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摘　 要:随着聚类算法在智能测量系统、多源传感数据分析与嵌入式状态识别等场景中的广泛应用,如何在保证聚类质量的同

时兼顾敏感属性的公平性,已成为制约聚类算法在关键测量任务中应用效果的瓶颈问题。 为解决上述问题,提出了一种创新的

种群优化联合鲁棒距离度量的公平性 K-means 聚类算法(PODM-Kmeans)。 该方法在构建过程中,充分考虑到敏感属性的公平

性与聚类质量之间的平衡性,引入改进的布谷鸟搜索算法以实现初始聚类中心选择过程中的全局搜索能力和局部搜索能力的

平衡,有效增强了聚类效果的稳定性。 在此基础上,在聚类迭代目标函数的构建上,该方法有效采用了公平性约束和簇大小约

束机制,并融合了灵活的加权欧氏范数作为距离度量方法,合理抑制了异常值所带来的消极影响,助力了公平性的提升。 通过

在 5 个合成数据集和 5 个真实数据集上进行的大量实验结果表明,PODM-Kmeans 在同类方法中具有较优的性能表现,尤其在

Adult、Bank、Census1990 和 CreditCard
 

4 个数据集上,在维持一定的聚类效果的同时,PODM-Kmeans 的公平性比率( FR)指标均

超过 0. 95。
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Abstract:
 

With
 

the
 

widespread
 

application
 

of
 

clustering
 

algorithms
 

in
 

intelligent
 

measurement
 

systems,
 

multi-source
 

sensor
 

data
 

analysis,
 

and
 

embedded
 

state
 

recognition,
 

ensuring
 

fairness
 

with
 

respect
 

to
 

sensitive
 

attributes
 

while
 

maintaining
 

clustering
 

quality
 

has
 

become
 

a
 

key
 

challenge
 

that
 

limits
 

their
 

effectiveness
 

in
 

critical
 

measurement
 

tasks.
 

To
 

address
 

this
 

issue,
 

we
 

propose
 

a
 

population
 

optimization
 

combined
 

with
 

robust
 

distance
 

metric
 

for
 

fair
 

K-means
 

clustering
 

method
 

(PODM-Kmeans).
 

The
 

proposed
 

method
 

balances
 

clustering
 

quality
 

and
 

fairness
 

by
 

incorporating
 

an
 

enhanced
 

Cuckoo
 

Search
 

algorithm
 

to
 

achieve
 

a
 

trade-off
 

between
 

global
 

and
 

local
 

search
 

capabilities
 

during
 

the
 

initialization
 

of
 

cluster
 

centers,
 

thereby
 

improving
 

clustering
 

stability.
 

Furthermore,
 

fairness
 

constraints
 

and
 

cluster
 

size
 

constraints
 

are
 

effectively
 

integrated
 

into
 

the
 

iterative
 

clustering
 

objective
 

function.
 

A
 

flexible
 

weighted
 

Euclidean
 

norm
 

is
 

adopted
 

as
 

the
 

distance
 

metric
 

to
 

mitigate
 

the
 

negative
 

impact
 

of
 

outliers,
 

contributing
 

to
 

improved
 

fairness.
 

Extensive
 

experiments
 

conducted
 

on
 

five
 

synthetic
 

and
 

five
 

real-world
 

datasets
 

demonstrate
 

the
 

superior
 

performance
 

of
 

PODM-Kmeans
 

compared
 

to
 

existing
 

methods.
 

Notably,
 

on
 

the
 

Adult,
 

Bank,
 

Census1990,
 

and
 

CreditCard
 

datasets,
 

PODM-Kmeans
 

achieves
 

a
 

fairness
 

ratio
 

( FR )
 

exceeding
 

0. 95
 

while
 

maintaining
 

high
 

clustering
 

quality.
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0　 引　 言

　 　 随着机器学习在银行、医疗、招聘、教育和刑事司法

等关键领域的广泛应用,确保其决策公正性和无偏性变

得尤为重要[1] 。 在机器学习中,聚类算法通过分析数据

的内在结构,自动识别数据中的模式或类别,广泛应用于

数据分析、智能测试、识别检测等应用领域[2-4] 。 群体公

平性与平衡性是衡量聚类算法公平性的两个关键维度。
群体公平性要求聚类结果中每个群体的成员分布比例与

该群体在总体中的比例尽可能一致,聚类的平衡性则要

求敏感群体中成员数量与另一个敏感群体中成员数量之

间的最小比例尽可能接近[5] 。 聚类分析的公平性在多个

领域应用中对决策质量和用户体验有着重要影响[6] 。 例

如,在招聘与人才筛选中,聚类分析有助于识别潜在的候

选人,通过引入公平性约束,可减少种族、性别、年龄等敏

感属性对决策结果的干扰,提升算法的社会可信度与可

接受性。 在金融信贷评估中,聚类技术被用于客户分群

与信用风险评估,聚类结果的公平性对于构建公正透明

的评估系统至关重要,尤其在面对结构复杂或历史偏见

数据时更显关键。 随着各类智能测量系统与嵌入式决策

设备在招聘评估、金融风控、医疗监测等领域的广泛部

署,聚类分析作为底层数据处理与特征提取的重要手段,
其算法的稳定性与公平性正成为电子测量与仪器系统亟

需关注的核心问题之一。
K-means 算法因其计算效率高、实现简便而成为最

常用的聚类方法之一。 在实际应用中,K-means 也展现

出良好的适应性[7] 。 韦子辉等[8] 结合 ISODATA 思想改

进了 K-means 算法,有效提高了非视距环境下识别技术

的精确性与稳定性,拓展了该算法在无线通信领域的实

际应用能力。 Lee 等[9] 将其用于标准单元的寄生电容预

测问题,进一步展示了其在工业信息领域的良好适用性。
然而,随着 K-means 被应用于涉及敏感群体的数据分析

任务中,算法在公平性方面的局限性逐渐显现。 传统的

聚类方法往往忽视了群体代表性分布,可能在无意中加

剧原有数据中的偏差,损害特定群体的利益。 为了提升

聚类算法的公平性,近期许多学者提出了很多改进办法。
Suman 等[10] 提出了一种可适用于多种目标函数的通用

公平聚类框架,能够在确保群体代表性约束的同时维持

良好的聚类性能。 Ziko 等[11] 进一步引入变分推理机制,
通过将群体分布偏差建模为正则项,实现了公平性与聚

类质量之间的灵活权衡。 除了群体层面的公平性,Xu
等[12] 在经典的 K-means 算法中加入了群体比例约束,以
保证各簇中各群体的代表性与整体分布相符。 在此基础

