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摘　 要:针对传统图像质量增强算法处理不同场景效果较差的问题,提出了一种基于动态自适应优化模型的新型图像质量增强

方法,以适应不同场景的需求,提升图像质量增强的效果。 首先,根据待增强图像的大气散射特性,构建出一种动态自适应优化

模型,并采用图像评价指标峰值信噪比(PSNR)与结构相似性(SSIM)设计出上述模型的目标函数,为不同场景下的图像质量增

强提供评估标准;在此基础上,设计了一种合作竞争学习算子,由此提出合作竞争人类学习优化算法,以计算出模型的最优透射

率阈值 t0 、滤波窗口 n、参数 ω ,从而构建出最优的动态自适应优化模型,实现不同场景图像质量增强。 最后,利用 SOTS 标测试

集中图像和 6 幅实际场景图像进行图像质量增强实验, 并将其与对比度限制的自适应直方图均衡多尺度融合算

法(CLAHEMF)、基于亮度融合透射率的改进暗通道先验算法(IDCPLT)和暗通道先验模型-粒子群优化算法( DCP-PSO)3 种方

法进行对比分析。 实验结果表明,所提出方法无论是主观视觉效果还是客观评价指标,均优于其他 3 种对比方法,从而充分验

证所提出方法的有效性与可行性。
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Abstract:
 

To
 

address
 

the
 

issue
 

of
 

poor
 

performance
 

of
 

traditional
 

image
 

quality
 

enhancement
 

algorithms
 

across
 

different
 

scenes,
 

a
 

novel
 

image
 

quality
 

enhancement
 

method
 

based
 

on
 

dynamic
 

adaptive
 

optimization
 

model
 

is
 

proposed
 

to
 

meet
 

the
 

diverse
 

requirements
 

of
 

various
 

scenes
 

and
 

improve
 

the
 

effectiveness
 

of
 

image
 

quality
 

enhancement.
 

Firstly,
 

a
 

dynamic
 

adaptive
 

optimization
 

model
 

is
 

constructed
 

based
 

on
 

the
 

atmospheric
 

scattering
 

characteristics
 

of
 

the
 

enhanced
 

image.
 

And
 

the
 

objective
 

function
 

of
 

the
 

model
 

is
 

designed
 

using
 

image
 

quality
 

assessment
 

metrics,
 

PSNR
 

and
 

SSIM,
 

to
 

provide
 

evaluation
 

standards
 

for
 

image
 

quality
 

enhancement
 

in
 

different
 

scenes.
 

Based
 

on
 

this,
 

a
 

cooperative-competitive
 

learning
 

operator
 

is
 

designed
 

and
 

cooperative-competitive
 

human
 

learning
 

optimization
 

algorithm
 

is
 

proposed
 

to
 

calculate
 

the
 

optimal
 

transmission
 

threshold
 

t0 ,
 

filtering
 

window
 

size
 

n ,
 

and
 

weighting
 

parameter
 

ω .
 

Then
 

the
 

optimal
 

dynamic
 

adaptive
 

optimization
 

model
 

is
 

constructed
 

to
 

achieve
 

image
 

quality
 

enhancement
 

in
 

different
 

scenes.
 

Finally,
 

image
 

quality
 

enhancement
 

experiments
 

are
 

conducted
 

using
 

images
 

from
 

the
 

SOTS
 

benchmark
 

test
 

set
 

and
 

six
 

real
 

scene
 

images.
 

The
 

proposed
 

method
 

is
 

compared
 

with
 

three
 

other
 

methods,
 

i. e.
 

CLAHEMF,
 

IDCPLT
 

and
 

DCP-PSO.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

outperforms
 

the
 

three
 

comparison
 

methods
 

in
 

terms
 

of
 

both
 

subjective
 

visual
 

effects
 

and
 

objective
 

evaluation
 

metrics,
 

thereby
 

fully
 

validating
 

the
 

effectiveness
 

and
 

feasibility
 

of
 

the
 

proposed
 

approach.
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0　 引　 言

　 　 随着科学技术的不断发展,视频监控技术被广泛地

应用于交通管理、安全防护、智慧城市等多个领域,成为

信息采集与环境感知的重要手段[1] 。 然而,受成像设备

自身性能的限制以及雾天等复杂环境因素的影响,所获

取的图像往往存在清晰度低、对比度差、细节缺少等问

题[2] 。 这不仅降低了图像的可用性,也对后续图像的进

一步分析与研究带来新的挑战[3] 。 因此,如何在复杂成

像条件下有效提升图像质量,具有重要的研究意义与应

用价值。
国内外研究人员对图像质量增强进行了大量的研究

并取得了丰硕的研究成果。 目前,图像质量增强算法可

分为图像增强技术、图像复原技术、深度学习技术 3 类。
对于图像增强技术而言,其通过直接增强图像的对比度

和亮度来改善图像视觉效果,常见方法包括基于直方图

均衡化算法[4] 和 Retinex 理论算法[5] 。 尽管这些方法能

够在一定程度上提高图像清晰度,但它们通常没有考虑

图像退化的具体成因,导致增强后的图像效果往往不能

达到预期效果。 为了更加有效地改善增强后图像质量,
学者们开始研究图像复原技术。 该方法通过分析图像退

化原因、建立退化模型、补偿丢失信息来实现图像质量恢

复,其中偏振成像方法[6] 和先验知识方法[7] 是最为典型

的技术方法。 Zhang 等[8] 提出了一种增强局部和全局对

比度的图像质量增强方法,并采用多尺度融合策略,将局

部对比度增强图像和全局对比增强图像融合从而互补优

势,有效地提高图像清晰度。 Zhu 等[9] 提出了一种基于

大气光估计的新型去雾算法,通过线性场景深度模型和

雾线模型估计出大气光和透射率,并利用大气散射模型

恢复为清晰图像。 偏振成像方法能够利用景深信息和大

气散射系数来复原图像,但由于其需要用户交互操作,使
用上存在一定的限制。 为此,研究者们开始探索雾霾等

环境因素的分布规律,以便获取其更加精准的先验条件。
Yadav 等[10] 在暗通道先验(dark

 

