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不规则图案透明包装袋缺陷的多尺度智能检测∗
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摘　 要:针对现有不规则图案透明包装袋缺陷检测中低对比度及敏感度不足导致的多尺度异常、图案干扰、漏检等问题,提出一

种基于 YOLOv8s 框架改进的 YOLOv8s-CBW 检测算法,在 YOLOv8s 的主干网络 C2f 模块中嵌入坐标注意力机制( CA),增强模

型对低对比度、微小缺陷的空间特征定位与精细化辨识能力;通过双向特征金字塔网络(BiFPN)替换原有的 PANet 结构,优化

多尺度特征融合效率;最后,引入动态聚焦的 WIoU-v3 损失函数提升边界框回归精度,替代传统的 CIoU 损失函数,提升模型对

不规则形态缺陷的边界框回归精度与整体泛化性能。 实验表明,相较于基准 YOLOv8s 型,YOLOv8s-CBW 在参数量仅增加

0. 11×106 、浮点数基本不变的情况下,在缺陷检测任务中 mAP@ 0. 5 达到 82. 2%,提升了 1. 3%,mAP@ 0. 5:0. 95 达到 49. 3%,提
升了 7. 1%;与 YOLOv5s、YOLOv6s 等主流模型相比,算法的 mAP@ 0. 5 分别提高 2. 3%与 10. 6%,在保持浮点数基本不变的前提

下实现更优检测精度。 证明通过轻量化改进的 YOLOv8s-CBW 在多尺度缺陷的检测中能够保证效率,显著提升稳定性,为包装

袋自动化质检提供可靠解决方案。
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Abstract:
 

To
 

address
 

issues
 

in
 

existing
 

defect
 

detection
 

for
 

irregularly
 

patterned
 

transparent
 

packaging
 

bags—such
 

as
 

multi-scale
 

anomalies,
 

pattern
 

interference,
 

and
 

missed
 

detections,
 

which
 

are
 

caused
 

by
 

low
 

contrast
 

and
 

insufficient
 

sensitivity—an
 

improved
 

YOLOv8s-CBW
 

detection
 

algorithm
 

based
 

on
 

the
 

YOLOv8s
 

framework
 

is
 

proposed.
 

In
 

this
 

algorithm,
 

a
 

coordinate
 

attention
 

( CA)
 

mechanism
 

is
 

embedded
 

into
 

the
 

C2f
 

module
 

of
 

the
 

YOLOv8s
 

backbone
 

network
 

to
 

enhance
 

the
 

model’s
 

spatial
 

feature
 

localization
 

and
 

refined
 

identification
 

capabilities
 

for
 

low-contrast
 

and
 

minute
 

defects.
 

The
 

original
 

PANet
 

structure
 

is
 

replaced
 

with
 

a
 

bidirectional
 

feature
 

pyramid
 

network
 

( BiFPN)
 

to
 

optimize
 

multi-scale
 

feature
 

fusion
 

efficiency.
 

Finally,
 

a
 

dynamic
 

focusing
 

WIoU-v3
 

loss
 

function
 

is
 

introduced,
 

replacing
 

the
 

traditional
 

CIoU
 

loss
 

function,
 

to
 

improve
 

bounding
 

box
 

regression
 

accuracy
 

for
 

irregularly
 

shaped
 

defects
 

and
 

enhance
 

the
 

model’s
 

overall
 

generalization
 

performance.
 

Experimental
 

results
 

show
 

that,
 

compared
 

to
 

the
 

baseline
 

YOLOv8s
 

model,
 

YOLOv8s-CBW,
 

with
 

only
 

a
 

0. 11×106
 

increase
 

in
 

parameters
 

and
 

essentially
 

unchanged
 

GFLOPs,
 

achieved
 

an
 

mAP@ 0. 5
 

of
 

82. 2%
 

(an
 

increase
 

of
 

1. 3%)
 

and
 

an
 

mAP@ 0. 5:0. 95
 

of
 

49. 3%
 

(an
 

increase
 

of
 

7. 1%)
 

in
 

defect
 

detection
 

tasks.
 

