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Abstract: To address issues in existing defect detection for irregularly patterned transparent packaging bags—such as multi-scale
anomalies, pattern interference, and missed detections, which are caused by low contrast and insufficient sensitivity—an improved
YOLOv8s-CBW detection algorithm based on the YOLOv8s framework is proposed. In this algorithm, a coordinate attention ( CA)
mechanism is embedded into the C2f module of the YOLOv8s backbone network to enhance the model’ s spatial feature localization and
refined identification capabilities for low-contrast and minute defects. The original PANet structure is replaced with a bidirectional feature
pyramid network ( BiFPN) to optimize multi-scale feature fusion efficiency. Finally, a dynamic focusing WIoU-v3 loss function is
introduced, replacing the traditional CloU loss function, to improve bounding box regression accuracy for irregularly shaped defects and
enhance the model’ s overall generalization performance. Experimental results show that, compared to the baseline YOLOv8s model,
YOLOv8s-CBW , with only a 0. 11x10° increase in parameters and essentially unchanged GFLOPs, achieved an mAP@ 0. 5 of 82.2%
(an increase of 1.3%) and an mAP@0.5.0.95 of 49.3% (an increase of 7. 1%) in defect detection tasks. Compared to mainstream
models such as YOLOvSs and YOLOv6s, our algorithm improved mAP@ 0.5 by 2.3% and 10. 6%, respectively, achieving superior
detection accuracy while maintaining essentially the same GFLOPs. This demonstrates that the lightweight improved YOLOv8s-CBW can
ensure efficiency and significantly enhance stability in detecting multi-scale defects, providing a reliable solution for automated quality
inspection of packaging bags.

Keywords : deep learning; YOLOvS; loss function; BiFPN

ks H . 2025-04-29 Received Date: 2025-04-29
s AT H A LT g v X AET R A A BA (5 14 418) 0 H 2023 454 L i 2 s AR AR IR 55 7l % R BRI H (2023DZXX02) % Bl



55 6 AN TR P 5 17 B 0 e Stk b 1) 22 RURE RS ARG <113 -
TRV R R AL BT, 42 T/ Bk B A il AR BE 1, SR,
0 51 & YOLOV8 15 AR ] 5 175 P 40 26 % e g A 00 v 7% T i 17

RS —FP T390 MR s i i R A H
s AL R4S N A AT AL R B L R S ) ERL T b
B =L, 2 TR R B ARAES, SRN, i
A A0 2 4% EID ) PR 8 5 | 8 2 2o 82 P T A AP U5 5t s 2 it
BT Y S5 P 5 A BB AN S5 S R B 3 25 52
AR et B B S aE ],
HIE A A AE L ED A B 58, % T J5 & 45 BT B il 5%
XLTET BRI 1 00, S48 214 i R A 0 1) AL 8 40 o B AR 4%
SR EL N 375 0 2 4% 110 R 0 D P R S 5 Bl s T 2
NGy X 5y RIS AT, D0 X AT B A (51 48
B4 A4S DI Y R il W NS w 2 EE, Xt
ANE SRR A AV BT BN (X S 5% 2 A A0 0 A
I AT RE ST R B, B (1 18 R £k B e S
MELLATHE, T DAAR 7= 2 A IR 5 s 0 R0 R AR TR AR
R RN A, PRk, 28 B [ 8 325 BH 0 44 48 i
G 290 A e R v A A R ALK TR i e

FERL SR LA Ty 1 8 XA | € 1 43255 1)
PSR SR X e X B e 6 28 R AT S W K I, Chao
SRR A A R R AR (CSTM) |, 2 5 A
Otsu B35S0 9 1 1 36 17 8 B, 28 R4 S s A fh i
JEE ARSI IR U6 2o 100 41 VLR M s | 45 5 2 285 0 15 1L O s
BEFFIHGARBIRE ST . XLk B IR A TR AR
N BT RRAE T B0GE B P22, B 5 20 S X D3
I A2 A B , LIz AL RE 155 4 A i