上,Yang 等[13] 则关注个体层面的公平性,提出在谱聚类

中引入成本保证机制,以限制相似样本被分配至不同簇

的风险。 然而,在满足某些数据集的公平性和群体平衡

性约束时,这些算法可能需要对群体分布进行过度调整,
从而导致簇被划分得过于细致,进而生成小簇。 针对这

一问题,Pan 等[14] 进一步优化了公平性与聚类效果的融

合,融合了簇大小不均的惩罚项在公平性目标函数中,有
效避免了小簇的生成。 然而,它的聚类效果仍然受限于

初始聚类中心的选择,若初始簇中心选取不当,算法可能

会陷入局部最优解,可能倾向于聚合某些特定的群体或

样本,忽视其他群体的平衡,从而影响聚类公平性。 同

时,文献[15-19]提出了优化初始聚类中心选取以提升聚

类效果的算法,然而,这些方法都并未考虑到聚类过程中

的公平性问题。
综上所述,现有公平性研究虽在公平性建模方面取

得一定进展,但普遍存在初始聚类不稳定、距离度量缺乏

鲁棒性以及优化策略效率不足等问题。 因此,本文提出

了一个种群优化联合鲁棒距离度量的公平性 K-means 聚

类算法(PODM-Kmeans),旨在高效处理包含单一敏感多

值属性的数据集,实现聚类效果与公平性之间的更优

平衡。
PODM-Kmeans 算法采用了一种新颖的种群优化算

法来选取初始聚类中心,其不仅能提升聚类的稳定性,而
且可在全局范围内寻找到最优解,实现对于各类别数据

点平等均衡的对待。 构建了同时兼顾聚类效果与公平性

的目标函数,并引入了加权欧氏范数作为距离度量,能够

保证聚类质量的同时有效提升结果的公平性。 针对离散

型目标函数的求解问题设计了一种迭代算法,该算法能

够快速收敛到最优解,实现计算效率的有效提升并确保

所获取解的准确性。

1　 相关方法

1. 1　 欧氏距离(Euclidean
 

distance)
　 　 欧氏距离是最常见的距离度量之一,用于计算空间

中两点之间的直线距离[20] 。 其计算方法简单、含义直

观,因此被广泛应用于各类聚类算法中。 对于 X = (x1,
x2,…,xn),Y = (y1,y2,…,yn) ,欧氏距离的计算公式为:

d(X,Y) = ∑
n

i = 1
(x i - y i)

2 (1)

欧氏距离假设数据点在特征空间中均匀分布,但在

许多实际应用中,数据往往具有异质性或包含敏感属性,
这使得欧氏距离在计算数据点之间的相似度时可能无法

准确反映不同群体之间的实际差异。
1. 2　 K-means 算法

　 　 K-means 算法基于欧氏距离对样本进行聚类,通过

最小化簇内样本点到簇中心的平方距离和来实现数据的

有效划分。 K-means 算法旨在最小化各个聚类簇内样本
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点到其中心的距离平方和,从而使同一簇内数据相似性

最大,聚类效果最优,其公式如下:

J = ∑
K

k = 1
∑
nk

i = 1
‖x i

(k) - μk‖
2 (2)

式中:J 为是总代价函数;K 是聚类的数量; x i
(k) 是

 

k
 

类

中的第
 

i
 

个数据点; μ i 是
 

k
 

类的聚类中心; nk 是 k 类中的

样本数。
然而,传统的 K-means 算法的效果往往依赖于初始

聚类中心的选择,并未考虑到聚类过程中的公平性问题。
由于初始聚类中心的随机性,算法容易陷入局部最优解,
导致聚类结果的不稳定性。 同时,该算法对数据的分布

和密度变化较为敏感,尤其是在处理具有复杂结构或不

均匀分布的数据时,往往无法得到理想的聚类效果和公

平性。
1. 3　 平衡公平 K 均值聚类算法(balanced

 

fair
 

K-means,
BFKM)

针对传统 K-means 在公平性和簇平衡方面的不

足,Pan 等 [ 14] 提出了 BFKM 算法,在 K-means 框架下

引入了平衡性约束与群体代表性约束,从而在一定程

度上提升了聚类结果对不同敏感群体的公平性与均

衡性。
BFKM 算法通过定义指示矩阵 F = [ f1,f2,…,fn]

T ∈
Rn×m 和 Y = [y1,y2,…,yn]

T ∈ Rn×k 分别表示每个样本所

属敏感属性和所属簇,其公平性约束可以表示为:
YT

:jF:l

FT
:lF:l

=
YT

:j1
n

(3)

YTF
FTF

- YY
n

= 0 (4)

此算法为了避免在进行公平约束聚类过程中出现极

小簇影响聚类效果的现象,应尽可能保证每个簇的大小

一致。 因此,通过引入惩罚项来优化目标函数,其表达

式为:

min
M,Y

(d( i,c) + ρ‖ YTF
FTF

- YY
n

‖ + λtr((YTY) -1))

(5)
相比仅依赖欧氏距离和无约束分配的 K-means 算

法,BFKM 有效缓解了簇大小不均或某些群体被忽视的

问题。 然而,BFKM 仍然存在一些稳定性和公平性方面

的缺点。 在稳定性方面,BFKM 对初始中心较为敏感,可
能导致局部最优解。 在公平性方面,尽管

 

BFKM 引入了

平衡性约束,但由于采用欧氏距离进行迭代,算法可能忽

略数据点之间的特征差异及其内部结构,这可能导致部

分簇的质量下降,并降低了算法的鲁棒性。
综上所述,这 3 种方法在聚类分析中体现了从基础

距离度量到聚类策略设计,再到公平性优化的逐步演化

过程。 欧氏距离作为最基本的相似性度量方法,计算简

便且易于理解,但在处理属性差异较大或涉及敏感信息

的数据时,区分能力相对有限。 在此基础上,K-means 算

法利用欧氏距离对数据进行快速划分,在聚类效率和簇

内紧凑性方面表现较好,然而未对群体代表性加以约束,
可能引发结果对部分群体的偏倚。 进一步地,BFKM 在

K-means 框架之上引入了平衡性与公平性约束,从而在

一定程度上改善了聚类分析中的簇规模及群体分布的合

理性。

2　 算法介绍

2. 1　 算法总体框架

　 　 由于聚类分析在聚类中心初始化的稳定性、距离度

量的适用性以及聚类结果的公平性方面尚存优化空间。
对此,本文提出了 PODM-Kmeans 算法。 其中包括了初始

化聚类中心模块,鲁棒距离度量模块,聚类公平性模块以

及算法求解策略。 其流程结构如图 1 所示。 PODM-
Kmeans 算法在初始化聚类中心阶段引入种群优化算法

进行全局搜索,随后构造加权欧氏距离与公平性和聚类

大小平衡约束相融合的目标函数,最后结合坐标下降法

求解非连续优化问题。
2. 2　 初始化聚类中心

　 　 在初始化聚类中心部分,本文融合了改进的布谷鸟

搜索算法,如图 2 所示,最佳初始聚类中心搜索过程模拟

布谷鸟寄生繁殖的行为。 本文应用其强大的全局搜索能

力初始化聚类中心,旨在克服 K-means 算法中初始化聚

类中心随机性带来的不稳定性问题。
首先,PODM-Kmeans 中布谷鸟通过立方混沌映射选

择 K 个聚类中心作为培养孩子的候选巢。 立方混沌映射

是一种改进型的混沌映射方法,它通过非线性递归方程

生成伪随机数列, 能够提供高度遍历性和不可预测

性[21] 。 相比于传统布谷鸟搜索算法的随机初始化,立方

混沌映射可提供更加均匀和分散的初始解,有助于提升

搜索效率,其数学表达式如下:
rt +1 = ρrt(1 - rt

3) (6)
式中: rt 表示混沌序列的当前值; ρ 为控制参数。

通过多次实验,发现最佳初始候选巢数和数据集大

小成正相关。 因此,为了兼顾时间复杂度和搜索效果,本
文将初始候选巢数 num_nest 设置为:

num_nest =⌊n」 (7)
式中:n 为数据集 X 样本数量。

然后,根据环境是否适宜孩子的成长,布谷鸟选择合

适的巢穴来培育后代。 为了有效评估不同初始聚类中心

的质量,本文采用了平方误差和( sum
 

of
 

squared
 

errors,
SSE)作为巢穴的适应度。 SSE 是一种简单且计算高效的
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图 1　 算法的流程

