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基于 D2 GANomaly 的轮胎缺陷检测研究∗

刘韵婷　 冯欣悦　 李思维　 张智星

(沈阳理工大学自动化与电气工程学院　 沈阳　 110159)

摘　 要:针对 GANomaly 模型潜在向量对正样本特征表征能力不足、解码器重构图像质量欠佳以及判别器判别能力不足的问

题,提出一种基于 D2 GANomaly 的轮胎 X 光图像缺陷检测方法。 首先,在编码器中引入多尺度动态残差模块( MDRB),通过可

变核卷积(AKConv)与残差连接的组合,动态融合多尺度特征,提高细粒度特征提取能力;其次,在解码器部分引入通道残差子

像素解码器(CRSD),利用双解码器并行学习,优化复杂纹理和细节的重建质量;最后,判别网络采用二元并行判别网络

(DDMN),通过可切换空洞卷积(SAC)选取最优空洞扩张系数,增强模型对轮胎 X 光图像中不同大小的缺陷检测能力,进而提

高判别能力。 实验结果表明,在受试者工作特征曲线下面积(AUC)与平均精度( AP)两项核心性能指标上,所提方法均实现了

显著提升,相较于原始模型 GANomaly
 

AUC 值提升了 13. 7%,AP 值提升了 16. 4%。 由此可见,改进后的模型有效提升了轮胎缺

陷的检测精度。
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Abstract:
 

Aiming
 

at
 

the
 

issues
 

of
 

insufficient
 

feature
 

representation
 

capability
 

of
 

latent
 

vectors
 

for
 

positive
 

samples,
 

suboptimal
 

reconstructed
 

image
 

quality
 

by
 

the
 

decoder,
 

and
 

inadequate
 

discriminative
 

ability
 

of
 

the
 

discriminator
 

in
 

the
 

GANomaly
 

model,
 

a
 

tire
 

X-
ray

 

image
 

defect
 

detection
 

method
 

based
 

on
 

D2 GANomaly
 

is
 

proposed.
 

First,
 

a
 

multi-scale
 

dynamic
 

residual
 

block
 

( MDRB)
 

is
 

introduced
 

into
 

the
 

encoder,
 

which
 

combines
 

adjustable
 

kernel
 

convolution
 

( AKConv)
 

with
 

residual
 

connections
 

to
 

dynamically
 

fuse
 

multi-scale
 

features
 

and
 

enhance
 

fine-grained
 

feature
 

extraction
 

capabilities.
 

Second,
 

a
 

channel
 

residual
 

sub-pixel
 

decoder
 

( CRSD)
 

is
 

incorporated
 

into
 

the
 

decoder
 

section,
 

utilizing
 

dual
 

decoders
 

for
 

parallel
 

learning
 

to
 

optimize
 

the
 

reconstruction
 

quality
 

of
 

complex
 

textures
 

and
 

details.
 

Finally,
 

the
 

discriminator
 

employs
 

a
 

dual
 

discriminative
 

module
 

network
 

( DDMN),
 

which
 

uses
 

switchable
 

atrous
 

convolution
 

(SAC)
 

to
 

select
 

the
 

optimal
 

dilation
 

rate,
 

thereby
 

enhancing
 

the
 

model’s
 

ability
 

to
 

detect
 

defects
 

of
 

varying
 

sizes
 

in
 

tire
 

X-
ray

 

images
 

and
 

improving
 

its
 

discriminative
 

performance.
 

Experimental
 

results
 

demonstrate
 

significant
 

improvements
 

in
 

two
 

core
 

performance
 

metrics,
 

Area
 

under
 

the
 

receiver
 

operating
 

characteristic
 

curve
 

( AUC)
 

and
 

average
 

precision
 

( AP ).
 

Compared
 

to
 

the
 

original
 

GANomaly
 

model,
 

the
 

proposed
 

method
 

achieves
 

a
 

13. 7%
 

increase
 

in
 

AUC
 

and
 

a
 

16. 4%
 

increase
 

in
 

AP.
 