I AR TR AL AU T IR 2 2T 19 B A
ARAE T TG 72 7 B 3, B AR AG I 325 ] 3l 43 ok
I A AE 42 5 20 [ S AG 00 A 28 9 K2R mi s LA R-
CNN') Fast RCNN'®  Faster RCNNU 48 i mI R 3% | 5
FHR AL T AT YOLO™ SSDM 45 S SR i 461100 45 1y
— P ET B AR R 4 T M 45 ( DSFPN ) B ) Faster-
RCNN #2645 5 9 R A 700 BB T 1R B e 7, (H R By
B SR [ A 1 38 3 R S50 LA 6 T A 7 ) S v
3R, Rong 45" Hy 22 R 5% 22 4 45 L4 ISR , {E )
SRR Br TE AR I R, HVT S IR TS KR K, Dai 451 #E
YOLOvS FYFERE 5] AR5 e sy (ViT) ™ b7 sh & 1
HEAOMA A, B VIT [FE patch R4S R30I B
B 52 B M | S SO [R]— B B Ry 24 SR M
A1, Anchor-Based A6: i Sk 493 T 15 < 5 bb | X% I f0, 2%
TR DL AR AS KLU S5k i DG T O 22 ik 3, ™ i o) 24 22 RUBE Her
M FAS BE . AHER 2 T YOLOVS #f 35 Fil 1 Anchor 1L il ffi
JH Anchor-Free #:0 3k | 38 1 ) B w000 B br A0 55 5%
1R, VD S AN F I e 4 (4 T ARAB AR, e am ik 3 J2HRAE
L7 (P3~P5) + SPPF 5[ BURRAF G R | 45 5 W i 70

Ik . 1) BB R A B = BB L S BB L % 5
Sl b 52 ) U Y (5] 58 250/ 1 253840 5 1l T by L
3) BRI 20 T4, B 5 75 SRR B S | (AR LA
X3 EL SR S5 PR 5

e, B R R T YOLOV8-CBW B L £ R
DUAETR | LS AN D) 12 58 375 B A B A5 Bl B A

1 ZRE®M YOLOv8s-CBW #&ill & %

YOLOV8 fEl YOLO 444 v iy 12 4% BB A% 3 b
BEHAL BT T H AN Jr ik, 2 T CSPDarknet53
TR TR 3N s omd o 3X S FORTR R,
FhEIUTE I ZE TR | S FE DL S S % B 13 038 hn , AT
fefi A5 B AY R LM RN B 2 22 ] 5 TR 4

FHT S K00 &1 5 25 B, 2 4 e I AGr 0 ) Ak T
YOLOv8s e ki YOLOv8s-CBW S35, WI&l 1 Fio , i
A3 FRESE I T RRAE Rl 2005 K T i o 4 4>
OYULRL, TEE T 45 ol C2f SRR i 5 | A AR R i
JIWLHI ( coordinate attention, CA) FY C2f_CA FRHRL a5 A
RURHR S o2 DX ) 5 A2 R 7, A1) HG a3 5 5 [ 7 '
IR R T DX 25 W A 5 5 a0 o G 2 A AL
B R AR 22 S 5 TR S0 IR 2% UL 1) R A 4 o B T
4% (bidirectional feature pyramid network, BiFPN) , B {{J&
A B FRE 4 T 15 R 2% (feature pyramid network, FPN) '™
5B E ML ( path aggregation network, PAN) 9T 1y i
G U A 2 ROEERFAE Bl A HLE] , 58 A0 7 2 R AE Hh )
TR B T UK | T ik TR )22 ) 4% TRLRR AT 22 U B0 T
[P, AT 2 > RS P ) 5 % Pl 2 DXl 5 i 8 i o 4
I ( complete intersection over union, CloU) P R
¥}y WloU ( wise intersection over union ) 12k pREY , i i
B ERE FAERCEE 73 A7, s A7 W R Bk a2 A0
T T DR 2 3R A R S ) A i P 0 AR
1.1 C2f-CA #3R

C2f BEH YOLOV8 | ARIAZ LR & YOLOVS
C3 BEHL R A | BEAE DI 10 6 32 3 JF 49 9 R I 521
FF YR -Ab BE-Fl S B SRS T RS, TR i
AL B A8 0 e B A AT 55, C2f I Z RN REEE R =
PR T BN XE LLE AL, I FE C2f T
AL TEAE -2 )53 1 78 IR CA L R B C2f-CA HE
Heo CA REHREMEAH SR A NE 12 78 2 (8] 28 B2 /Y I 1) A
RS B, B O TR R W — 80, i Ok B A
FIKE B AL ELAR D, (0 75455 AU R 0 T Ag ot B2 A R F1E 7 25
(5] b 14 A 0 ERH A A, AT S5 30 %) B SRR AIE X 48170
KR A (R 38 3 30 2 ] AR A 5 1] 2 e R 2 B, A



- 114 - B IR SRR R

39 &

Bl 1 Bk YOLOV8s-CBW £ 45H4
Fig. 1 Enhanced YOLOv8-CBW network architecture
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Fig. 10  Foreign object image in packaging bag
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Table 3 Comparative experiment results of models
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