534
 

77 0. 002
 

1
BOA -9. 729

 

97 -5. 354
 

17 1. 175
 

8
SOA -10. 536

 

32 -8. 750
 

9 2. 777
 

5
WOA -8. 339

 

53 -3. 695
 

96 1. 670
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名的雷达图。 从图 7 可以看出,代表 ME-SMA 算法性能

的区域面积最小,而 BOA 算法的区域面积最大。 这直观

地表明,融合了 3 种优化策略的 ME-SMA 算法在综合性

能上相比其他对比算法有显著提升,进一步凸显了其优

越性。

4　 全局路径规划实验结果及分析

4. 1　 实验设置

　 　 1)栅格地图建模

路径规划区域从可视化地图中进行提取。 对地图进

行处理时,为了从原始彩色图划分出可通行区域与障碍

物区域,首先将地图进行灰度化处理,通过式(15) 将彩

色图 MC[(R,G,B) (x,y) ] 转换为灰度图 Mg[g(x,y) ] 。
g(x,y) = (ω1,ω2,ω3)·(R,G,B) (x,y) (15)

式中:R、G、B 分别表示红、绿、蓝 3 种颜色通道的值; ω是

通过加权平均法初始化地图灰度的颜色权重。
得到灰度化地图后,通过式(16)将灰度图二值化。

g′(x,y)=
0, g(x,y) < θ

255, g(x,y) ≥ θ{ (16)

式中: θ 是事先设定的阈值。
将经过灰度化和二值化的地图保存至二维矩阵中,

用数字“0”表示障碍物区域,数字“1”表示可通航区域,
便可将原始地图转换为仅包含可通行区域(白色)和障

碍物区域(黑色)的栅格地图。 10×10 的二值化地图矩阵

和其对应的栅格地图如图 8 所示。

图 8　 二维栅格地图

Fig. 8　 Grid
 

map
 

of
 

2D
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2)行走方式

SMA 初期寻找路径的过程中随机性较大,使得算法

初期的搜索速度降低。 因此,为解决算法初期收敛速度

慢和具有盲目性的问题,采取八叉树方法,与引导函数和

轮盘赌策略相结合以生成部分初始化种群,生成部分次

优解。 八叉树行走方式如图 9 所示。

图 9　 八叉树行走方式

Fig. 9　 Octree
 

walking
 

style

算法可以选择 8 个行走方向,因其存在斜行方式,所
以相较于只有 4 个方向的四叉树行走方式,该方法形成

的路径更短,所以选用八叉树的行走方式。 从初始栅格

出发,按八叉树原则,选取与栅格相邻的自由栅格作为待

选路径栅格, 然后计算引导函数的值, 引导函数如

式(17)所示。

F(x i,y i) = 1

(x i - xe)
2 + (y i - ye)

2
(17)

式中:(x i,y i)为自由栅格;( xe,ye) 为目标栅格。 将自由

栅格的引导因子计算后,使用赌盘策略选择下一个栅格。
在一条路径中,当栅格被选定后,标记该栅格,在后续路

径规划中不会被再次选择,以避免产生循环路径。
为了保证初始种群的多样性,使用八叉树策略生成

的个体数量占最大种群数量的 10%,剩下个体生成使用

混沌映射方案。
3)平滑处理

最终迭代生成的路径由一定数量的路径点组成,其
中有一些路径点是冗余的,甚至是不必要的,这些路径点

的存在会增加路径长度和转向次数。 因此,采用相应的

删除策略将这些路径点删除。 该操作在缩短路径长度的

同时,还减少了船舶转向点,提高了路径的可行性。
删除策略的具体操作如下:若相邻的几个路径点在

同一条直线上,则删除这几个点构成的线段的除端点之

外的路径点,如图 10 所示,节点 2、3、4 在同一直线上,则
删除节点 3;若路径附近没有障碍物,路径却出现了转

折,删除转向点后,其相邻的两个路径点相连所得到的新

的路径是可行的,则删除此转向点,图 10 中,删除节点 4

后得到的新的路径是可行的,则删除节点 4。

图 10　 删除策略

Fig. 10　 Delete
 

policy

为了使最终所规划的路径更具有实用性,对应用删

除算子之后的路径进行平滑处理,避免路径中出现尖角

转弯,最终得到一条较为平滑的规划路径。 本文中使用

三次样条插值进行平滑曲线拟合,其原理如下:假设有 n
个点 {(x i,y i),i = 1,2,…,n},x1 < x2 <… < xn,求 S(x)
使得 S(x) 有连续二阶导数并且 S(x) 通过 n 个点,即求