channel
 

prior,
 

DCP)方法

的基础上提出了一种用于单图像去雾的鲁棒多尺度基于

加权的边缘平滑滤波器( RMWEF),将 DCP 方法所估计

的传输图细化,实现图像增强。 Zhou 等[11] 结合伽马校正

幂函数和空间线性调整,提出了一种基于多特征先验融

合(MFPF)的图像质量增强方法,进一步优化图像复原

效果。 赵明华等[12] 提出一种基于照度与场景纹理注意

力的低光图像增强算法,利用低照度图像最小通道约束

对正常曝光图像的照度和纹理进行注意力图估计,并利

用上述注意力估计图来引导图像亮度提升,有效地增强

了图像质量。
随着深度学习技术的迅速发展,深度学习算法也逐

步应用于图像质量增强中。 刘洋等[13] 提出了一种基于

增强深度曲线估计网络(EnDCE-Net)的无监督弱光图像

增强算法,该算法在低光照环境下能够显著提高图像清

晰度和细节信息。 Lu 等[14] 提出了一种多分支拓扑残差

块网络,同时增强图像的噪声和亮度等多重特征,从而有

效地建立了源图像与增强后图像之间的映射关系,最终

实现了图像的增强处理。 Cai 等[15] 提出了一种用于暗光

图像增强方法,将 Retinex 理算法与 Transformer 网络相结

合,有效地处理图像增强过程中面临的噪声、曝光等问

题,增强了图像细节的恢复效果。 此外,学者们将暗通道

先验模型与智能算法相结合,并取得了较好的研究结果。
苏腾华等[16] 提出一种结合暗通道先验的生成对抗网

络(generative
 

adversarial
 

network,GAN)方法,通过暗通道

先验优化生成对抗网络,提高网络的收敛性能,进一步提

高了图像增强效果。 Thomas 等[17] 将暗通道先验模型与

伽马矫正技术结合,提出一种基于颜色校正变换的暗通

道先验图像增强方法,取得了较好的图像复原效果。
Rahmawati 等[18] 提出一种透射图优化的拉普拉斯变换图

像增强方法,通过拉普拉斯滤波和图像增强技术,提高了

暗通道先验的传输图重建效果,提升了增强后图像的清

晰度。 Li 等[19] 提出一种基于条件对抗生成网络( cGAN)
的图像增强方法,该方法直接训练雾图和清晰图之间的

映射关系,突破了大气散射模型的限制,获得了优异的图

像质量增强效果。 田昊等[20] 提出了一种基于暗通道先

验模型与粒子群优化算法( DCP-PSO)的图像增强方法,
利用 PSO 算法来求解图像中平均亮度范围内的保留因

子,实验结果表明该方法可在一定程度上实现简单场景

下的图像自适应增强处理。
以上研究人员对图像质量增强进行了大量的分析研

究,并取得了一定的研究成果。 然而,现有方法通常针对

特定场景进行图像质量增强处理,随着环境信息的不断

变化,其图像质量增强效果难以自适应调节。 尽管深度

学习技术可实现图像自适应增强处理,但通常需要大量

的数据进行学习和训练,且计算过程耗时、实时性较差。
在实际应用中,待处理的环境通常是未知且多变的,需实

时获得处理后图像效果。 基于此,本文构建一种动态自

适应 优 化 模 型 ( dynamic
 

adaptive
 

optimization
 

model,
 

DAOM),由此提出了一种基于动态自适应优化模型的新

型图像质量增强方法,并构建了合作竞争人类学习优化

算法来动态优化 DAOM 模型,从而有效地满足了环境动

态变化下图像质量增强的自适应需求。
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1　 基于动态自适应优化模型的新型图像质
量增强方法

　 　 基于物理模型的图像增强算法是利用大气散射模型

来复原图像。 该算法的核心思路是估计图像中的大气光

强度和透射率,并利用这些估计值来反向推演大气散射

模型,从而实现图像质量增强效果。 大气散射模型原理

如图 1 所示,该模型的数学表达式为:
I(x) = J(x) t(x) + A × [1 - t(x)] (1)

式中: I(x) 表示观测到的待增强图像信息; J(x) 表示增

强后的图像信息; t(x) 表示场景透射率; A 表示全局大

气光值,其通常由图像中最亮的像素值给出。
若逆推导计算出增强后的图像信息 J(x) ,则需先求

出 t(x) 和 A 的数值大小。

图 1　 大气散射模型原理[21]

Fig. 1　 Principle
 

diagram
 

of
 

atmospheric
 

scattering
 

model[21]

1. 1　 动态自适应优化模型

　 　 为了使本方法对不同场景下图像增强具有自适应特

性,需构建一种 DAOM。 首先,给定一幅待增强图像,图
像上每个像素点 x = (x,y) 的暗通道 Jdark(x) 由式(2)计

算可得。
Jdark(x) =min

c
min
y∈Ω(x)