Compared
 

to
 

mainstream
 

models
 

such
 

as
 

YOLOv5s
 

and
 

YOLOv6s,
 

our
 

algorithm
 

improved
 

mAP @ 0. 5
 

by
 

2. 3%
 

and
 

10. 6%,
 

respectively,
 

achieving
 

superior
 

detection
 

accuracy
 

while
 

maintaining
 

essentially
 

the
 

same
 

GFLOPs.
 

This
 

demonstrates
 

that
 

the
 

lightweight
 

improved
 

YOLOv8s-CBW
 

can
 

ensure
 

efficiency
 

and
 

significantly
 

enhance
 

stability
 

in
 

detecting
 

multi-scale
 

defects,
 

providing
 

a
 

reliable
 

solution
 

for
 

automated
 

quality
 

inspection
 

of
 

packaging
 

bags.
Keywords:deep

 

learning;
 

YOLOv8;
 

loss
 

function;
 

BiFPN
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0　 引　 言

　 　 包装袋是一种用于容纳、保护和运输的柔性容器,其
中透明包装袋内容物可视化、品牌信息传达与物理防护

的三重作用,广泛用于食品、医药、日化等领域。 然而,透
明包装袋印刷图案缺陷、封装过程中混入外源缺陷如缺

陷污染等两种质量隐患,不仅会影响品牌形象,还会影响

产品包装安全性。 透明包装袋可分为半透明与全透明,
前者往往在单面印有图案,对于后者则会有单面印刷或

双面印刷的情况,尽管当前缺陷检测的机器视觉技术较

为成熟,但对透明包装袋的不规则图案纹理与缺陷形态

不易区分,使其检测效率低下,尤其对于双面都印有图案

的全透明包装袋,两面的图案通常不会完全重叠,而这些

不重叠是在生产容许的范围内,但这些误差在视觉检测

时可能会被判断为缺陷,且双面的图案会让缺陷形态更

难以分辨。 所以生产线质检只能普遍依赖效率低、漏检

率高的人工检测。 因此,突破带印刷图案透明包装袋质

检瓶颈需要通过提高检测的智能化水平来解决。
在机器视觉检测方面常用 X 光检测、色度分类等,例

如洪冠等[1] 采用 X 光对屏蔽包装进行异物检测,Chao
等[2]

 

提出采用色度分类表技术( CSTM),李靖等[3] 引入

Otsu 算法实现阈值自适应选取,李庆忠等[4] 通过优化梯

度倒数加权滤波器抑制图像噪声,结合动态双阈值策略

提升弱边缘识别能力。 这些方法的共性不足在于检测依

赖人工设计特征导致适应性差,即便频繁调参也难以适

应复杂的缺陷,且泛化能力弱,维护成本高。
近年来计算机视觉领域基于深度学习的目标检测技

术在工业质检中逐渐成主流,目标检测方法可划分为两

阶段检测框架与单阶段检测框架两大类型。 前者以 R-
CNN[5] 、Fast

 

RCNN[6] 、Faster
 

RCNN[7] 等为典型代表,后
者的检测模型有

 

YOLO[8] 、SSD[9] 等。 吴守鹏等[10] 提出

一种基于动态特征金字塔网络( DSFPN) 改进的 Faster-
RCNN 输送带异物识别模型虽提升了识别能力,但两阶

段框架固有的速度瓶颈难以满足工业生产的实时性要

求,Rong 等[11] 构建多尺度残差全卷积分割模型,但其训

练数据标注成本过高,且计算资源消耗大,Dai 等[12] 在

YOLOv5 的基础上引入视觉转换器( ViT) [13] 进行动态注

意力和全局建模。 但 ViT 固定
 

patch
 

划分会破坏微小缺

陷的完整性,导致模型将同一缺陷误判为多个局部噪声,
此外,Anchor-Based 检测头依赖预设长宽比,对透明包装

中常见的不规则缺陷匹配偏差显著,严重制约多尺度检

测的精度。 相较之下 YOLOv8 摒弃预设 Anchor 机制使

用 Anchor-Free
 

检测头,通过动态预测目标中心点与宽

高,减少对不规则缺陷的形状假设依赖,并通过 3 层特征

金字塔(P3 ~ P5) +
 

SPPF 跨阶段特征增强,结合更高分辨

率的浅层特征图,提升微小缺陷的捕获能力。 然而,
YOLOv8

 