S(x) 使其满足式(18)的函数就是三次样条函数。
S(x i) = y i,i = 1,2,…,n

min
S ∫ | S″(x) | 2dx{ (18)

三次样条插值使得每个分割区间 [x i,x i +1] 内,
S(x) 都由一个三次多项式来表示,最终得到一条平滑的

曲线且每个点都被某段插值函数穿过。 原始曲线与平滑

后的曲线对比示意图如图 11 所示。

图 11　 三次样条平滑曲线示意图

Fig. 11　 Schematic
 

diagram
 

of
 

cubic
 

spline
 

smooth
 

curve

4. 2　 实验结果及分析

　 　 1)栅格环境路径规划实验

为了进一步验证改进算法的有效性,本文分别设置

了 50×50 的简单栅格环境、100×100 的复杂栅格环境和

一幅某海域地图进行对比试验,将路径平滑后的 ME-
SMA

 

与未进行路径平滑的 ME-SMA、GSA、GA 进行对比

分析,测试几种算法在不同地图中的表现。 3 种算法以

及含有平滑处理的 ME-SMA 在地图中规划出的轨迹路线

如图 12、13 所示。 由于在实验地图中,几种算法所规划

的路径有部分重叠,实验结果以及数据处理后结果如表
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4~ 7 所示。 表 4、6 为实验中的路径数据以验证实验结果

的正确性,其中加粗项分别为图 12、13 中各算法对应的

路径数据。

图 12　 50×50 环境下的全局路径规划结果

Fig. 12　 Path
 

planning
 

results
 

in
 

a
 

50×50
 

environment

图 13　 100×100 环境下的全局路径规划结果

Fig. 13　 Path
 

planning
 

results
 

in
 

a
 

100×100
 

environment

将每种算法在 3 张地图中分别进行 10 次独立求解,
然后计算各算法的最优值、平均值和标准差对有效性进

行判别。 表 5、7 分别是表 4、6 中的实验数据处理后得到

的结果,各地图中数据处理后的最优结果已在表中加粗

展示。
在简单地图场景下,由图 12 和表 4、5 可知,ME-SMA

得到的规划路径长度均低于另外两种算法的规划结果,
ME-SMA 规划路径长度平均值与 GA 相比减少 1. 7%,与
GSA 相比减少 3. 2%,稳定性与 GA 相比提高了 30. 6%,
与 GSA 相比提高了 51. 7%。 这一结果表明,ME-SMA 在

简单环境中不仅能快速收敛到更优路径,且算法稳定性

更优。 相比之下,平滑后的 ME-SMA 虽然路径长度均值

和标准差波动幅度有所增加,但经过删除操作和平滑操

作后产生了路径长度的最优值,反映出平滑策略的有

效性。

表 4　 50×50 环境下算法性能对比

Table
 

4　 Algorithm
 

performance
 

in
 

50
 

×
 

50
 

environment
实验次数 平滑后 ME-SMA 未处理 ME-SMA GA GSA

1 73. 201 71. 885 72. 267 73. 332
2 70. 412 70. 701 71. 939 72. 534
3 71. 989 71. 987 72. 765 74. 154
4 73. 851 71. 661 73. 381 76. 630
5 71. 989 71. 987 73. 872 73. 873
6 71. 104 70. 790 71. 357 73. 313
7 72. 268 71. 794 72. 259 72. 786
8 72. 833 72. 187 73. 444 74. 174
9 72. 065 71. 225 72. 998 73. 917

10 71. 919 70. 965 73. 336 74. 366

表 5　 50×50 环境下仿真结果分析

Table
 

5　 Analysis
 

of
 

simulation
 

results
in

 

50×50
 

environment
算法 最优值 平均值 标准差

平滑后 ME-SMA 70. 412 72. 163
 

1 0. 983
 

412
未处理 ME-SMA 70. 701 71. 518

 

2 0. 548
 

526
GA 71. 357 72. 761

 

8 0. 789
 

863
GSA 72. 534 73. 907

 

