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Population optimization combined with robust distance metric for
fair K-means clustering algorithm
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(1. School of Artificial Intelligence (School of Future Technologies), Nanjing University of Information Science & Technology,
Nanjing 210044, China; 2. School of Software, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract: With the widespread application of clustering algorithms in intelligent measurement systems, multi-source sensor data
analysis, and embedded state recognition, ensuring fairness with respect to sensitive attributes while maintaining clustering quality has
become a key challenge that limits their effectiveness in critical measurement tasks. To address this issue, we propose a population
optimization combined with robust distance metric for fair K-means clustering method (PODM-Kmeans). The proposed method balances
clustering quality and fairness by incorporating an enhanced Cuckoo Search algorithm to achieve a trade-off between global and local
search capabilities during the initialization of cluster centers, thereby improving clustering stability. Furthermore, fairness constraints
and cluster size constraints are effectively integrated into the iterative clustering objective function. A flexible weighted Euclidean norm is
adopted as the distance metric to mitigate the negative impact of outliers, contributing to improved fairness. Extensive experiments
conducted on five synthetic and five real-world datasets demonstrate the superior performance of PODM-Kmeans compared to existing
methods. Notably, on the Adult, Bank, Census1990, and CreditCard datasets, PODM-Kmeans achieves a fairness ratio ( FR)
exceeding 0. 95 while maintaining high clustering quality.
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Table 1 Datasets and parameters used in the experiments

peE S P P, MBL ARE
Elliptical (£=2) 4 000 7 700 500 2
DS-577(k=3) 2 100 20 000 5717 2
2d-4c-no0(k=4) 6 500 7 700 1572 2
2d-4c-nol (k=4) 9 000 170 000 1623 2
2d-4c-nod(k=4) 3900 100 000 863 2
Adult(£=10) 8 000 000 80 000 000 32 561 5
Bank (k=6) 56 000 9000 4 000 6
Census1990 (k£=5) 150 000 20 000 3 000 25
CreditCard (k=10) 2 000 000 200 000 30 000 14
Diabetic (£=10) 110 000 14 000 10 000 2
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Fig. 6 Clustering visualization of the proposed algorithm and comparison algorithms on the 2d-4¢-no0 dataset
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Fig.7 Clustering visualization of the proposed algorithm and comparison algorithms on the 2d-4¢-nol dataset
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Table 2 FR values of the proposed algorithm and comparison algorithms on different datasets

Bllade Lloyd FSCUN FSCN FrkKM BFKM PODM-Kmeans
Elliptical (k=2) 0 0.887 8 0.883 5 0.883 5 0.900 5 0.977 5
DS-577(k=3) 0 0 0 0.801 9 0. 804 2 0.844 1
2d-4c-no0(k=4) 0 0 0 0.811 4 0.814 1 0.8228
2d-4c-nol (k=4) 0 0 0 0.801 8 0.8019 0.8927
2d-4c-nod(k=4) 0 0 0 0.738 8 0.756 6 0.870 6
Adult(k=10) 0. 436 2 0 0.559 9 0.905 1 0.918 0 0.979 8
Bank (k=6) 0.292 9 0.336 8 0.530 6 0. 809 0 0.8137 0.870 3
Census1990(k=5) 0.5129 0.696 4 0.741 8 0.915 1 0.916 9 0.954 2
CreditCard (k=10) 0.739 0 0 0.885 1 0. 890 0 0. 890 0 0.954 9
Diabetic(k=10) 0.837 6 0 0.823 9 0.874 4 0.874 4 0. 880 7
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Table 3 AWD values of the proposed algorithm and comparison algorithms on different datasets
PGS Lloyd FSCUN FSCN FrkKM BFKM PODM-Kmeans