在不规则图案透明包装袋缺陷检测中仍面临许

多挑战:1)透明材质因缺乏纹理对比导致缺陷边缘与背

景同化;2)双面印刷图案容许误差部分易被判断为缺陷;
3)印刷图案的干扰,使缺陷与背景特征重叠,使模型难以

区分真实缺陷与装饰性图案。
为此,通过构建基于 YOLOv8-CBW 算法的多尺度检

测模型,以实现不规则图案透明包装袋缺陷检测。

1　 多尺度检测 YOLOv8s-CBW 检测算法

　 　 YOLOv8 作为 YOLO 架构中的迭代里程碑[14-16] 通过

模块化设计重构了目标检测方法,基于 CSPDarknet53 骨

干网络[17] 将模型划分为 n、s、m、l、x 这 5 种不同尺寸,每
种类型在网络的深度、宽度以及复杂度上逐步增加,从而

使得模型能在精度和速度之间灵活选择。
用于不规则图案透明包装袋缺陷检测的基于

YOLOv8s 改进的 YOLOv8s-CBW 算法,如图 1 所示,由输

入端、特征提取主干、特征融合颈部及预测输出端 4 个部

分组成,在骨干网络中将 C2f 模块替换成引入坐标注意

力机制(coordinate
 

attention,
 

CA)的 C2f_CA 模块,增强模

型对低对比度区域的定位能力,利用其通道与空间位置

协同感知特性,精准区分透明材质与缺陷在光学相似性

下的微弱特征差异;在颈部网络用双向特征金字塔网

络(bidirectional
 

feature
 

pyramid
 

network,
 

BiFPN),替代原

有的特征金字塔网络( feature
 

pyramid
 

network,
 

FPN) [18]

与路径聚合网络(path
 

aggregation
 

network,
 

PAN) [19] 的融

合架构,优化多尺度特征融合机制,强化浅层特征中微小

缺陷的语义表达,缓解深层网络因特征衰减导致的漏检

问题,其可学习权重可抑制背景图案区域;输出端将完全

交并比( complete
 

intersection
 

over
 

union,CIoU) 损失函数

替换为 WIoU(wise
 

intersection
 

over
 

union)损失函数,通过

动态调整边界框权重分布,强化透明背景下缺陷边缘细

节的回归精度,避免因纹理同化造成的边界模糊。
1. 1　 C2f-CA 模块

　 　 C2f 模块 YOLOv8 中引入的核心模块,是 YOLOv5 中

C3 模块的改进版本,能够优化梯度流并增强特征复用,
并通过拆分-处理-融合的策略提升计算效率。 在印刷透

明包装袋的缺陷检测任务中,C2f 因多次下采样丢失高

分辨率细节,导致微小缺陷难以定位,为此,在 C2f 中引

入轻量化通道-空间联合注意力模块 CA,构成 C2f-CA 模

块。 CA 模块能够捕获特征图在空间维度的方向和位置

敏感信息,转换为通道注意力的一部分,并通过保留和利

用精确的位置信息,使得模型能够更好地理解特征在空

间上的分布和互相依赖性,从而实现对重要特征区域的

精确聚焦。 同时,通过沿空间坐标方向分解特征编码,建
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图 1　 改进的 YOLOv8s-CBW 网络结构