Ic(y)( ) → 0 (2)

式中: Ic(y) 表示像素 y 在颜色通道 c 上(红色、绿色、蓝
色)的数值; Ω(x) 是以像素 x 为中心的滤波局部窗口,
其滤波窗口大小通常为 n × n; min

y∈Ω(x)
Ic(y) 为局部窗口内颜

色通道 c 的最小值。
然后,计算场景透射率 t(x) 。 对于第 c 个颜色通

道,大气光值被定义为 Ac ,将式( 1) 两边同时除以 Ac,
可得:

Ic(x)
Ac

= t(x)
Jc(x)
Ac

+ [1 - t(x)] (3)

式中:c 表示红色、绿色、蓝色 3 个颜色通道。

假设每个滤波窗口的 t(x) 为常数,即为 t̂( x),并对

式(3)两边进行暗通道计算(最小值运算)可得:

min
c

min
y∈Ω(x)

Ic(y)
Ac

( ) = t̂(x) min
c

min
y∈Ω(x)

Jc(y)
Ac

( ) + [1 -

t̂(x)] (4)
因 Ac 总为正值,由式(2)可得:

min
c

min
y∈Ω(x)

Jc(y)
Ac

( ) = 0 (5)

将式(5)代入式(4),可计算得粗略透射率 t̂(x) 表

达式如下:

t̂(x) = 1 -min
c

min
y∈Ω(x)

Ic(y)
Ac

( ) (6)

考虑大气光照成分的影响,使增强后图像效果更加

自然,通常需保留一定程度的原始图像特征,因此需对

式(6)中引入一个参数 ω (0< ω ≤1),可得到最终透射率

计算表达式如下:

t̂(x) = 1 - ω ×min
c

min
y∈Ω(x)

Ic(y)
Ac

( ) (7)

在计算出透射率 t(x) 和大气光值 A 后,将其代入大

气散射模型中可恢复出场景亮度,从而求解出 J(x) ,其
表达式如式(8)所示。

J(x) = I(x) - A
t(x)

+ A (8)

然而,当透射率 t(x) 取值接近 0 时,增强后图像整

体白场过度,图像信息几乎变为噪声。 为解决此问题,设
定透射率不小于阈值 t0,从而避免过度白场的问题。

J(x) = I(x) - A
max( t(x),t0)

+ A (9)

在所构建的模型中,透射率阈值 t0、滤波窗口大小

n × n 和参数 ω 会影响增强后图像质量。 若透射率过小,
图像会过于明亮,细节和对比度丢失;而透射率过大则可

能导致图像增强效果不佳。 同时,滤波窗口大小也会影

响图像增强效果,较大的窗口有利于准确地估计模糊区

域透射率,但会导致图像边缘模糊且产生光晕效应;而较

小的窗口能保留更多细节,但可能导致图像增强效果不

佳。 因此,针对不同场景图像信息,优化透射率阈值 t0、
滤波窗口大小 n × n和参数 ω显得尤为重要,需引入智能

优化算法来优化计算上述参数,有效提升了图像增强后

的视觉效果。
1. 2　 合作竞争人类学习优化算法(CCHLO)
　 　 由于透射率阈值 t0、滤波窗口大小 n × n 和参数 ω 具

有关联性强、耦合性高的特性,为有效地计算出它们的最

优数值,提出了一种 CCHLO,CCHLO 通过执行随机学习

算子、个体学习算子、合作竞争学习算子、社会学习算子

来搜索问题的最优解信息。
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1)随机学习算子(RLO)
随机学习可帮助个体尝试新的事物和知识,并引导

个体去探索和发现新的知识信息。 当 CCHLO 算法执行

RLO 时,候选解会随机赋予 0 或 1。 RLO 使得算法更好

地探索解空间,特别在算法陷入局部最优时,随机学习算

子可有效地帮助算法跳出局部最优。 随机学习算子表达

式如式(10)所示。

x ij = RLO(0,1) =
0, 0 ≤ r1 ≤ 0. 5
1,其他{ (10)

式中: r1 为 0 ~ 1 的随机数。
2)个体学习算子(ILO)
个体学习可帮助人们获取知识、技能和经验,从而提

高个人的知识和能力。 为了模拟人类的个体学习行为,
种群 中 每 个 个 体 的 最 优 解 储 存 在 个 体 知 识 数 据

库(individual
 

knowledge
 

database,
 

IKD)中,其被定义为:

IKD =

ikd1

ikd2

︙
ikd i

︙
ikdN

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

,1 ≤ i ≤ N (11)

ikdi =

ikdi1

ikdi2

︙
ikdip

︙
ikdiL

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=

iki1,1 iki1,2…iki1,j …iki1,M

iki2,1 iki2,2…iki2,j…iki1,M

︙︙︙︙
ikip,1 ikip,2…ikip,j…iki1,M…
︙︙︙︙
ikiL,1 ikiL,2…ikiL,j…iki1,M

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

,1≤p≤L

(12)
式中: ikd i 为个体 i 的个体知识数据库; ikd ip 表示第 i 个
体的第 p 个最佳知识; ik ip,j 是第 i个体中第 p 个最佳知识