This
 

indicates
 

that
 

the
 

improved
 

model
 

effectively
 

enhances
 

the
 

accuracy
 

of
 

tire
 

defect
 

detection.
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0　 引　 言

　 　 随着人工智能与车联网技术的深度融合,自动驾驶

正加速向 L3、L4 级高阶阶段演进[1] ,对汽车架构和零部

件性能提出革命性要求。 轮胎作为唯一与路面接触的部

件,在制造过程中,及时发现并排除潜在缺陷,确保产品

质量,对于保障行车安全、提升汽车品牌形象具有重要

意义。
近年来,无监督算法[2-3] 在异常检测领域内彰显出显

著优势,与有监督算法[4-5] 不同,无监督方法直接处理原

始数据,无需依赖人工,不仅降低了人工成本,还增强了

模型的泛化能力,为检测复杂多变的轮胎缺陷提供了创

新性 的 思 路[6-7] 。 其 中, 生 成 对 抗 网 络 ( generative
 

adversarial
 

network,
 

GAN) [8] 借助对抗式训练方式,能够

从未标注的数据里学习到有效的特征表征,从而实现对

异常的识别。 GANomaly[9] 作为 GAN 的变体,利用其高

效的特征提取和生成能力,提出基于图像的缺陷检测框

架。 在此基础上进行改进的 skip-GANomaly[10] 模型,引
入了跳跃连接[11] ,通过有效融合浅层与深层特征信息,
显著提升了模型的重构性能。 虽然跳跃连接的引入提高

了模型的重建能力,但同时提高了过拟合的风险。 其他

关于 GAN 的异常检测模型还包括,Schlegl 等[12] 提出使

用异 常 检 测 生 成 对 抗 网 络 ( anomaly
 

detection
 

with
 

generative
 

adversarial
 

networks,
 

AnoGAN)利用隐空间迭代

搜索与重构差异进行图像缺陷检测。 为解决 AnoGAN 的

速度与稳定性问题,Schlegl 等[13] 又在 AnoGAN 的基础上

引入了编码器和优化训练策略,显著提升了检测效率与

性能。 Zenati 等[14] 用编码器将真实图像映射为潜在变

量,将潜在变量输入到判别器内进行缺陷检测,无需生成

图像进行判别,大大降低了测试时间,提高了异常检测的

效率。 ALAE[15] 结合了自编码器[16] 和 GAN 的优点,通过

学习高质量的潜在空间表示,显著提升了正常样本与异

常样本的区分能力。 He 等[17] 利用级联 GAN 和边缘修

复特征融合技术,实现了对复杂背景下多样缺陷的准确

检测。 Li 等[18] 提出了将残差网络与注意力机制融入到

生成器架构之中,显著增强了模型对复杂特征的提取效

能,使其能够更为精准地捕捉到轮胎缺陷图像中的关键

特征信息。
生成对抗网络中自编码器执行特征提取任务时,下

采样过程往往会导致部分关键信息遗漏,造成细节丢失。
而在上采样阶段,又容易将图像中的边缘和细节信息“平

滑”掉,造成图像的局部结构和纹理特征模糊化,从而影

响重构图像的视觉质量。 而判别器可能会因为整体结构

看起来合理而判定图像为真实,从而忽略了局部的缺陷

细节。 这些问题都会影响缺陷检测的实际效果,使检测

精度与可靠性降低。 针对以上问题,本文以 GANomaly
模型为基础进行改进,首先在编码器中引入了多尺度动

态 残 差 模 块 ( multi-scale
 

dynamic
 

residual
 

block,
 

MDRB) [19] ,通过可变核卷积(arbitrary
 

kernel
 

convolution,
 

AKConv) [20] 与残差连接的有效组合,动态融合多尺度特

征,提高细粒度特征提取能力。 然后在解码器部分引入

通道 残 差 子 像 素 解 码 器 ( channel-attention
 

residual
 

subpixel
 

decoder,
 

CRSD)
 [21] ,优化重建图像的质量。 最

后,将单一的判别器改为二元并行判别网络 ( dual
 

discriminative
 

module
 

network,
 

DDMN) [22] ,实现对图像细

节处更好的判别。

1　 研究内容

1. 1　 多尺度动态残差模块

　 　 编码器处理的原始数据结构复杂。 传统卷积虽能提

取局部特征,但因依赖池化操作或深层网络获取全局信

息,易导致关键细节丢失,尤其影响异常检测这类对细微

变化敏感的任务。 本文提出在编码器中引入 MDRB,如
图 1 所示。 通过动态融合多尺度特征,有效提取从细粒

度到粗粒度的多层次特征,减少特征缺失问题,优化了模

型对异常样本的检测能力。

图 1　 多尺度动态残差模块

Fig. 1　 Multi-scale
 

dynamic
 

residual
 

block
 

diagram
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　 　 多尺度特征提取与残差连接的有效组合,对于提升