Fig. 1　 Enhanced
 

YOLOv8-CBW
 

network
 

architecture

立跨通道与跨空间域的长程依赖关系,有效增强模型对

细粒度缺陷特征的定位能力,并无缝嵌入复杂网络架构

中,在计算开销几乎不变的条件下提升模型对弱纹理缺

陷的敏感性,实现高效检测[20] ,结构如图 2 所示。 首先,
对输入特征图分别沿水平(X 轴)和垂直(Y 轴)两个方向

进行全局池化编码,可以捕获具有精确位置信息的空间

特征,将二维特征图分解为两个独立的方向感知特征向

量,每个向量都聚合了相应空间维度上的特征;其次,将
这两个包含不同空间方向信息的位置特征向量进行拼

接,然后通过 1×1 卷积进行通道压缩,有效降低后续计算

的参数量,并且整合来自两个独立空间维度的位置和依

赖信息,形成一个紧凑且包含丰富空间上下文的中间特

征张量。 该中间张量再次沿空间维度被分解为水平与垂

直分量,每个分量再经过各自独立的 1 × 1 卷积操作和

Sigmoid 激活函数,分别生成水平方向和垂直方向的注意

力权重图。 最终这两个方向的注意力权重图与原特征图

融合,通过这种方式实现对缺陷边缘等关键区域的定向

增强。
　 　 针对高分辨率图像中细节丢失导致的微小缺陷定位

的问题,C2f_CA 模块提出双阶段坐标注意力嵌入机制:
首先在 Bottleneck 结构的首个卷积后嵌入 CA 模块构成

BottleneckCA 模块如图 3 所示,通过坐标信息分解与空

间-通道协同校准,在通道降维前筛选高频细节特征,避
免微小缺陷特征被噪声淹没;其次在跨层级特征拼接

图 2　 CA 网络结构

Fig. 2　 CA
 

network
 

architecture

Concat 模块后引入 CA 模块如图 4 所示,动态分配融合特

征的空间权重,强化浅层高分辨率特征的细节区域并抑

制深层特征的模糊响应,从而优化多尺度特征的对齐能

力与缺陷轮廓的连续性。 该设计通过坐标注意力引导的

特征校准,在通道压缩与特征融合关键节点实现细节增

强,可提升透明包装在弱纹理场景下微小缺陷的定位精

度与鲁棒性。
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图 3　 BottleneckCA 网络结构

Fig. 3　 BottleneckCA
 

network
 

architecture

1. 2　 BiFPN
　 　 在目标检测领域,多尺度特征融合是主要挑战之一,
传统的 FPN 自上而下融合多尺度特征如图 5 所示,
YOLOv8 的颈部网络由 PANet 结构的受到启发如图 6 所

示,构成 FPN+PAN 融合架构,但该架构流动性单一、权
重固定,在检测中易将缺陷与背景图案混淆,且对多尺度

缺陷融合能力不足,因此用双向特征金字塔网络 BiFPN
替代 YOLOv8 中的 FPN+PAN 架构如图 7 所示。

BiFPN 通过引入双向跨尺度连接与可学习的特征权

重,构建了更高效的层级间特征交互框架,显著增强了低

　 　 　 　

图 4　 C2f_CA 网络结构

Fig. 4　 C2f_CA
 

network
 

architecture

图 5　 FPN 网络结构

Fig. 5　 FPN
 

network
 

architecture

图 6　 PANet 网络结构

Fig. 6　 PANet
 

network
 

architecture

图 7　 BiFPN 网络结构

Fig. 7　 BiFPN
 

network
 

architecture

级细节特征与高级语义特征的交互能力。 其核心在于两

点:1)能将底层细节特征向上反馈至高层网络,实现跨尺

度的上下文传播与特征互补,增强了模型对多尺度目标

的表征能力;2)自适应权重分配机制,针对不同分辨率特

征图的贡献度差异,为每个输入特征增加了一个额外的

权重,让网络学习每个输入特征的重要程度[21] , 如

式(1) ~ (3)所示。

P td
4 = Conv

w1·P in
4 + w2·Reseize(P in

5 )
w1 + w2 + 􀆠( ) (1)

W3 = w′3·Reseize(Pout
3 ) (2)

Pout
4 = Conv

w′1·P in
4 + w′2·P td

4 + W3

w′1 + w′2 + w′3 + 􀆠( ) (3)