的第 j 维比特信息; L 是 ikd i 的大小。
当 CCHLO 算 法 执 行 个 体 学 习 算 子 ( individual

 

learning
 

operator,
 

ILO)时,将会在 IKD 中所存储的最佳个

体知识来生成新的候选解,表达式如下:
x ij = ik ip,j (13)
在种群更新后,将计算个体适应度值,以更新 IKD 数

据库。 当 ikd i 中的数据大小满足预设值 L ,若当前适应

度值优于 IKD 中所保存最差解个体的适应度值,则当前

候选解取代 IKD 中对应的最差解个体信息。
3)合作竞争学习算子(CCLO)
合作竞争学习策略在人类学习过程中发挥着极其重

要的作用,为提高基本 HLO 算法的优化性能,设计了一

种 CCLO。 合作竞争算子的引入使算法在更新过程中增

加了个体信息选择的多样性,更有效地获取周围空间信

息,提升算法个体间的信息交换效率。 CCLO 算子在个

体位置更新时,利用式(14)计算其与其他个体之间的欧

氏距离。

d(x i,xo) = ∑
N-1

o = 1
(x i - xo)

2 (14)

式中: x i 为当前个体; xo 为除当前粒子外的其他个体; N
为种群数量; d(x i,xo) 代表当前个体与其他个体间的欧

氏距离。
选择与其欧氏距离较小的 G 个个体进行合作竞争,

即利用被选择个体对应 IKD 的适应度值进行比较,竞争

胜者的 IKD 将会被当前个体学习,如下:
fit( ikdog) < fit( ikdo1) < … < fit( ikdo3) < … <

fit( ikdoG) (15)
式中: fit( ikdog) 为个体通过竞争后优胜者的 IKD 适应度

值; ikdog 为优胜者的个体数据库,从而选择优胜者的 IKD
进行学习,如式(16)所示。

x ij = CCLO(0,1) = ikog,j (16)
合作竞争学习算子使当前个体与距离自身较近的其

他个体进行合作,并选中个体 IKD 进行学习,优胜个体的

IKD 信息被识别,并将其作为当前候选解的学习目标。
CCLO 算子的引入能够增加算法的收敛性,使得个体能

够向着更好的 IKD 进行学习。
4)社会学习算子(SLO)
社会学习对于人类学习有着至关重要的作用,通过

学习社会知识,个体向社会群体中的最优个体汲取新知

识。 社会知识数据库(social
 

knowledge
 

database,
 

SKD)为
群体中最优适应度位置的数据库,储存着当前为止种群

最优适应度的位置。 CCHLO 中通过执行社会学习算子,
使个体能够向着种群适应度最优个体学习更好的知识,
从而达到提升自身能力的目的,社会知识数据库 SKD 如

式(17)所示。

SKD =

skd1

skd2

︙
skdq

︙
skdH

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

=

sk11 sk12…sk1j …sk1M

sk21 sk22…sk2j …sk2M

︙︙︙︙
skq1 skq2…skqj …skqM

︙︙︙︙
skH1 skH2…skHj …skHM

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

, 1 ≤ q≤H

(17)
式中: skdq 表示 SKD 的第 q 个解; H 是 SKD 数据库的大

小。 为了能在单目标问题中获得更好优化性能, 在

CCHLO 中 SKD 数据库大小 H 被设为 1。 当候选解适应

度优于 SKD 数据库中存储个体的适应度时,则更新 SKD
信息。

当 CCHLO 执 行 社 会 学 习 算 子 ( social
 

learning
 

operator,
 

SLO)时,将采用式(18)更新候选解。
x ij = skqj (18)
综上所述,CCHLO 通过执行随机学习算子、个体学



· 92　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

习算子、合作竞争学习算子和社会学习算子搜索最优解

信息。 CCHLO 算法表达式如式(19)所示。

x ij =

RLO(0,1),0 ≤ r2 ≤ pr
ik ip,j,pr ≤ r2 ≤ pi
CCLO(0,1),pi ≤ r2 ≤ pc
skqj,其他

ì

î

í

ï
ïï

ï
ïï

(19)

其中, r2 为 0 和 1 之间的随机数, (pr - 0) 为算法执

行随机学习算子的概率, (pi - pr) 为算法执行个体学习

算子的概率, (pc - pi) 为算法执行合作竞争学习算子的

概率, (1 - pc) 为执行社会学习算子的概率。
同时,在算法迭代搜索过程中,重新学习策略可有效

地帮助个体纠正之前的错误理解或不良习惯,促进正确

知识的形成。 为进一步提高 CCHLO 算法性能,将重新学

习策略引入 CCHLO 中。 算法是否执行重新学习策略需

设置触发条件,首先判断群体中的第 i 个体中的 IKD 是

否更新,如式(20)所示,将不更新次数用 T i 表示。 当 T i

达到预设值 T1 时,则触发重新学习策略,重新学习策略

如式(21)所示。
T i = T i + 1,ikd t

i = ikd t -1
i

0,ikd t
i ≠ ikd t -1

i
{ (20)

ikd ij =
0,0 ≤ r3 ≤ 0. 5
1,其他{ (21)