Fig. 1　 Flowchart
 

of
 

the
 

proposed
 

algorithm

图 2　 布谷鸟搜索巢示意图

Fig. 2　 Illustration
 

of
 

nest
 

search
 

in
 

cuckoo
 

search
 

algorithm

评估指标[22] 。 在每次搜索中,布谷鸟通过最小化 SSE
值,能够在全局范围内选出最优的聚类中心。

SSE = ∑
k

i = 1
∑
xj∈Ci

‖x j - μ i‖
2 (8)

式中: x j 为在第 i 个簇里的样本点; μ i 为第 i 个簇的聚类

中心; C i 为第 i 个簇。
接着,在每一次迭代中引入随机立方混沌映射生成

巢穴和 Levy 飞行来模拟布谷鸟飞行寻找和丢弃巢穴。
Levy 飞行是一种随机游走,它是由许多小的移动和少量

大的移动组成[23] 。 在飞行过程中,布谷鸟每次迭代每个

巢以小于 PA 的概率进行 Levy 随机搜索新的巢以增加多

样性。 通过这种方式,布谷鸟能够自适应探索更广阔的

搜索空间,避免陷入局部最优解。 此外,Levy 飞行的特性

使得布谷鸟能够在较少的迭代中实现较大范围的搜索,
有效加速聚类中心的优化过程。 其中 Levy 飞行的过

程为:
Cnew = Cold + L(β) (9)

L(β) = u
| v | 1 / β (10)

δ = ( Γ(1 + β)sin(πβ / 2)
Γ((1 + β) / 2)·β·2(β -1) / 2 ) 1 / β (11)

式中: u ~ N(0,δ 2);v ~ N (0,1); β 是 Levy 分布参数。
传统布谷鸟算法中的 Levy 分布参数 β 是固定值,不

能动态的调整布谷鸟飞行的步长, β 过大,在算法前期全

局搜索能力增强,而到算法后期局部搜索能力较弱,算法

的寻优精度不高。 β 偏小,算法全局搜索能力弱,局部搜

索能力强,算法很容易陷入局部最优解。 因此,为了平衡

全局搜索力和局部搜素力进而提升搜索性能,本文引入

一个自适应步长公式对 Levy 分布参数 β 进行动态调整:
β( t) = m × βmax exp(c) (12)

c = ln(
βmin

βmax
) × t

max_iter
(13)

式中:t 表示当前迭代次数; max_iter 表示最大迭代次数;
βmin 和 βmax 表示 Levy 分布参数 β 的下界和上界;m 代表
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动态调整的全局参数。 分析式(12)和(13)可知 Levy 分

布参数 β 随迭代次数的增加而减小,从而进一步动态调

整 Levy 飞行距离,提高了算法搜索效果和效率。
PA 表示布谷鸟发现新巢的概率。 在传统布谷鸟算

法中,PA 是一个固定值。 如果 PA 的选取过大,会导致

抛弃最优解的概率变大,从而很难收敛到一个最优解。
如果 PA 选取过小,会导致对于一个较差解收敛过慢,从
而算法会陷入局部最优解的漩涡中。 基于以上问题,本
文提出一个动态调整的 PA,具体公式如下:

PA( t) = m × 2PA

1 + exp(T × t
max_iter

)
(14)

式中:T 为下降参数。
由式(14)可知,在搜索前期,算法有较大的全局搜

索能力,在搜索后期,算法有较大的局部搜索能力,故而

保证了算法对于最优解的搜索性能。
在式(12)和(14)中,本文使用了动态调整的全局参

数 m。 全局参数 m 是为了避免算法一直在局部不停迭代

并无法达到预期效果而设置的。 其计算公式为:

m =
1, f t

best > f t +1
best

m + 0. 001, 其他{ (15)

首先,初始化 count 为 0。 此后,如果本次迭代的最

佳适应度小于上一次的最佳适应度,表示布谷鸟找到了

一个更优的巢,将动态调整的全局参数 m 重置为 1,以便

继续有效探索并避免陷入局部最优。 如果未能找到更好

的解,则会对 m 进行相应的上调。 若算法经过多次精确

搜索仍未找到更优解,则 m 会持续增加。 然而,若此时 m
值已超过 2,算法会进行进一步的判断。 如果当前的迭

代次数小于总迭代次数的一半,且 count = 0,则将当前的

最佳适应度值保存,并将 count 设为 1,同时重置所有解并

进行新一轮的迭代。 如果迭代次数超过总次数的 1 / 2,则
会继续增加 m,并动态调整 Levy 分布参数 β 和布谷鸟发

现新巢的概率 PA,直到发现更优的适应度值。
最后,重复以上步骤进行迭代,直至达到收敛条件。

改进后的种群优化算法会输出一个初始聚类中心集合,
这些聚类中心将作为公平性 K-means 算法的初始聚类中

心。 通过这种方式,改进后的种群优化搜索能够有效避

免 K-means 算法中由于随机初始化聚类中心而带来的不

稳定性,提升聚类结果的质量和公平性。
2. 3　 鲁棒距离度量

　 　 传统的欧氏距离难以应对数据中的异质性和敏感属

性差异,尤其在特征尺度、类别或属性差异显著时,可能

无法准确刻画数据点间的实际相似性,影响聚类结果的

公平性与准确性。 为此,本文在聚类过程中引入加权欧

氏度量,根据各特征的标准差 σm 赋予特征不同的重要

性,有效提升聚类算法在面对多样化和异质性数据时的

表现。 其中加权欧氏度量 D ij 的计算方法为:

σ
m

= 1
n ∑

n

i = 1
(X im - μm) 2 (16)

wm = 1 / σ
m

(17)

D ij = ∑
M

m = 1
wm(X im - C jm) 2 (18)

式中: X im 是第 i 个样本的第 m 个特征值; μm 表示第 m
个特征所有样本的均值; C jm 是第 j 个聚类中心的第 m 个

特征。
2. 4　 聚类公平性

　 　 在传统聚类算法中,目标通常是将数据点根据相似

性划分到不同的簇中。 然而,这些算法往往忽视了簇的

大小和公平性问题,即每个簇的规模可能存在较大差异,
或者簇的划分可能对某些敏感群体不公平。 为了克服这

些问题,本文在聚类过程中引入了公平性和簇大小平衡

的正则项约束,旨在确保聚类结果既具有合理的均衡性,
又符合不同群体的公平性要求。 本文更新聚类过程中的

目标代价函数为:

min
Y,M

(D ic + p1‖ YTF
FTF

- YY
n

‖ + p2 tr((YTY) -1))