式中: w i 表示可学习权重; P td
4 为第 4 层的中间特征; Pout

4

为第 4 层的输出特征; P in
4 为第 4 层的输入特征; 􀆠 为极

小常数防止分母为 0。
为解决包装袋检测任务,缺陷与背景图案混淆与多

尺度缺陷融合能力不足的问题。 在颈部特征融合网络的

引入 BiFPN。 改进后的模型在 P3 层增强高分辨率浅层

特征中微小缺陷的语义表达,利用可学习的跨通道权重

增强局部梯度响应,缓解深层网络中细节特征的衰减问

题;在 P4 层级构建双向跨尺度连接,实现多级特征交互,
动态平衡细粒度纹理与抽象语义信息,自适应融合底层

细节与中层语义,提升重叠背景下的缺陷检测能力;P5
层级则保持大尺寸缺陷的形态完整性。
1. 3　 WIoU 损失函数

　 　 在 YOLOv8 中,损失函数采用基于交并比( IoU) [22]

改进的 CIoU 损失[23] ,在 IoU 的基础上引入中心点距离

惩罚项、长宽比一致性约束项以及尺度敏感因子,通过多

维度优化机制改进定位精度,但 CIoU 损失函数仍存在局

限性,固定权重的刚性惩罚机制会放大模糊、形变等低质
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量缺陷样本的损失权重,迫使模型过度拟合噪声特征而

削弱泛化能力。
为解决 CIoU 存在的局限性,将 YOLOv8 中的 CIoU

损失函数替换为 WIoUv3,原理如图 8 所示。 WIoU 为边

界框回归设计了一种根据锚框质量动态调整权重的策

略,其并非平等对待所有样本,而是评估锚框的离群度 β
来衡量其与真实框重叠程度的指标,高质量的锚框被赋

予更高的权重,鼓励模型关注它们并学习精确定位。 相

反,低质量的锚框可能对应模糊或不明确的对象,则被赋

予较低的权重。 这种动态聚焦机制防止了嘈杂的样本主

导训练过程并对梯度产生负面影响,使模型能够更有效

地从高质量样本中学习,从而提高鲁棒性和边界框回归

的准确性。 WIoUv3 的提出结合了 WIoUv1 与 WIoUv2,其
公式如式(4) ~ (9)所示[24] 。

WIoUv1 = RWIoU IoU (4)

RWIoU = exp
(x - xgt)

2 + (y - ygt)
2

(W2
g + H2

g)
∗( ) (5)

WIoUv2 =
∗
IoU

IoU
( )

γ

WIoUv1 (6)

WIoUv3 = r WIoUv1 (7)

β =
∗
IoU

IoU
(8)

r = β
δαβ-δ (9)

式中:(x,
 

y)表示预测框的中心坐标;(xgt,
 

ygt)表示真实

框的中心坐标;Wg、Hg 表示最小封闭框的大小; (W2
g +

H2
g)

∗ 的上标∗表示把Wg 与Hg 从计算图中分离出来,可
有效消除阻碍收敛的因素;β 表示离群度;r 表示非单调

聚焦系数。

图 8　 WIoU 原理

Fig. 8　 WIoU
 

schematic
 

diagram

2　 实验及结果分析

2. 1　 实验环境及数据集

　 　 实验环境采用 Window10 操作系统, CPU 型号为

Intel
 

i5-12600KF,显卡型号为 Nvidia
 

Geforce
 

RTX
 

4060ti,

显存 16
 

GB,内存大小为 32
 

GB 的电脑上进行训练,
Pytorch 版本为 2. 5. 1, CUDA 版本为 12. 4, Python 版本

为 3. 9. 13。
数据集的原始数据来源于广东潮州某包装袋印刷

厂,经过旋转、添加噪声、对比度增强、光暗调节数据增强

以扩充包装袋中含有缺陷的样本,提高样本的泛化能力,
最后得到 1

 