式中: r3 为 0 和 1 之间的随机数。
1. 3　 目标函数构建

　 　 为计算出最佳的动态自适应优化模型,需为其构建

出一个目标函数。 峰值信噪比 ( PSNR) 和结构相似

度(SSIM)作为评价图像质量增强最直接有效的指标,可
有效地帮助人们辨识图像增强的优劣。

1)PSNR 通过计算原始无失真图像与处理后图像之

间的像素级差异,利用信号保真度来量化图像失真程度。
PSNR 反映算法对透射率图的整体估计质量,对保持场

景深度连续性和避免光晕伪影至关重要。 当 PSNR 高于

40
 

dB 时,说明图像质量极好(即非常接近原始图像);当
PSNR 取值 30 ~ 40

 

dB 内,则表示图像质量是好的(即失

真可察觉但可接受);当 PSNR 取值低于 30
 

dB 时,则说

明图像质量较差。 PSNR 和均方差( mean
 

squared
 

error,
MSE)表达式如下:

PSNR = 10lg (2n - 1) 2

MSE
(22)

MSE = 1
H × W∑

H

i = 1
∑

W

j = 1
( I( i,j) - J( i,j)) 2 (23)

式中: I( i,j) 表示待增强图像信息; J( i,j) 表示表示增强

后的图像信息; H、W 分别表示图像的高度和宽度。
2)SSIM 作为图像质量评估领域的核心指标,通过模

拟人类视觉系统的感知特性,从多维特征空间评估图像

的结构完整性。 与指标 PSNR 不同,SSIM 通过建立亮

度(luminance)、对比度( contrast) 和结构( structure) 3 个

感知维度的联合分析模型。 SSIM 指标取值范围为[ 0,
1],当数值越大时,表示图像失真越小,SSIM 的表达式

如下:
SSIM(x,y) = [ l(x,y) α·c(x,y) β·s(x,y) γ] (24)

l(x,y) =
2μxμy + c1

μx
2 + μy

2 + c1

(25)

c(x,y) =
2σxσy + c2

σx
2 + σy

2 + c2

(26)

s(x,y) =
σxy + c3

σxσy + c3
(27)

式中: l(x,y)、c(x,y)、s(x,y) 分别表示图像的亮度、对
比度和结构 3 个感知维度。

对于图像增强而言,PSNR 与透射率 t(x) 成正比,而
SSIM 与 t(x) 成反比。 若 t(x) 过大,PSNR 会升高,但

SSIM 会降低。 而若 t(x) 过小,SSIM 会升高,但 PSNR 会

降低,图像恢复细节增多,图像增强效果明显,却往往伴

随着颜色失真和高噪声。 因此,在搜索过程中需找到一

个平衡点,既能保持图像的清晰度,又能保持图像的结构

相似性。 由于 PSNR 与 SSIM 计算量级不统一, 需对

PSNR 与 SSIM 进行归一化处理。 由于 SSIM 取值范围

为[0,1],现只需对 PSNR 进行归一化处理,即:

PSNR′ =
PSNR - PSNRmin

PSNRmax - PSNRmin
(28)

同时,引入系数 α、β 对 PSNR′ 与 SSIM 进行加权处

理,可确保目标函数的结果更加准确。 所构建的目标函

数 Obj(α,β,t0,n,ω) 表达式如下:
Obj(α,β,t0,n,ω) = α × PSNR′ + β × SSIM (29)
其中, α + β = 1。

1. 4　 色彩质量增强

　 　 因处理后的图像颜色会有偏暗的现象,需采用 HSV
模型对图像进行颜色增强处理。 将图像 RGB 空间的色

彩转换至 HSV 空间,即将 R、G、B 分量数值即归一化处

理,公式如式(30) ~ (32)所示。
V = max(R,G,B) (30)

H =

60(G - B)
V - min(R,G,B)

,V = R

120 + 60(B - R)
V - min(R,G,B)

,V = G

240 + 60(R - B)
V - min(R,G,B)

,V = B

0,R = G = B

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(31)

S =
V - min(R,G,B)

V
,V ≠ 0

0,V = 0
{ (32)
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其中,转换后 V 和 S 取值范围均为[0,
 

1],H 在 0° ~
360°之间。

同时,对色彩进行增强,表达式如下:
V i = V × gainv (33)
S i = S × gains (34)

式中: gainv 为值增益; gains 为饱和度增益; V i 为增益后

的明度; S i 为增益后的饱和度。 因 V i 越大,图像越趋于

白色, S i 越大,图像颜色越深。 为使处理后的图像亮度增

加适度, gainv 和 gains 取[1. 1,
 

1. 3]。
最后,再利用 HSV-RGB 图像信息转化公式,将增强

后的图像信息从 HSV 空间转换回 RGB 空间,从而获得

一幅质量增强的清晰图像。
1. 5　 基于动态自适应优化模型的新型图像质量增强方

法实现流程

综上,利用 CCHLO 算法优化所构建的 DAOM 模型,
从而实现不同场景图像质量的自适应增强。 基于动态自

适应优化模型的新型图像质量增强方法实现流程如图 2
所示。

图 2　 基于动态自适应优化模型的图像质量增强实现流程

Fig. 2　 Implementation
 

process
 

of
 

image
 

quality
enhancement

 