(19)
2. 5　 算法求解

　 　 本文构建的目标函数属于非连续组优化问题,难以

直接通过求导等方式解决。 故采用坐标下降策略,在每

轮迭代中交替更新聚类中心与样本分配矩阵,逐步逼近

最优解。 其核心思想是,固定一个变量,优化另一个变

量,交替进行,直到收敛。 因此,本文将迭代分为两个阶

段进行。 首先,固定 Y,更新中心 M。 此时目标函数可以

简化为关于 M 的最小二乘问题:
min

M
‖X - MYT‖2

F (20)
得到闭式解 M 的推导如下:
‖X - MYT‖2

F = tr((X - MYT)(X - MYT) T)
(21)

∂
∂M

‖X - MYT‖2
F = 2(MYTY - XY) = 0 (22)

M = XY(YTY) -1 (23)
此后,固定 M,更新标签 Y。 由于标签矩阵 Y 是离散

矩阵,不能使用常规的梯度办法。 本文采用逐样本更新

的策略,即对每个样本 x i 独立进行如下优化:
y i = arg min

j = 1,…,k
local(x i,j) (24)

考虑到式(19)的构造,其局部函数能够定义为:
local(x i,j) = 1(x i,j) + 2(x i,j) + 3(x i,j) (25)
2(x i,j) =

p1

(Y( i→j) ) TF
FTF

- Y( i→j)Y( i→j)

n
- YTF
FTF

- YY
n( ) (26)
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3(x i,j) = p2 tr((Y( i→j) ) TY( i→j) ) -1 - tr((YTY) -1)( )

(27)
在每次迭代过程中,目标函数值均呈现单调递减趋

势且存在非负下界,故整个优化过程能够快速收敛到

最优解。 收敛曲线如图 3 和 4 所示,可以看出所提算法

在小规模数据集 2d-4c-no0 与大规模数据集 adult 上均

具有良好的收敛特性,有效验证了其在实际应用中的

可行性。

图 3　 在 2d-4c-no0 数据集上目标函数收敛

Fig. 3　 Convergence
 

plot
 

of
 

the
 

objective
 

function
on

 

the
 

2d-4c-no0
 

dataset

图 4　 在 adult 数据集上目标函数收敛

Fig. 4　 Convergence
 

plot
 

of
 

the
 

objective
 

function
 

on
the

 

adult
 

dataset

2. 6　 时间复杂度分析

　 　 本文提出的 PODM-Kmeans 算法主要包括初始聚类

中心优化、加权欧氏距离计算、公平性约束构建以及坐标

下降优化求解过程。 设数据集样本数量为 n ,特征维数

为 d ,聚类数量为 K 。 算法初始阶段利用改进的布谷鸟

搜索算法确定聚类中心,复杂度为 O(TNKd) ,其中 N 为

初始巢穴数, T 为最大迭代次数;在随后的聚类过程中,

引入加权欧氏距离和公平性约束,通过坐标下降法迭代

优化,每轮更新复杂度均为 O(nKd) ,设迭代次数为 L ,
整体复杂度为 O(LnKd) 。 综合来看,算法总的时间复杂

度为 O(TNKd + LnKd) 。 由于实际应用中一般满足 T ≪
Lι

 算法的主导复杂度可近似为 O(LnKd) 。 与传统 K-
means 的复杂度 O(nKd) 相比,PODM-Kmeans 仅在常数

因子上有所增加,仍具有良好的计算效率和可扩展性。

3　 实验

3. 1　 数据和实验背景

　 　 如表 1 所示,实验为了更好的评估算法的性能和公

平性,采用了公平性聚类研究常用的 5 个合成数据集和 5
个真实世界数据集进行测试与验证。 其中,5 个合成数

据集包括
 

Elliptical、DS-577、2d-4c-no0、2d-4c-nol
 

和 2d-
4c-no4,这些数据集广泛应用于聚类算法的研究,具有一

定代 表 性。 5 个 真 实 数 据 集 包 括 Adult、 Bank、
Census1990、CreditCard 和 Diabetic,它们来自于 UCI

 

机器

学习库。 这些真实世界数据集涵盖广泛的领域,具有多

样化的特征维度和群体结构,反映出不同的数据分布特

性。 实验惩罚项 P1 和 P2 的设定基于数据集的实际分布

特性,通过多次实验的超参数优化和模型验证过程得出,
其具体数值参考表 1 所示。 由于本文在聚类过程中引入

了公平性考虑,如图 5 所示,本文在聚类可视化时采用颜

色区分不同的聚类类别,并用形状标识不同的敏感属性,
以更好地可视化公平性与聚类效果。

表 1　 数据集及参数

Table
 

1　 Datasets
 

and
 

parameters
 

used
 

in
 

the
 

experiments

数据集 P1 P2 规模 特征

Elliptical(k= 2) 4
 

000 7
 

700 500 2
DS-577(k= 3) 2

 

100 20
 

000 577 2
2d-4c-no0(k= 4) 6

 

500 7
 

700 1
 

572 2
2d-4c-no1(k= 4) 9

 

000 170
 

000 1
 

623 2
2d-4c-no4(k= 4) 3

 

900 100
 

000 863 2
Adult(k= 10) 8

 

000
 

000 80
 

000
 

000 32
 

561 5
Bank(k= 6) 56

 

000 9000 4
 

000 6
Census1990

 

(k= 5) 150
 

000 20
 

000 3
 

000 25
CreditCard

 

(k= 10) 2
 

000
 

000 200
 

000 30
 

000 14
Diabetic(k= 10) 110

 

000 14
 

000 10
 

000 2

　 　 本文实验 PODM-Kmeans 代码在 MATLAB 中实现。
对每个数据集,本实验采用了归一化处理,包括行归一化

和列归一化。 本文采用的对比方法包括传统的 K-means
 

聚类算法( Lloyd’ s
 

K-means,Lloyd)、公平的非归一化谱

聚类算法( fair
 

unnormalized
 

spectral
 

clustering,FSCUN)、
公平 的 归 一 化 谱 聚 类 算 法 ( fair

 

normalized
 

spectral
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图 5　 在合成数据集上 PODM-Kmeans 聚类可视化

Fig. 5　 Clustering
 

visualization
 

of
 

PODM-Kmeans
 

on
 

the
 

synthetic
 

dataset

clustering,FSCN)、公平 K 均值聚类算法( fair
 

K-means,
FrKM)和 BFKM 算法。 为了实验对比的公正性,实验对

比方法参数的设定参考了文献[14]。
3. 2　 评估标准

 

　 　 为了兼顾聚类效果和公平性的评估,本文采用了公

平性聚类中常用的 4 种指标,实验的评估指标包括以下 4
个方面。

1)公平性比率(fairness
 

ratio,
 

FR)最早是在 2017 年

被提出,而后在研究算法公平性中被广泛应用[14,24] 。 该

指标评估各个簇中不同群体的比例是否与其在整体数据

集中的比例一致。

FR( j) = min
1≤l≤m

r( j,l)
r( l)

, r( l)
r( j,l)( ) (28)

FR( ) =min
j∈

FR j( ) (29)

2)平均瓦瑟斯坦距离( average
 

wasserstein
 

distance,
 

AWD) [25] 是用于评估不同敏感属性群体在各个簇中的分

布偏差,通过计算概率向量之间的瓦瑟斯坦距离来量化

不公平性。

AWD =
∑ k

i i × WD(P i,Px)

n
(30)