848 张图片,图 9 所示为部分数据增强后的图

片。 实验中将缺陷划分 4 种分别为蚊虫、孔洞、褶皱和其

他。 按照 7 ∶ 2 ∶ 1 的比例构建了训练集、验证集、测试

集。 图 10 所示为部分缺陷图片。

图 9　 数据增强部分图片

Fig. 9　 Apply
 

data
 

augmentation
 

to
 

a
 

subset
 

of
 

images

　 　 训练图像输入采集统一为 1
 

280×1
 

280,batch 设置

为 8, epoch 为 200, 进行训练的设备为 GPU, 动量为

0. 937,优化器为 Adam,初始学习率设置为 0. 01。
2. 2　 评价指标

　 　 实验选取平均精度均值( mAP)、参数量( Params),
每秒浮点运算作为模型评估标准,公式如式(10) ~ (13)
所示。

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

AP = ∫1

0
P(R)dR (12)

mAP =
∑

n

i = 1
AP i

n
(13)
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图 10　 包装袋缺陷图

Fig. 10　 Foreign
 

object
 

image
 

in
 

packaging
 

bag

mAP 作为综合性指标,衡量模型在各类别中的平均

识别准确度,mAP@ 0. 5 表示 IoU 阈值为 0. 5 时的检测精

度,mAP@ 0. 50 ∶ 0. 95 表示计算 IoU 阈值从 0. 5 ~ 0. 95
(步长 0. 05)区间内各阈值下的 mAP。 Params 用于评估

模型的参数规模,反映算法复杂度浮点数则体现模型在

单位时间内的浮点计算能力,表征运算效率。
2. 3　 消融实验

　 　 为验证各改进模块的有效性,在相同实验环境与参

数下逐一添加模块进行性能对比,其中 C 代表 C2f-CA 模

块,B 代表 BiFPN 网络,W 代表 WIoUv3 损失函数,如表 1
所示。

表 1　 消融实验结果

Table
 

1　 Ablation
 

study
 

results

模型
mAP@
0. 5 / %

mAP@ 0. 5:
0. 95 / %

Params /

( ×106 )
浮点数 /
GFLOPs

YOLOv8s 80. 9 42. 2 11. 13 28. 4
YOLOv8s-C 81. 2 44. 3 11. 24 28. 7
YOLOv8s-B 79. 4 45. 9 11. 13 28. 4
YOLOv8s-W 81. 3 43. 3 11. 13 28. 4
YOLOv8s-CB 79. 2 51. 4 11. 24 28. 7

YOLOv8s-CBW(本文) 82. 2 49. 3 11. 24 28. 7

　 　 从表 1 结果可以看出单独引入 C2f_CA 模块后,可在

参数量仅增加 0. 11×106,计算量仅增加 0. 3
 

GFLOPs 的

情况下 mAP @ 0. 5 增加 0. 3%,mAP @ 0. 5 ∶ 0. 95 增加

1. 9%,单独引入 BiFPN 模块时, mAP @ 0. 5 虽然减少

1. 5%,但 mAP @ 0. 5 ∶ 0. 95 增加 3. 7%,单独引入 WIoU
模块时 mAP @ 0. 5 增加 0. 4%,mAP @ 0. 5 ∶ 0. 95 增加

1. 1%,同时引入 BiFPN 模块,虽然 mAP @ 0. 5 下降了

2. 0%,但 mAP @ 0. 5 ∶ 0. 95 增加 7. 1%。 进一步将损失

函数从
 

CIoU
 

替换为 WIoU,虽然 mAP@ 0. 5 ∶ 0. 95 下降

了 2. 1%,但 mAP@ 0. 5 提高了 3. 0%. 综上所述,对比原

来的 YOLOv8 模型,在参数量和 GFLOPs 基本不变的情

况下 mAP@ 0. 5 提升了 1. 3%,mAP@ 0. 5 ∶ 0. 95 提升了

7. 1%。 改进后的预测框更贴合目标的真实边界,使预测

框更贴合真实目标。
2. 4　 对比实验

　 　 为验证 WIoUv3 损失函数在 YOLOv8s-CBW 网络上

的性能提升,将 DIoU 与 GIoU 损失函数进行对比,对比结

果如表 2 所示,可看出 WIoUv3 损失函数对比 GIoU 与

DIoU 损失函数 mAP @ 0. 5 分别提升了 2. 1%、 1. 0%,
mAP@ 0. 5 ∶ 0. 95 分别提升了 0. 7%与 4. 1%,说明在引