9 1. 134
 

518

　 　 在复杂地图场景中,由图 13 和表 6、7 可知,ME-SMA
得到的规划路径长度均低于另外两种算法的规划结果,
ME-SMA 规划路径长度平均值与 GA 相比有些许增加,
与 GSA 相比减少了 4. 6%,稳定性与 GA 相比提高了

62. 3%,与 GSA 相比提高了 2. 7%。 虽然 ME-SMA 的规

划路径长度均值劣于 GA,但其标准差低至 5. 419
 

668,成
为标准差最优算法。 这表明该算法在复杂拓扑中虽然路

径质量有所下降,但仍然可以保持较好的稳定性。 GA 算

法在复杂场景中表现异常突出, 平均路径长度达到

174. 428
 

1,标准差为 17. 651
 

4,其最优值 150. 603 甚至优

于平滑后 ME-SMA 的 174. 804。 通过对最短路径的研

究,发现这一反常现象是规划路线与障碍物的距离过近

造成的,不利于船舶安全航行,同时这也暴露出 GA 收敛

过程的不稳定性。 GSA 在复杂场景中表现最弱,表明其

在复杂约束下易陷入局部最优,且算法收敛精度不足。
表 6　 100×100 环境下算法性能对比

Table
 

6　 Algorithm
 

Performance
 

in
 

100
 

×
 

100
 

environment
实验次数 平滑后 ME-SMA 未处理 ME-SMA GA GSA

1 174. 804 170. 841 150. 603 185. 335
2 186. 645 180. 569 190. 828 179. 512
3 193. 428 182. 224 181. 242 180. 562
4 175. 500 171. 919 151. 967 195. 239
5 176. 575 173. 758 183. 966 181. 464
6 189. 986 178. 401 155. 978 183. 925
7 175. 996 172. 528 191. 609 187. 997
8 187. 406 182. 466 159. 854 194. 350
9 193. 284 186. 162 193. 920 188. 164

10 177. 292 173. 166 184. 314 181. 677
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表 7　 100×100 环境下仿真结果分析

Table
 

7　 Simulation
 

results
 

in
 

100
 

×
 

100
 

environment
算法 最优值 平均值 标准差

平滑后 ME-SMA 174. 804 183. 091
 

6 7. 762
 

197
未处理 ME-SMA 170. 841 177. 203

 

4 5. 419
 

668
GA 150. 603 174. 428

 

1 17. 651
 

42
GSA 179. 512 185. 822

 

5 5. 568
 

911

　 　 由实验结果可以看出,简单环境中,ME-SMA 求解规

划问题时有良好的优越性和稳定性,经平滑处理后的结

果稳定性有所下降。 复杂环境中,ME-SMA 不仅成功规

避了障碍物,而且选择了最优路线以更小的代价到达目

的点,且有着不错的鲁棒性。
2)海上全局路径规划仿真试验

海上全局路径规划仿真试验实验路径规划效果图如

图 14 所示。 该仿真试验数据如表 8 和 9 所示。 各算法

性能差异进一步放大。 3 项指标均是 ME-SMA 占优。
ME-SMA 规划路径长度平均值与 GA 相比减少 1. 08%,
与 GSA 相比减少 1. 8%, 稳定性与 GA 相比提高了

4. 69%,与 GSA 相比提高了 17. 33%。 平滑后 ME-SMA
以 900. 051

 