3)Dunn
 

指数(dunn
 

index,
 

DI)用于评估聚类结果的

紧凑性和可分离性[26] 。 DI 的计算基于簇间最小距离与
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簇内最大直径之比。

DI =
min

1≤i < j≤k
min

x∈Ci,y∈Cj
dist(x,y)( )

max
1≤l≤k

max
x,y∈Cl

dist(x,y)( )
(31)

4)SSE 用于评估数据点相对于其所属簇中心的紧密

程度[21] 。 是一种常用的聚类性能评价指标,用于衡量数

据点与其所属簇中心之间的紧密程度, 具体公式如

式(8)。
3. 3　 对比实验

 

　 　 合成数据集与真实数据集的实验结果如表 2 ~ 5 所

　 　 　 　

示,最优结果已加粗标出。 本文将结合聚类公平性和聚

类效果两方面来分析实验结果。
1)聚类公平性对比

如表 2 所示,PODM-Kmeans 在 FR 上对所有数据集

均表现出一定的优势。 在 4 组高维大规模数据集 Adult、
Bank、Census1990 和 CreditCard 上,PODM-Kmeans 的 FR
指标均超过 0. 95,这表明 PODM-Kmeans

 

在高维数据聚

类任务中能够更好地保持聚类的公平性。 相比之下,方
法 Lloyd、FSCUN 以及 FSCN 在多个数据集上出现

 

FR
 

值

为
 

0,这意味着它们在这些数据集上未能保证敏感属

　 　 　 　 　

图 6　 在 2d-4c-no0 数据集上本文算法与对比算法聚类可视化

Fig. 6　 Clustering
 

visualization
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

the
 

2d-4c-no0
 

dataset
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图 7　 在 2d-4c-no1 数据集上本文算法与对比算法聚类可视化

Fig. 7　 Clustering
 

visualization
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

the
 

2d-4c-no1
 

dataset

表 2　 在不同数据集上本文算法与对比算法 FR 值

Table
 

2　 FR
 

values
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

different
 

datasets
数据集 Lloyd FSCUN FSCN FrKM BFKM PODM-Kmeans

Elliptical(k= 2) 0 0. 887
 

8 0. 883
 

5 0. 883
 

5 0. 900
 

5 0. 977
 

5
DS-577(k= 3) 0 0 0 0. 801

 

9 0. 804
 

2 0. 844
 

1
2d-4c-no0(k= 4) 0 0 0 0. 811

 

4 0. 814
 

1 0. 822
 

8
2d-4c-no1(k= 4) 0 0 0 0. 801

 

8 0. 801
 

9 0. 892
 

7
2d-4c-no4(k= 4) 0 0 0 0. 738

 

8 0. 756
 

6 0. 870
 

6
Adult(k= 10) 0. 436

 

2 0 0. 559
 

9 0. 905
 

1 0. 918
 

0 0. 979
 

8
Bank(k= 6) 0. 292

 

9 0. 336
 

8 0. 530
 

6 0. 809
 

0 0. 813
 

7 0. 870
 

3
Census1990(k= 5) 0. 512

 

9 0. 696
 

4 0. 741
 

8 0. 915
 

1 0. 916
 

9 0. 954
 

2
CreditCard(k= 10) 0. 739

 

0 0 0. 885
 

1 0. 890
 

0 0. 890
 

0 0. 954
 

9
Diabetic(k= 10) 0. 837

 

6 0 0. 823
 

9 0. 874
 

4 0. 874
 

4 0. 880
 

7
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表 3　 在不同数据集上本文算法与对比算法 AWD 值

Table
 

3　 AWD
 

values
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

different
 

datasets
数据集 Lloyd FSCUN FSCN FrKM BFKM PODM-Kmeans

Elliptical(k= 2) 0. 494
 

0 0. 046
 

0 0. 048
 

0 0. 048
 

0 0. 047
 

2 0. 010
 

0
DS-577(k= 3) 0. 418

 

3 0. 099
 

5 0. 149
 

6 0. 024
 

2 0. 031
 

9 0. 029
 

3
2d-4c-no0(k= 4) 0. 312

 

7 0. 004
 

9 0. 064
 

9 0. 005
 

2 0. 010
 

3 0. 010
 

1
2d-4c-no1(k= 4) 0. 270

 

5 0. 001
 

2 0. 070
 

1 0. 001
 

4 0. 012
 

5 0. 011
 

5
2d-4c-no4(k= 4) 0. 172

 

3 0. 075
 

9 0. 079
 

9 0. 007
 

6 0. 013
 

9 0. 014
 

3
Adult(k= 10) 0. 057

 

3 0. 042
 

8 0. 059
 

9 0. 008
 

2 0. 007
 

4 0. 002
 

1
Bank(k= 6) 0. 069

 

1 0. 035
 

7 0. 035
 

8 0. 020
 

3 0. 021
 

0 0. 014
 

3
Census1990(k= 5) 0. 067

 

1 0. 051
 

1 0. 047
 

0 0. 014
 

1 0. 014
 

1 0. 012
 

0
CreditCard(k= 10) 0. 036

 

3 0. 003
 

4 0. 018
 

8 0. 017
 

0 0. 019
 

4 0. 003
 

3
Diabetic(k= 10) 0. 035

 

7 0. 023
 

5 0. 028
 

5 0. 024
 

2 0. 026
 

0 0. 024
 

5

表 4　 在不同数据集上本文算法与对比算法 DI 值
Table

 

4　 DI
 

values
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

different
 

datasets
数据集 Lloyd FSCUN FSCN FrKM BFKM PODM-Kmeans

Elliptical(k= 2) 0. 064
 

4 0. 041
 

8 0. 071
 

6 0. 071
 

6 0. 004
 

0 0. 005
 

8
DS-577(k= 3) 0. 007

 

9 0. 000
 

5 0. 006
 

8 0 0 0
2d-4c-no0(k= 4) 0. 007

 

6 0. 003
 

2 0. 000
 

2 0 0 0
2d-4c-no1(k= 4) 0. 001

 

7 0. 011
 

2 0. 000
 

1 0 0 0
2d-4c-no4(k= 4) 0. 005

 

7 0. 000
 

2 0. 000
 

1 0 0 0
Adult(k= 10) 0. 000

 

6 0 0. 000
 

4 0 0 0
Bank(k= 6) 0. 019

 

0 0 0. 001
 

8 0. 000
 

1 0 0
Census1990(k= 5) 0. 050

 

7 0. 058
 

0 0. 025
 

8 0. 043
 

3 0. 064
 

0 0. 093
 

0
CreditCard(k= 10) 0. 009

 

4 0. 027
 

5 0 0 0 0
Diabetic(k= 10) 0. 040

 

6 0 0 0 0 0

表 5　 在不同数据集上本文算法与对比算法 SSE 值

Table
 

5　 SSE
 

values
 

of
 

the
 

proposed
 

algorithm
 

and
 

comparison
 

algorithms
 

on
 

different
 

datasets
数据集 Lloyd FSCUN FSCN FrKM BFKM PODM-Kmeans

Elliptical(k= 2) 206. 298
 

2 344. 421
 

6 343. 964
 

0 343. 964
 

0 351. 109
 

0 351. 048
DS-577(k= 3) 71. 013

 

4 449. 029
 

2 361. 429
 

9 518. 153
 

6 516. 065
 

5 516. 105
 

4
2d-4c-no0(k= 4) 114. 483

 