method
 

based
 

on
 

DAOM

步骤 1)读取待增强的模糊图像信息。
步骤 2)初始化 CCHLO 算法参数,如种群大小、最大

迭代次数和概率执行参数等。
步骤 3)随机初始化 CCHLO 算法的种群,设置目标

函数中的透射率阈值 t0、滤波窗口大小 n × n 和参数 ω ,

以及权重系数 α、β。
步骤 4)根据式(29)计算初始种群的目标函数数值,

并初始化 IKD 和 SKD。
步骤 5)根据式(19)执行随机学习算子、个体学习算

子、合作竞争学习算子和社会学习算子生成新的候选解。
步骤 6)计算所有新候选解的目标函数数值,并根据

目标函数值的优劣来更新 IKD 和 SKD,当候选解目标函

数值优于原目标函数值,则将新候选解保存于 IKD 和

SKD 中。
步骤 7)当达到最大迭代数时,结束搜索,将搜索到

的全局最优值作为 DAOM 模型的最佳参数;否则,跳转

至步骤 5)。
步骤 8)利用最佳 DAOM 模型对待增强图像进行处

理,最后输出增强后图像和对应的评价指标。

2　 实验结果与分析

　 　 为验证所提出 DAOM 的有效性,将其与基于对比度

限制的自适应直方图均衡多尺度融合算法 ( contrast
 

limited
 

adaptive
 

histogram
 

equalization
 

based
 

multi-scale
 

fusion,
 

CLAHEMF) [22] 、基于亮度融合透射率的改进暗通

道先验算法( improved
 

dark
 

channel
 

prior
 

with
 

luminance-
fused

 

transmission,
 

IDCPLT) [23] 和融合暗通道先验与粒子

群算法的去雾改进算法( dark
 

channel
 

prior
 

and
 

particle
 

swarm
 

optimization,
 

DCP-PSO) [20] 进行图像质量增强实验

对比。 仿真平台为 64 位 window11 操作系统,硬件配置

为 12th
 

Gen
 

Intel(R)
 

Core(TM)
 

i7-12700H
 

2. 30
 

GHz,软
件平台为 MATLAB

 

R2021a。
2. 1　 参数敏感性分析实验

　 　 为分析参数 α、β 对图像增强效果的影响,现取 10 组

不同的 α、β 参数值来构建 DAOM 模型,以实现图像增强

处理,并通过增强后的图像效果及评价指标进行参数敏

感性分析实验。 选取 SOTS(synthetic
 

objective
 

testing
 

set)
标测试集中的一幅模糊图像进行实验, 不同参数下

DAOM 模型增强后效果如图 3 所示。 为更加客观地评价

实验结果,选取 PSNR、SSIM 和信息熵作为评价指标。 信

息熵表示图像灰度级的比特平均数,反映了图像信源的

平均信息量。 当图像熵越大,表示图像的灰度分布越均

匀,图像效果通常更好,所有评价指标结果如表 1 所示。
由图 3 和表 1 可知,当参数 α、β 取值为[0. 4,0. 6]

时,所提出的 DAOM 模型增强后的图像效果与评价指标

均表现较好。 当 α、β 取值较大或较小时,所增强图像的

视觉质量较差,且评价指标结果整体均劣于第 4 组、第 5
组和第 6 组的实验结果。
2. 2　 标准数据集对比实验

　 　 为验证所提出方法的有效性,选取 SOTS 标测试集
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中图像进行对比实验,源图像与 4 种方法的实验对比效

果如图 4 所示,并计算不同方法下的评价指标如表 2 ~ 5
所示。 由图 4 和表 2 ~ 5 可看出,在 SOTS 测试集中,

DAOM 模型在光照强度不同场景下具有较强自适应性,
增强后的图像效果较好。

图 3　 敏感性分析实验结果

Fig. 3　 Experiment
 

results
 

of
 

sensitivity
 

analysis

表 1　 评价指标对比

Table
 

1　 Comparison
 

of
 

evaluation
 

indicators
组别 参数取值 PSNR SSIM 信息熵

第 1 组 α= 0. 1,β= 0. 9 56. 616
 

9 0. 979
 

70 6. 805
 

9
第 2 组 α= 0. 2,β= 0. 8 56. 651

 

3 0. 979
 

90 6. 805
 

2
第 3 组 α= 0. 3,β= 0. 7 60. 386

 

4 0. 991
 

39 7. 537
 

2
第 4 组 α= 0. 4,β= 0. 6 65. 080

 

8 0. 997
 

09 7. 541
 

5
第 5 组 α= 0. 5,β= 0. 5 64. 407

 

1 0. 996
 

60 7. 575
 

7
第 6 组 α= 0. 6,β= 0. 4 65. 814

 

9 0. 997
 

55 7. 506
 

3
第 7 组 α= 0. 7,β= 0. 3 56. 749

 

5 0. 980
 

28 6. 837
 

0
第 8 组 α= 0. 8,β= 0. 2 56. 656

 

5 0. 979
 

88 6. 806
 

0
第 9 组 α= 0. 9,β= 0. 1 56. 616

 