入 WIoUv3 损失函数对透明包装袋的缺陷检测更有

优势。

表 2　 损失函数对比实验结果

Table
 

2　 Comparative
 

experiment
 

results
 

of
 

loss
 

functions

模型 mAP@ 0. 5 / %
mAP@ 0. 5:

0. 95 / %
Params /

( ×106 )
浮点数 /
GFLOPs

GIoU 79. 2 42. 6 11. 13 28. 4
DIoU 80. 3 39. 2 11. 13 28. 4

WIoUv3(本文) 81. 3 43. 3 11. 13 28. 4

　 　 为评估改进后的 YOLOv8s-CBW 检测算法的有效

性,将与其他主流模型进行对比实验,实验结果如表 3 所

示。 由表 3 可知 YOLOv8s-CBW 算法 mAP @ 0. 5 与

mAP@ 0. 5 ∶ 0. 95 最高,与 YOLOv5s 相比 mAP @ 0. 5 提

升了 2. 3%,mAP@ 0. 5 ∶ 0. 95 提高了 8. 1%;与 YOLOv6s
相比 mAP @ 0. 5 提高 10. 6%,mAP @ 0. 5 ∶ 0. 95 提高了

8. 0%,与 YOLOv8s 相比 mAP@ 0. 5 提高了 1. 3%,mAP@
0. 5 ∶ 0. 95 提高了 7. 1%。 改进的模型与参数量最低的

YOLOv5s 相比也只增加了 2. 13×106。 实验结果表明,改
进后的 YOLOv8-CBW 检测算法在仅产生少量参数增量

下,实现了检测精度与计算效率的平衡优化,与其他主流

算法相比能够更好的进行缺陷检测。 图 11 为改进前后

模型检测效果对比。
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图 11　 改进前后检测效果对比

Fig. 11　 Comparative
 

analysis
 

of
 

detection
 

performance
 

before
 

and
 

after
 

improvement

表 3　 模型对比实验结果

Table
 

3　 Comparative
 

experiment
 

results
 

of
 

models

模型
mAP@
0. 5 / %

mAP@ 0. 5:
0. 95 / %

Params /

( ×106 )
浮点数 /
GFLOPs

YOLOv5s 79. 9 41. 2 9. 11 23. 8
YOLOv6s 71. 6 41. 3 16. 30 44. 0
YOLOv8s 80. 9 42. 2 11. 13 28. 4

YOLOv8s-CBW(本文) 82. 2 49. 3 11. 24 28. 7

3　 结　 论

　 　 针对不规则图案透明包装袋多尺度缺陷检测中存在

的低对比度特征混淆、微小缺陷漏检、弱纹理场景及印刷

图案干扰等问题,本文提出了一种改进的 YOLOv8-CBW
模型,通过改进 C2f 模块引入 CA 注意力机制构成 C2f-
CA 模块,增强模型对光学相似性下缺陷微弱特征的定位

能力;结合双向特征金字塔网络 BiFPN 优化多尺度特征

融合机制,缓解深层网络特征衰减导致的细节丢失问题,

抑制图案对缺陷检测的干扰;采用 WIoU-v3 损失函数动

态调整边界框回归权重,提升透明背景下缺陷边缘的定

位精度。 实验结果表明,YOLOv8-CBW 模型在数据集上

实现了 82. 2%的 mAP @ 0. 5 和 49. 3% 的 mAP @ 0. 5 ∶
0. 95,较 YOLOv8s 模型精度显著提升,同时参数量仅增

加 0. 11×106,计算量增幅 0. 3
 

GFLOPs,验证了改进策略

的高效性与轻量化特性。 消融实验与主流算法对比进一

步证明,该模型在检测精度与计算效率间实现了平衡,为
包装袋智能质检提供了高效的技术支持。 尽管本文取得

了预期的进展,但也认识到在数据集的缺陷种类丰富性

及双面印刷样本的覆盖面上仍有进一步拓展的空间。 未

来的研究将重点关注数据集的优化,特别是在增加双面

印刷包装袋样本比例以及引入更多样化的缺陷类型,以
提升模型在复杂多缺陷场景下的鲁棒性与适用性。
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