4 1. 528
 

3×103 1. 355
 

8×103 1. 478
 

9×103 1. 455
 

5×103 1. 451
 

2×103

2d-4c-no1(k= 4) 82. 312
 

2 1. 615
 

0×103 1. 271
 

8×103 1. 583
 

5×103 1. 539
 

7×103 1. 536
 

2×103

2d-4c-no4(k= 4) 104. 002
 

3 705. 999
 

1 666. 311
 

7 714. 986
 

6 704. 524
 

2 706. 287
 

5
Adult(k= 10) 9. 508

 

3×103 1. 438
 

0×104 1. 025
 

1×104 1. 027
 

7×104 1. 058
 

3×104 1. 066
 

5×104

Bank(k= 6) 1. 231
 

2×103 1. 785
 

8×103 1. 254
 

3×103 1. 369
 

8×103 1. 329
 

8×103 1. 331
 

8×103

Census1990(k= 5) 1. 760
 

4×103 1. 820
 

7×103 1. 821
 

9×103 1. 852
 

6×103 1. 852
 

0×103 1. 841
 

4×103

CreditCard(k= 10) 8. 199
 

8×103 1. 842
 

0×104 9. 344
 

1×103 8. 282
 

7×103 8. 226
 

7×103 8. 406×103

Diabetic(k= 10) 243. 263
 

4 3. 261
 

6×103 235. 258
 

3 327. 115
 

8 298. 483
 

8 261. 0071

性的公平性,导致聚类结果高度偏向特定类别或歧视某

个敏感群体。 分析表 3 可知,PODM-Kmeans 在 AWD 评

估指标上整体优于其他算法,表明该方法能够最大程度

上减少不同群体在各个簇中的分布失衡情况。 尤其是在

Elliptical、Adult、Bank、Census1990 和 CreditCard 这 5 个数

据集上, PODM-Kmeans 都是最小值。 在所有算法中,
PODM-Kmeans 实现最小 AWD 值的次数最多,进一步证

明了其在不同数据分布下的广泛适用性和优越性。
在 FR 和 AWD 指标的评估中,PODM-Kmeans 展现

出了良好的性能。 深入分析,PODM-Kmeans 在聚类公平

性方面的突出表现主要归因于两大核心设计机制。 (1)
在初始聚类中心选取阶段,本文引入了改进的布谷鸟搜

索算法,通过全局搜索与局部搜索的协同平衡,有效提升

了初始聚类中心的质量,从而为后续的聚类过程奠定了

良好的基础;(2)在聚类迭代过程中融合了加权欧氏范

数、公平约束和簇大小平衡约束,增强了模型对数据处理

的鲁棒性。 这使其在面对复杂高维数据时仍能保持稳定

的聚类公平性,减少了对敏感属性的歧视或偏倚,尽量确

保所有群体在聚类过程中得到合理分配。 这些优化共同

提升了 PODM-Kmeans 的适应性和泛化能力,使其在多种
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数据分布下 FR 和 AWD 表现出持续的优势。
2)聚类效果对比

由于公平性强调不同敏感群体间的均衡分布,这必

然与传统聚类效果追求簇内紧密性和簇间区分度的目标

存在一定的冲突,导致在提升公平性的同时,聚类结构的

固有质量难以避免地受到一定程度的牺牲。 结合表 4 可

知,包括 PODM-Kmeans 在内的大多数公平性聚类算法在

簇间分离性指标(DI 值)上普遍偏低,这一现象也验证了

公平性约束对聚类可分性带来的必然影响。 然而,即使

在这种情况下,PODM-Kmeans 在聚类可视化上依然在可

视化簇形状、边界连续性及群体混合程度上均展现了良

好的聚类结构。 本文采用颜色区分不同聚类类别,并以

点的形状标识不同的敏感属性。 如图 6、7 所示,从可视

化结果可以看出,相较于 Lloyd 算法和 FSCN 算法,通过

点的形状(敏感属性)分布可得,PODM-Kmeans 能有效保

证同一簇中包含多种敏感属性样本,且各敏感群体在各

簇中的占比更均衡,这与表 2 的较高 FR 及表 3 的较低

AWD 相一致。 相比之下,Lloyd 和 FSCN 算法的聚类结

果虽然在簇整体形状上较为紧凑,但同一颜色中往往部

分形状占比过高,表明同一簇内敏感属性呈现同质化,无
法满足聚类分析中对于敏感属性公平性和均衡性的要

求。 同时,PODM-Kmeans 在维持整体聚类结构稳定性方

面上优于其他公平性算法,有效避免了类似于 FrKM 方

法出现的极端簇合并和聚类边界难以清晰体现的现象。
此外,相较于 BFKM,PODM-Kmeans 所生成的聚类簇在

二维主成分空间中形态更紧凑自然,边界更加平滑且簇

间过渡连续,未出现簇形状拉伸或边界模糊等问题。
另一方面,从表 5 可以看出,在簇内紧密性方面,

PODM-Kmeans 在 SSE 指标上的表现与其他公平性聚类

算法( FSCUN、FSCN、FrKM、BFKM) 基本相当,仅略高于

传统未考虑公平性约束的
 

Lloyd
 

算法所获得的最小
 

SSE。
需要指出的是,公平性聚类方法的核心目标是在提升簇

内敏感属性分布均衡性的同时,尽量保持聚类结果的紧

密性和稳定性。 因此,SSE
 

值的适度增加是引入公平性

约束所带来的可接受的代价,这也是当前公平聚类研究

中的普遍现象。 结合图 6 和 7 的可视化结果可进一步验

证,PODM-Kmeans 在保证较高公平性的同时,依然能够

维持良好的簇结构可解释性和空间分布连续性,未因公

平性约束而出现簇分布异常或结构失真。 与其他公平性

聚类方法相比,PODM-Kmeans 在实现较高公平性指标的

同时,有效抑制了 SSE
 

的过度增大,显示出一定的聚类质

量保护能力,体现了本文方法在实际场景下公平性与聚

类质量之间的兼顾能力。
进一步分析,这种兼顾能力的取得主要源于 PODM-

Kmeans 机制本身:初始阶段的全局优化策略确保了敏感

属性的分布均衡,减少了后续聚类调整的剧烈程度;同

时,鲁棒的距离度量方式进一步有效抑制了异常数据点

带来的聚类质量损失。 这种设计策略使得 PODM-
Kmeans 能够在提升公平性的同时,更好地保护聚类结构

的稳定性与合理性,展现出比现有公平聚类方法更加良

好的综合性能,尤其适用于对公平性与聚类精度同时具

有严格需求的实际数据分析场景。

4　 结　 论

　 　 本文提出了一种 PODM-Kmeans 方法,合理平衡了聚

类质量与公平性需求。 该方法以公平性为核心驱动,融
合改进的种群优化策略与鲁棒距离度量准则,在提升聚

类质量的同时,有效缓解了聚类过程中的群体偏差问题。
其核心思路在于通过优化聚类初始中心的选取机制,引
入全局与局部协同演化的种群搜索算法,从源头提升聚

类稳定性,并结合加权欧氏范数实现对数据噪声的有效

抑制。 在此基础上,构建了集公平性约束与簇大小平衡

为一体的目标函数,从结构上保障了敏感群体在聚类过

程中的合理分布,体现了算法在公平性建模方面的系统

性与前瞻性。 本研究的关键技术难点在于如何协调优化

策略与公平性约束之间的冲突关系,确保全局搜索效率

与聚类精度不因引入公平机制而受损。 PODM-Kmeans
在多个公开数据集上展现出的稳定性能,充分验证了其

在公平性与聚类质量间达成有效折中的能力,体现出方

法的先进性与实用价值。 未来的研究可进一步聚焦于算

法的计算复杂度控制与簇间分离能力提升,拓展其在嵌

入式测量系统中的部署潜力,并探索其在金融风控、医疗

诊断、推荐系统等对实时性与公平性要求极高的关键场

景中的应用前景,从而推动聚类算法在智能决策中的实

用性边界。

参考文献

[ 1 ]　 ATABEK
 

A,
 

ERALP
 

E,
 

GURSOY
 

M
 

E.
 