9 0. 979
 

70 6. 805
 

9

　 　 1)从图 4(b)可以看出,CLAHEMF 方法的图像增强

效果相对较差。 特别对于雾天图像Ⅰ和雾天图像Ⅴ,图
像的模糊程度较为明显。 从评价指标对比表可知,
CLAHEMF 方法所计算的评价指标较差,该方法无法有

效地对图像进行清晰化处理。
2)从图 4 ( c) 可看出, IDCPLT 方法的增强效果比

CLAHEMF 方法有着一定改善,但所获取的图像亮度仍

然相对偏暗,且不具有自适应特性。 从表 2 ~ 4 可看出,
相对于 CLAHEMF 方法,IDCPLT 方法在一定程度上提高

了图像清晰化的效果,但评价指标计算数值仍然较差。
3)从图 4( d) 可以看出,DCP-PSO 方法相对于前两

种方法具有自适应的去雾效果,但所处理出的图像近景

质量增强不够彻底。 从表 2 ~ 4 可看出,DCP-PSO 方法较

前两种方法在 PSNR 和 SSIM 上有着一定的提升,但信息

熵却略低于 CLAHEMF 方法。
4)从图 4(e)可知,所提出的 DAOM 模型能够有效且

适应地增强不同场景的图像,增强后图像的清晰化效果

显著。 从表 2 ~ 4 可知,相对于 CLAHEMF 方法,DAOM 模

型 PSNR 值约提升 45%,SSIM 值约提升 5. 32%,信息熵

值约提升 0. 59%。 同时,相比于 IDCPLT 方法,DAOM 模

型的 PSNR 值约提升 13. 23%,SSIM 值约提升 1. 27%,信
息熵值约提升 11. 62%。 此外,相较于 DCP-PSO 方法,
DAOM 模型 PSNR 值约提升了 6. 27%,SSIM 值约提升了

0. 91%,信息熵值约提升了 6. 99%,从而有效地提升了增

强后图像质量。
5) 由图 4 和表 5 可以看出, CLAHEMF 方法与

IDCPLT 方法在图像增强任务中具有较短的运行时间,但
其增强效果相对有限。 尽管 DCP-PSO 方法通过引入动

态优化机制在一定程度上提升了图像增强质量,但由于

PSO 算法的迭代寻优,导致算法的运行时间成本显著增

加。 相比之下,所提出的 DAOM 模型在兼顾图像增强效

果的同时,有效降低了算法的计算成本,实现了较优的算

法性能平衡。
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图 4　 SOTS 测试集对比实验

Fig. 4　 SOTS
 

test
 

set
 

comparison

表 2　 PSNR 对比(SOTS)
Table

 

2　 Comparison
 

of
 

PSNR(SOTS)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM

雾天图像Ⅰ 42. 7 56. 9 59. 4 65. 9
雾天图像Ⅱ 49. 0 59. 5 63. 7 67. 1
雾天图像Ⅲ 47. 7 59. 3 63. 2 65. 3
雾天图像Ⅳ 47. 7 60. 3 64. 0 65. 6
雾天图像Ⅴ 42. 5 56. 2 59. 9 65. 5
雾天图像Ⅵ 43. 2 56. 6 61. 8 65. 6

表 3　 SSIM 对比(SOTS)
Table

 

3　 Comparison
 

of
 

SSIM
 

(SOTS)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM

雾天图像Ⅰ 0. 935 0. 981 0. 987 0. 998
雾天图像Ⅱ 0. 986 0. 990 0. 991 0. 998
雾天图像Ⅲ 0. 967 0. 989 0. 991 0. 997
雾天图像Ⅳ 0. 968 0. 991 0. 990 0. 997
雾天图像Ⅴ 0. 916 0. 978 0. 984 0. 997
雾天图像Ⅵ 0. 915 0. 980 0. 987 0. 997
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表 4　 信息熵对比(SOTS)
Table

 

4　 Comparison
 

of
 

information
 

entropy(SOTS)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM

雾天图像Ⅰ 7. 33 6. 80 7. 13 7. 43
雾天图像Ⅱ 7. 62 7. 06 7. 41 7. 66
雾天图像Ⅲ 7. 45 6. 78 6. 97 7. 52
雾天图像Ⅳ 7. 16 6. 74 6. 83 7. 17
雾天图像Ⅴ 6. 95 6. 21 6. 59 6. 97
雾天图像Ⅵ 7. 13 5. 84 6. 18 7. 15

表 5　 运行时间对比(SOTS)
Table

 

5　 Comparison
 

of
 

running
 

time(SOTS)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM

雾天图像Ⅰ 0. 344 0. 330 5. 08 4. 37
雾天图像Ⅱ 0. 320 3. 35 5. 11 4. 46
雾天图像Ⅲ 0. 362 0. 313 4. 93 4. 40
雾天图像Ⅳ 0. 325 0. 324 5. 08 4. 65
雾天图像Ⅴ 0. 342 0. 321 5. 21 4. 54
雾天图像Ⅵ 0. 390 0. 311 5. 11 4. 52

2. 3　 实际场景图像对比实验

　 　 为进一步验证动态自适应优化模型的适用性,选取

6 幅不同环境的实际场景图像进行对比实验,其实验对

比效果如图 5 所示,对应的评价指标如表 6 ~ 9 所示。
1)从图 5(b)可知,CLAHEMF 方法图像增强效果不

明显,且处理后的图像边缘有一定程度的锐化。 且

CLAHEMF 方法的评价指标较其他两种方法偏低,说明

其无法较好地实现图像清晰化。
2)从图 5( c)可以看出,IDCPLT 方法对图像的增强

效果相对于 CLAHEMF 方法有着一定程度的提升,但增

强后图像仍存在颜色失真、亮度偏暗以及无法自适应的

问题。 从表 6 ~ 8 可知,IDCPLT 方法处理后的图像信息

熵偏低,其无法实现图像的清晰化。
3)从图 5( d) 可见,DCP-PSO 方法相较于前两种方

法具备一定的自适应能力,并能有效抑制图像噪声,但对

部分图像的增强效果不明显。 结合表 6 ~ 8 可知,DCP-
PSO 在 PSNR 和 SSIM 指标上有所提升,显示出其在结构

保持与失真控制方面的优势。 然而,其在部分图像上的

信息熵较低,说明细节恢复有限,图像清晰度仍存在提升

空间。
4)从图 5(e)可看出,DAOM 模型对于不同光照强度

场景均具有较好的图像增强效果。 同时,DAOM 模型所

获取的评价指标相比其他 3 种对比方法有着显著提升,
与 CLAHEMF 方法相比,PSNR 值约提升 55. 42%,SSIM
值约提升 5. 84%, 信息熵值约提升 9. 58%。 相比于