Elliptical (k=2) 0.494 0 0.046 0 0.048 0 0.048 0 0.047 2 0.010 0
DS-577(k=3) 0.418 3 0.099 5 0.149 6 0.024 2 0.0319 0.029 3
2d-4c-no0(k=4) 0.3127 0.004 9 0.064 9 0.005 2 0.0103 0.010 1
2d-4c-nol (k=4) 0.270 5 0.001 2 0.070 1 0.001 4 0.012 5 0.0115
2d-4c-nod(k=4) 0.1723 0.075 9 0.079 9 0.007 6 0.013 9 0.014 3
Adult(£=10) 0.057 3 0.042 8 0.059 9 0.008 2 0.007 4 0.002 1
Bank (£=6) 0.069 1 0.0357 0.035 8 0.020 3 0.021 0 0.014 3
Census1990(k=5) 0.067 1 0.051 1 0.047 0 0.014 1 0.014 1 0.012 0
CreditCard (k= 10) 0.036 3 0.003 4 0.018 8 0.017 0 0.019 4 0.003 3
Diabetic(£=10) 0.0357 0.023 5 0.028 5 0.024 2 0.026 0 0.024 5

R4 EFARBBEELAXHEEZSWILEZL DIE

Table 4 DI values of the proposed algorithm and comparison algorithms on different datasets

Kl Lloyd FSCUN FSCN FrkKM BFKM PODM-Kmeans

Elliptical (k=2) 0.064 4 0.041 8 0.071 6 0.071 6 0. 004 0 0.005 8
DS-577(k=3) 0.007 9 0.000 5 0.006 8 0 0 0
2d-4c-no0( k=4) 0.007 6 0.003 2 0. 000 2 0 0 0
2d-4c-nol (k=4) 0.001 7 0.011 2 0.000 1 0 0 0
2d-4c-nod(k=4) 0. 005 7 0. 000 2 0.000 1 0 0 0
Adult(k=10) 0. 000 6 0 0.000 4 0 0 0
Bank (k=6) 0.019 0 0 0.001 8 0.000 1 0 0

Census1990(k=5) 0.050 7 0. 058 0 0.025 8 0.043 3 0. 064 0 0. 093 0
CreditCard (k= 10) 0.009 4 0.027 5 0 0 0 0
Diabetic( k= 10) 0. 040 6 0 0 0 0 0

x5 EFRRHEELARXEESXLE L SSE &

Table 5 SSE values of the proposed algorithm and comparison algorithms on different datasets

Bl Lloyd FSCUN FSCN FrkM BFKM PODM-Kmeans
Elliptical (k=2) 206. 298 2 344.421 6 343.964 0 343.964 0 351.109 0 351.048
DS-577(k=3) 71.013 4 449.029 2 361.429 9 518.153 6 516.065 5 516. 105 4
2d-4c-no0(k=4) 114. 483 4 1.528 3x10° 1.355 8x10° 1.478 9x10° 1.455 5x10° 1.451 2x10°
2d-4c-nol (k=4) 82.3122 1.615 0x10° 1.271 8x10° 1. 583 5x10° 1.539 7x10° 1. 536 2x10°
2d-4c-nod(k=4) 104. 002 3 705.999 1 666.311 7 714.986 6 704.524 2 706.287 5
Adult(k=10) 9.508 3x10° 1.438 0x10* 1.025 1x10* 1.027 7x10* 1. 058 3x10* 1. 066 5x10*
Bank (k=6) 1.231 2x10° 1.785 8x10° 1.254 3x10° 1.369 8x10° 1.329 8x10° 1.331 8x10°
Census1990(k=5) 1.760 4x10° 1.820 7x10° 1.821 9x10° 1. 852 6x10° 1. 852 0x10? 1. 841 4x10°
CreditCard (k=10) 8.199 8x10° 1. 842 0x10* 9.344 1x10° 8.282 7x10° 8.226 7x10° 8.406x10°
Diabetic(k=10) 243.263 4 3.261 6x10° 235.258 3 327.115 8 298.483 8 261. 0071
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