1 的平均值和 13. 079
 

0 的标准差成为海上全

局路径规划仿真试验中的最优选择,其路径长度均值较

未处理 ME-SMA 的 918. 619
 

9 缩短了 2. 02%,凸显了平

滑策略在海上全局路径规划中的有效性。 GA 在该场景

中表现疲软,其标准差 20. 827
 

36 虽接近 ME-SMA,但平

均路径长度达 928. 658,劣于 ME-SMA。 GSA 算法在该场

景中表现最差, 平均路径长度为 936. 133
 

6, 标准差

24. 011
 

4,表明该算法在该试验环境中收敛精度不足,且
算法抗干扰能力较弱。

图 14　 海上全局路径规划仿真路径示意图

Fig. 14　 Global
 

path
 

planning
 

results
 

in
 

test
 

environment

从以试验结果可以看出,在海上全局路径规划仿真

中,ME-SMA 的稳定性有更显著的表现。 3 个测试环境

中,平滑操作或许会使路径长度有些许增大,但对比其他

两种算法,仍有明显的优势。

表 8　 海上全局路径规划仿真各算法性能对比

Table
 

8　 Algorithm
 

performance
 

in
 

test
 

environment

实验次数 平滑后 ME-SMA 未处理 ME-SMA GA GSA
1 901. 696 933. 856 926. 881 985. 803
2 922. 588 952. 924 951. 366 930. 116
3 889. 829 902. 434 970. 913 911. 42
4 922. 606 945. 229 922. 773 958. 108
5 899. 8 922. 718 909. 94 927. 871
6 896. 618 911. 56 921. 511 922. 857
7 888. 747 900. 475 905. 539 939. 279
8 887. 381 898. 385 910. 558 914. 143
9 889. 445 899. 587 922. 287 915. 207

10 901. 801 919. 031 944. 812 956. 532

表 9　 海上全局路径规划仿真结果

Table
 

9　 Analysis
 

of
 

simulation
 

results
 

in
 

test
 

environment

算法 最优值 平均值 标准差

平滑后 ME-SMA 887. 381 900. 051
 

1 13. 079
 

02
未处理 ME-SMA 898. 385 918. 619

 

9 19. 851
 

34
GA 905. 539 928. 658 20. 827

 

36
GSA 911. 42 936. 133

 

6 24. 011
 

42

　 　 平滑后 ME-SMA 通过引入路径平滑策略,在保留原

始 ME-SMA 全局搜索能力的同时,有效抑制了路径振荡

现象,使其在各类场景中均能保持较高的路径质量。 未

处理 ME-SMA 缺乏平滑机制,导致路径曲折度增加。 GA
凭借其种群多样性优势,在复杂场景中可通过交叉变异

跳出局部最优,但标准差的剧烈波动暴露出其收敛过程

的不稳定性。 GSA 在复杂路径空间中易陷入早熟收敛,
导致在海上全局路径规划仿真中性能显著下降。

综上,平滑后 ME-SMA 凭借其均衡的全局搜索能力

与路径平滑策略,在试验中表现出最优的综合性能,充分

体现了 ME-SMA 用于全局路径规划的可行性和合理性。

5　 结　 论

　 　 为提升 SMA 在路径规划中的性能,本文提出了一种

ME-SMA 算法。 通过改进 Logistic 混沌映射优化种群初

始化,结合遗传算法的交叉、变异及选择操作增强全局搜

索能力,并引入黄金正弦策略避免早熟收敛。 实验结果

表明,ME-SMA 在测试函数优化及复杂路径规划任务中

展现出更优的收敛精度、鲁棒性和计算效率。
首先利用改进 Logistic 混沌映射对黏菌种群进行初

始化,其遍历性特点有效避免了传统随机初始化导致的

种群分布不均问题。 混沌初始化策略使初始种群分布均

匀性提升,较随机初始化更为分散,为后续全局寻优奠定

了基础,降低了算法陷入局部最优的风险。 其次在算法

迭代过程中,引入遗传算法的交叉、变异与选择机制,通



　 第 9 期 基于改进黏菌算法的无人船全局路径规划 ·123　　 ·

过精英个体引导种群向高适应度区域收敛,加快算法的

收敛速度。 然后将黄金正弦策略融入黏菌位置更新过

程,利用正弦函数的非线性搜索特性动态调整搜索方向,
结合黄金分割系数缩小搜索空间,平衡算法的全局探索

与局部开发能力。 在路径规划实验中,ME-SMA 在测试

地图中规划的路径综合效果更好,平滑处理后路径连续

性更优。 此外,八叉树引导策略与轮盘赌选择的结合进

一步提升了初始种群的多样性,使算法在复杂障碍环境

中仍能保持高效寻优能力。
尽管 ME-SMA 在基准函数测试和 USV 全局路径规

划任务中表现出了优异的性能,但仍存在一些不足之处,
比如有动态目标环境下全局路径规划、自然条件(风、浪、
流等)对路径规划的影响等考虑不足等,未来的工作还需

要结合 USV 动态避碰和海上实船试验进一步完善和探

索结合全局和局部路径的规划,并结合实船试验验证复

杂海况下本本文提出的全局路径规划的实际效能。
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