IDCPLT 方法,PSNR 值约提升 16. 96%,SSIM 值约提升

1. 36%,信息熵值约提升 17. 42%。 相较于 DCP-PSO 方

法,PSNR 值约提升 8. 65%,SSIM 值约提升 0. 78%,信息

熵值约提升 15. 03%。
5)从图 5 与表 9 可知,尽管 DAOM 模型在实际应用

中的处理速度略低于 CLAHEMF 与 IDCPLT 方法,但其在

图像质量方面具有显著优势。 相比于结合 PSO 优化的

DCP-PSO 方法,DAOM 模型在保持图像质量不降低的前

提下,有效缩短了运行时间,表现出更优的处理效率与实

用性。
综上,所提出的 DAOM 模型可有效地实现不同场景

下图像的增强效果,且所计算的评价指标均优于其他 3
种对比方法,具有较强的自适应特性。

表 6　 PSNR 对比(网图)
Table

 

6　 Comparison
 

of
 

PSNR(web
 

image)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM
天安门 45. 4 61. 8 63. 6 68. 9
高楼 44. 3 59. 0 61. 4 66. 0
车辆 43. 2 56. 5 59. 7 68. 0
行人 41. 9 56. 5 64. 0 68. 0
站台 41. 7 55. 8 60. 8 63. 0
湖泊 43. 1 55. 6 61. 8 69. 4

表 7　 SSIM 对比(网图)
Table

 

7　 Comparison
 

of
 

SSIM
 

(web
 

image)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM
天安门 0. 984 0. 994 0. 995 0. 999
高楼 0. 984 0. 988 0. 993 0. 998
车辆 0. 952 0. 979 9. 89 0. 999
行人 0. 914 0. 979 9. 87 0. 999
站台 0. 934 0. 976 9. 83 0. 995
湖泊 0. 892 0. 987 9. 90 0. 993

表 8　 信息熵对比(网图)
Table

 

8　 Comparison
 

of
 

information
 

entropy
 

(web
 

image)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM
天安门 6. 81 7. 13 7. 25 7. 57
高楼 6. 70 7. 15 7. 07 7. 35
车辆 6. 36 4. 97 5. 11 7. 20
行人 6. 67 6. 78 6. 51 7. 30
站台 6. 96 7. 02 7. 17 7. 46
湖泊 6. 76 5. 28 5. 79 7. 22

表 9　 运行时间对比(网图)
Table

 

9　 Comparison
 

of
 

running
 

time(web
 

image)
图像类型 CLAHEMF IDCPLT DCP-PSO DAOM
天安门 0. 328 0. 478 5. 03 4. 38
高楼 0. 673 0. 501 4. 98 4. 36
车辆 0. 673 0. 331 5. 12 4. 27
行人 0. 348 0. 333 5. 00 4. 23
站台 0. 370 0. 316 4. 94 4. 38
湖泊 0. 412 0. 317 4. 99 4. 29
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图 5　 实验结果对比(图片来自互联网)
Fig. 5　 Comparison

 

of
 

experimental
 

results
 

(image
 

is
 

from
 

the
 

internet)

3　 结　 论

　 　 本文提出了一种 DAOM 的新型图像质量增强方法,
利用合作竞争人类学习优化算法来动态优化所构建的

DAOM 模型,从而实现不同场景图像的自适应增强处理。
首先,根据图像增强的特征,构建一种动态自适应优化模

型,并利用图像指标 PSNR 与 SSIM 构建出所设计模型的

目标函数;在此基础上,设计了一种新型的合作竞争人类

学习优化算法来求解出模型的最优透射率阈值 t0、滤波

窗口 n 、参数 ω ,从而构建出最优的 DAOM 模型,实现不

同场景图像增强处理。 最后,利用 12 组不同场景图像进

行实验对比验证。 实验结果表明,在 SOTS 标测试集和

实际场景中,DAOM 模型相比其他 3 种方法都能较好的

增强图像质量。 特别对于实际场景中的行人图像,相较

于 CLAHEMF 方 法, DAOM 模 型 的 PSNR 值 约 提 升

62. 29%、SSIM 值 约 提 升 9. 29%, 信 息 熵 值 约 提 升

9. 44%;相对于 IDCPLT 方法,DAOM 模型的 PSNR 值约
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提升 20. 35%、SSIM 值约提升 2. 04%,信息熵值约提升

7. 67%;相对于 DCP-PSO 方法,DAOM 模型的 PSNR 值约

提升 6. 25%、 SSIM 值约提升 1. 21%,信息熵值约提升

12. 13%,从而有效地验证了所提出方法的可行性。 本文

针对传统图像增强算法在不同场景下效果较差的问题,
提出了一种具有自适应的图像增强模型,为图像处理的

后续工作提供了有利支撑。 尽管 DAOM 模型在保证图

像质量与算法运行效率方面取得了一定平衡,但其图像

质量增强效果相较于深度学习方法仍有不足。 因此,在
未来的研究中需在保持算法高效的同时提高图像质量增

强的效果,提升其在实际应用中的实时性和实用性。
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