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Enhanced Slime Mould Algorithm-based global path planning for
unmanned surface vehicles

Liu Jinke Liang Zuopeng Pu Zesen Yang Yi Zhou Shibo

(Navigation College, Jimei University, Xiamen 361021, China)

Abstract: High-quality global path planning is one of the key technologies enabling autonomous navigation of unmanned surface vehicles
(USVs). To address the global path planning problem for USVs in complex obstacle environments, this paper proposes a global path
planning method based on the multi-strategy enhanced slime mould algorithm ( ME-SMA). To overcome SMA’ s limitations such as
uneven initial population distribution, slow convergence speed, and proneness to local optima, ME-SMA employs several enhancements ;
it optimizes population initialization using improved Logistic chaotic mapping to enhance global exploration; incorporates crossover,
mutation, and selection strategies from genetic algorithms to improve local exploitation efficiency; and introduces the golden sine strategy
to dynamically adjust the search direction, thereby avoiding premature convergence. To validate the effectiveness of ME-SMA , we tested
it on nine types of benchmark functions. The results show that ME-SMA achieves superior convergence accuracy and stability compared
to the original SMA and other comparative algorithms. Simulation experiments in identical complex obstacle environments further
demonstrate that ME-SMA significantly improves convergence speed, task completion time, and navigation distance. Compared to the
other experimental algorithms, ME-SMA achieves an average reduction of 1. 8% in path length and an average improvement of 28. 22%
in stability, highlighting its high efficiency and practical engineering value for USV global path planning applications.
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Fig.3 The influence of population size and

iteration times on results
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Fig. 11 Schematic diagram of cubic spline smooth curve
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Fig. 13 Path planning results in a 100x100 environment
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GSA M/ 3. 2%, Fa e S GA M LLE & T 30. 6%,
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Table 4 Algorithm performance in 50 x 50 environment

SRR FW S ME-SMA R Ab3E ME-SMA GA GSA
1 73.201 71. 885 72.267  73.332
2 70. 412 70. 701 71.939  72.534
3 71. 989 71.987 72.765  74.154
4 73. 851 71. 661 73.381  76.630
5 71.989 71.987 73.872  73.873
6 71. 104 70. 790 71.357  73.313
7 72.268 71.794 72.259  72.786
8 72. 833 72. 187 73.444  74.174
9 72. 065 71.225 72.998  73.917
10 71.919 70. 965 73.336  74.366

R5 50x50 RETHELERSH
Table 5 Analysis of simulation results

in 50x50 environment

Ak el THE hrifE2E
-3 J5 ME-SMA 70. 412 72.163 1 0.983 412
ARALFE ME-SMA 70. 701 71.518 2 0. 548 526

GA 71.357 72.761 8 0. 789 863

GSA 72.534 73.907 9 1.134 518

T Z B 75 18 13 F15E 6.7 Al %00, ME-SMA
53 AR B8 A K BE AR T D3 A0 I R Rk ) R 25 2R
ME-SMA #LRI % A2K BE Y 5 GA A e AT 2L VF 38
5 GSA ML > T 4.6%, Fa e kS GA M Ldm T
62.3%,5 GSA ML & T 2. 7%, SRk ME-SMA A9 HL
RIB AR KEHIESE T CA (A HAREZEEE 5. 419 668, 1
FbRfEZE R . X R AIETE e F b AR I
A BRI (EAT R AT DU hr ka2 . GA B
RER Y s R 55 R, YA KL 3
174. 428 1 A5ifE2E K 17. 651 4, HAAL(E 150. 603 HZAL
T J5 ME-SMA ) 174. 804, 18 i X} &% 58 B 42 () BF
FT, K BIX — SR B e IR 2R 5 I e 4 1) BB ek
T ), AR T AR L AT, [T X 2 5% 1 GA 1iesk
WA TENME, CSA FEE Z+Y b RN 59, R H
FEG AN G BN Jril e, S SO AN 2

Fz 6 100x100 FRETE LR EREXT b

Table 6 Algorithm Performance in 100 x 100 environment

SEEG YR SE WS ME-SMA - K ALBE ME-SMA GA GSA
1 174. 804 170. 841 150.603  185.335
2 186. 645 180. 569 190.828  179.512
3 193. 428 182.224 181.242  180.562
4 175. 500 171.919 151.967  195.239
5 176. 575 173.758 183.966  181.464
6 189. 986 178. 401 155.978  183.925
7 175. 996 172.528 191.609  187.997
8 187. 406 182. 466 159.854  194.350
9 193.284 186. 162 193.920  188.164
10 177.292 173. 166 184.314  181.677
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Table 7 Simulation results in 100 x 100 environment

(=¥7S A EHIE PRifEZE
V-85 ME-SMA 174. 804 183.091 6 7.762 197
KA ME-SMA 170. 841 177.203 4 5.419 668

GA 150. 603 174.428 1 17. 651 42

GSA 179. 512 185.822'5 5.568 911
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Fig. 14  Global path planning results in test environment
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Table 8 Algorithm performance in test environment

SEEG VR SE U ME-SMA - R ALFE ME-SMA GA GSA
1 901. 696 933. 856 926.881  985.803
2 922. 588 952.924 951.366  930.116
3 889. 829 902. 434 970.913  911.42
4 922. 606 945.229 922.773  958.108
5 899. 8 922.718 909.94  927.871
6 896. 618 911.56 921.511  922.857
7 888. 747 900. 475 905.539  939.279
8 887. 381 898. 385 910.558  914.143
9 889. 445 899. 587 922.287  915.207
10 901. 801 919. 031 944.812  956.532

®9 BLERREMNFEER

Table 9 Analysis of simulation results in test environment

Bk A FHE bRifE 2
Y5 ME-SMA 887. 381 900. 051 1 13. 079 02
KALFH ME-SMA 898. 385 918.619 9 19. 851 34

GA 905. 539 928. 658 20. 827 36

GSA 911.42 936. 133 6 24.011 42
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