Trust,
 

privacy
 

and
 

security
 

aspects
 

of
 

bias
 

and
 

fairness
 

in
 

machine
 

learning
 

[C].
 

Proceedings
 

of
 

the
 

5th
 

IEEE
 

International
 

Conference
 

on
 

Trust,
 

Privacy
 

and
 

Security
 

in
 

Intelligent
 

Systems
 

and
 

Applications
 

(TPS-ISA),
 

2023:
 

111-121.
[ 2 ]　 范馨月,张阔,张干,等. 细微特征增强的多级联合聚

类跨模态行人重识别算法[J]. 电子测量与仪器学报,
2024,38(3):94-103.
FAN

 

X
 

Y,
 

ZHANG
 

K,
 

ZHANG
 

G,
 

et
 

al.
 

Multi-level
 

joint
 

clustering
 

cross-modal
 

person
 

re-identification
 

algorithm
 

with
 

enhanced
 

fine-grained
 

features
 

[ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(3):
 

94-103.
[ 3 ]　 邓子文,段勇. 基于深度聚类学习的无监督行人重识

别[J]. 电子测量与仪器学报,2025,39(3):1-9.



·132　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

DENG
 

Z
 

W,
 

DUAN
 

Y.
 

Unsupervised
 

person
 

re-
identification

 

based
 

on
 

deep
 

clustering
 

learning
 

[ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2025,
 

39(3):
 

1-9.
[ 4 ]　 韩莹,朱宏宇,李琨.

 

融合聚类及随机配置网络的短期

光伏功率预测 [ J]. 电子测量与仪器学报, 2023,
37(11):205-216.
HAN

 

Y,
 

ZHU
 

H
 

Y,
 

LI
 

K.
 

Short-term
 

photovoltaic
 

power
 

prediction
 

based
 

on
 

clustering
 

and
 

random
 

configuration
 

network
 

[ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(11):
 

205-216.

[ 5 ]　 CHHABRA
 

A,
 

MASALKOVAITE·
 

K,
 

MOHAPATRA
 

P.
 

An
 

overview
 

of
 

fairness
 

in
 

clustering
 

[J].
 

IEEE
 

Access,
 

2021,
 

9:
 

130698-130720.
[ 6 ]　 ABRAHAM

 

S
 

S,
 

DEEPAK
 

P,
 

SUNDARAM
 

S
 

S.
 

Fairness
 

in
 

clustering
 

with
 

multiple
 

sensitive
 

attributes
 

[ C ].
 

Proceedings
 

of
 

the
 

23rd
 

International
 

Conference
 

on
 

Extending
 

Database
 

Technology
 

( EDBT ),
 

2020:
 

287-298.
[ 7 ]　 SINAGA

 

K
 

P,
 

YANG
 

M
 

S.
 

Unsupervised
 

K-means
 

clustering
 

algorithm
 

[ J ].
 

IEEE
 

Access,
 

2020,
 

8:
 

80716-80727.
[ 8 ]　 韦子辉,廖戈,李明轩,等. 基于 ISODATA 改进 K 均值

聚类算法的 NLOS 识别技术 [ J]. 电子测量技术,
2024,47(4):172-180.
WEI

 

Z
 

H,
 

LIAO
 

G,
 

LI
 

M
 

X,
 

et
 

al.
 

NLOS
 

identification
 

technology
 

based
 

on
 

ISODATA
 

improved
 

K-means
 

clustering
 

algorithm
 

[ J ].
 

Electronic
 

Measurement
 

Technology,
 

2024,
 

47(4):
 

172-180.
[ 9 ]　 LEE

 

J,
 

KIM
 

S.
 

Parasitic
 

capacitance
 

prediction
 

for
 

standard
 

cells
 

using
 

machine
 

learning
 

and
 

K-means
 

clustering
 

algorithm
 

[ C ].
 

Proceedings
 

of
 

the
 

2025
 

International
 

Conference
 

on
 

Electronics,
 

Information,
 

and
 

Communication
 

(ICEIC),
 

2025:
 

1-4.
[10]　 SUMAN

 

B
 

K,
 

CHAKRABARTY
 

D,
 

FLORES
 

N
 

J,
 

et
 

al.
 

Fair
 

algorithm
 

for
 

clustering
 

[ C ].
 

Proceedings
 

of
 

the
 

33rd
 

Annual
 

Conference
 

on
 

Neural
 

Information
 

Processing
 

Systems
 

(NeurIPS),
 

2019:
 

4955-4966.
[11]　 ZIKO

 

I
 

M,
 

GRANGER
 

E,
 

YUAN
 

J,
 

et
 

al.
 

Variational
 

fair
 

clustering [ C ].
 

Proceedings
 

of
 

the
 

35th
 

AAAI
 

Conference
 

on
 

Artificial
 

Intelligence
 

( AAAI ),
 

2021:
 

11202-11209.
[12]　 XU

 

W,
 

HU
 

J,
 

DU
 

S,
 

et
 

al.
 

K-means
 

clustering
 

with
 

fairness
 

constraints [ C ]. Proceedings
 

of
 

the
 

16th
 

International
 

Conference
 

on
 

Intelligent
 

Systems
 

and
 

Knowledge
 

Engineering
 

(ISKE),
 

2021:
 

215-222.
[13]　 YANG

 

Z,
 

ZHANG
 

H,
 

YANG
 

C,
 

et
 

al.
 

Cost
 

guarantee
 

for
 

individual
 

fairness
 

on
 

spectral
 

clustering
 

[ C ].
 

Proceedings
 

of
 

the
 

29th
 

IEEE
 

International
 

Conference
 

on
 

Parallel
 

and
 

Distributed
 

Systems
 

( ICPADS ),
 

2023:
 

1546-1553.
[14]　 PAN

 

R,
 

ZHONG
 

C,
 

QIAN
 

J.
 

Balanced
 

fair
 

K-means
 

clustering
 

[ J ].
 

IEEE
 

Transactions
 

on
 

Industrial
 

Informatics,
 

2024,
 

20(4):
 

5914-5923.
[15]　 ALAM

 

A,
 

MUQEEM
 

M.
 

Automatic
 

clustering
 

for
 

selection
 

of
 

optimal
 

number
 

of
 

clusters
 

by
 

K-means
 

integrated
 

with
 

enhanced
 

firefly
 

algorithms
 

[ C ].
 

Proceedings
 

of
 

the
 

2nd
 

International
 

Conference
 

on
 

Technological
 

Advancements
 

in
 

Computational
 

Sciences
 

(ICTACS),
 

2022:
 

343-347.
[16]　 YANG

 

M
 

S,
 

HUSSAIN
 

I.
 

Unsupervised
 

multi-view
 

K-
means

 

clustering
 

algorithm
 

[ J].
 

IEEE
 

Access,
 

2023,
 

11:
 

13574-13593.
[17]　 刘熹,陈晨,双丰. 基于改进 YOLOv7-tiny 的多种类绝

缘子检测算法 [ J]. 仪器仪表学报, 2024, 45 ( 9):
101-110.
LIU

 

X,
 

CHEN
 

CH,
 

SHUANG
 

F.
 

Multi-class
 

insulator
 

detection
 

algorithm
 

based
 

on
 

improved
 

YOLOv7-tiny
 

[J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2024,
 

45(9):
 

101-110.
[18]　 CHEN

 

X,
 

MIAO
 

P,
 

BU
 

Q.
 

Image
 

segmentation
 

algorithm
 

based
 

on
 

particle
 

swarm
 

optimization
 

with
 

K-
means

 

optimization [ C]. Proceedings
 

of
 

the
 

2019
 

IEEE
 

International
 

Conference
 

on
 

Power,
 

Intelligent
 

Computing
 

and
 

Systems
 

(ICPICS),
 

2019:
 

156-159.
[19]　 MARDI

 

M,
 

KEYVANPOUR
 

M
 

R.
 

GBKM:
 

A
 

new
 

genetic
 

based
 

K-Means
 

clustering
 

algorithm
 

[ C ].
 

Proceedings
 

of
 

the
 

7th
 

International
 

Conference
 

on
 

Web
 

Research
 

(ICWR),
 

2021:
 

222-226.
[20]　 MALKAUTHEKAR

 

M
 

D.
 

Analysis
 

of
 

Euclidean
 

distance
 

and
 

Manhattan
 

distance
 

measure
 

in
 

face
 

recognition
 

[C].
 

Proceedings
 

of
 

the
 

Third
 

International
 

Conference
 

on
 

Computational
 

Intelligence
 

and
 

Information
 

Technology
 

(CIIT
 

2013),
 

2013:
 

503-507.
[21]　 洪丽啦,莫愿斌,鲍冬雪. 立方混沌非线性哈里斯鹰优

化算法在无线传感器节点部署分析研究[ J]. 现代电

子技术,2023,46(6):161-168.
HONG

 

L
 

L,
 

MO
 

Y
 

B,
 

BAO
 

D
 

X.
 

Research
 

on
 

deployment
 

analysis
 

of
 

wireless
 

sensor
 

nodes
 

based
 

on
 

cubic
 

chaotic
 

nonlinear
 

harris
 

hawk
 

optimization
 

algorithm
 

[J].
 

Modern
 

Electronics
 

Technique,
 

2023,
 

46(6):
 

161-168.
[22]　 CHARISMA

 

A,
 

HIDAYAT
 

M
 

R,
 

ZAINAL
 

Y
 

B.
 

Speaker
 

recognition
 

using
 

mel-frequency
 

cepstrum
 

coefficients
 

and
 

sum
 

square
 

error
 

[ C ].
 

Proceedings
 

of
 

the
 

3rd
 

International
 

Conference
 

on
 

Wireless
 

and
 

Telematics
 

(ICWT),
 

Palembang,
 

Indonesia,
 

2017:
 

160-163.



　 第 6 期 种群优化联合鲁棒距离度量的公平性 K-means 算法 ·133　　 ·

[23]　 ICHINOSE
 

G,
 

MIYAGAWA
 

D,
 

CHIBA
 

E,
 

et
 

al.
 

How
 

L􀆧vy
 

flights
 

triggered
 

by
 

the
 

presence
 

of
 

defectors
 

affect
 

evolution
 

of
 

cooperation
 

in
 

spatial
 

games
 

[ J].
 

Artificial
 

Life,
 

2023,
 

29(2):
 

187-197.
[24]　 CHHABRA

 

A,
 

MASALKOVAIT
 

K,
 

MOHAPATRA
 

P.
 

An
 

overview
 

of
 

fairness
 

in
 

clustering
 

[J].
 

IEEE
 

Access,
 

2021,
 

9:
 

130698-130720.
[25]　 MURALI

 

N,
 

MISHRA
 

D.
 

Wasserstein
 

distance
 

for
 

attention
 

based
 

cross
 

modality
 

person
 

re-identification
 

[ C ].
 

Proceedings
 

of
 

the
 

2022
 

IEEE
 

19th
 

India
 

Council
 

International
 

Conference
 

(INDICON),
 

2022:
 

1-6.
[26]　 BHADANA

 

A,
 

SINGH
 

M.
 

Fusion
 

of
 

K-means
 

algorithm
 

with
 

Dunn ’ s
 

index
 

for
 

improved
 

clustering
 

[ C ].
 

Proceedings
 

of
 

the
 

2nd
 

International
 

Conference
 

on
 

Computational
 

Systems
 

and
 

Information
 

Technology
 

for
 

Sustainable
 

Solution
 

(CSITSS),
 

2017:
 

1-5.
作者简介

　 　 谢一涵,现为南京信息工程大学人工智

能学院(未来技术学院) 本科生,主要研究

方向为机器学习、聚类分析、深度学习、目标

检测。
E-mail:

 

202383290356@ nuist. edu. cn
Xie

 

Yihan
 

is
 

now
 

a
 

B. Sc.
 

candidate
  

at
 

　 　 　 　 　
  

the
 

School
 

of
 

Artificial
 

Intelligence
 

( Future
 

Technology
 

School),
 

Nanjing
 

University
 

of
 

Information
 

Science
 

and
 

Technology.
 

Her
 

main
 

research
 

interests
 

include
 

machine
 

learning,
 

clustering
 

analysis,
 

deep
 

learning,
 

and
 

object
 

detection.
毕鹏飞(通信作者),2021 年于哈尔滨

工程大学获得博士学位,现为南京信息工程

大学讲师,主要研究方向为机器学习、深度

学习、模式识别、水下目标感知。
E-mail:

 

pfcx@ nuist. edu. cn
Bi

 

Pengfei
 

( Corresponding
 

author )
 

received
 

his
 

Ph. D.
 

degree
 

from
 

Harbin
 

Engineering
 

University
 

in
 

2021
 

and
 

is
 

now
 

a
 

lecturer
 

at
 

Nanjing
 

University
 

of
 

Information
 

Science
 

and
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

machine
 

learning,
 

deep
 

learning,
 

pattern
 

recognition,
 

and
 

underwater
 

target
 

perception.
王爱萍,现为南京信息工程大学软件学

院本科生,主要研究方向为边缘计算、数据

分析。
E-mail:

 

1816463803@ qq. com
Wang

 

Aiping
 

is
 

now
 

a
 

B. Sc.
 

candidate
 

at
 

the
 

School
 

of
 

Software,
 

Nanjing
 

University
 

of
 

Information
 

Science
 

and
 

Technology.
 

Her
 

main
 

research
 

interests
 

include
 

edge
 

computing
 

and
 

data
 

analysis.