模型性能至关重要。 通过相加和相乘的操作,能够将不

同尺度和层次的特征信息进行有效结合,在轮胎缺陷检

测中,小尺度特征可捕捉到轮胎表面细微的缺陷特征;大
尺度特征则能把握轮胎整体的结构信息。 通过融合,生
成更丰富更具代表性的特征表示,有助于更准确地识别

轮胎的各种缺陷,同时有效避免梯度消失等问题,提升模

型在轮胎缺陷检测任务中的整体性能。
针对传统卷积核的固定结构所存在的局限性问题,

在 MDRB 中引入 AKConv(图 2),该卷积支持任意形状的

采样点分布,同时可以分布在输入特征图上的任何位置。
每个 AKConv 后都紧接着 LeakyReLU 激活函数,进一步

增强特征的非线性表达能力。 AKConv 的灵活性显著增

强了模型对轮胎多样化缺陷形状的适应性,同时提高了

对轮胎复杂结构的学习能力。 此外,AKConv 的采样模式

还能在训练流程中不断优化,即便引入了更多自由度,依
然保持高效的计算能力,确保在处理大量轮胎图像进行

缺陷检测时,模型既能准确识别缺陷,又能保持较高的运

行效率,为轮胎质量检测提供可靠的技术支持。
1. 2　 通道残差子像素解码器

　 　 解码器的重建过程是异常检测的关键环节之一,重
建图像质量的好坏直接影响着模型的性能。 如果解码器

能够高质量地重建正常样本,那么这些样本的重建误差

　 　 　 　

图 2　 可变核卷积结构的详细示意图

Fig. 2　 Detailed
 

schematic
 

diagram
 

of
 

the
arbitrary

 

kernel
 

convolution
 

structure

会相对较小。 对于异常样本,由于它们与训练数据的分

布不同,解码器难以有效地重建,因此会产生较大的重建

误差。 这种差异使得模型更容易区分正常和异常样本,
从而提高异常检测的准确性。 为了提高解码器的重建能

力,将原来单一的解码器改为两个并行的解码器结构。
这两个解码器用于并行学习,均包含 5 个上采样块,最后

将两个特征图进行融合。 其中 CRSD 在 5 个上采样块中

引入 通 道 自 适 应 特 征 注 意 力 ( channel
 

attention
 

and
 

adaptive
 

feature
 

fusion,
 

CAFF),如图 3 所示。

图 3　 通道自适应特征注意力结构

Fig. 3　 Channel
 

attention
 

and
 

adaptive
 

feature
 

fusion
 

structure
 

diagram

　 　 CAFF 是基于多尺度通道注意模块[23] 改进而来的,
其对气泡、杂质等缺陷的特征更加敏感,增强了轮胎异常

检测的性能。 具体训练过程如式(1) ~ (4)所示。
Z1 = BN(PC(δ(BN(PC(x))))) (1)
Z2 = BN(PC(δ(BN(PC(AP(x)))))) (2)
Z3 = AP(ζ(PC(σ(PC(x))))) (3)
Z = (Z1 􀱇 Z2) 􀱇 (x 􀱋 Z3) (4)

式中: x 表示输入; Z1、Z2、Z3 表示中间过程的输出; Z 表

示最终的输出; BN表示 BatchNorm 层; PC 表示 Conv 层;
δ 表示 ReLU 激活函数; σ 表示 Sigmoid 激活函数; AP 表

示 AvgPooling 操作; ζ 表示 LeakyReLU 激活函数;􀱇表示

对应元素相加;􀱋表示对应元素相乘。

随后连接子像素卷积层[24] 和 3 个残差块。 子像素

卷积层可减少训练时间、节省内存,提供更多上下文信息

以提升生成轮胎图像质量,同时残差块能学习轮胎图像

高频信息与细节。
改进后的模型在重构轮胎图像时,能够更精准地聚

焦于轮胎的关键结构和纹理信息,这不仅有助于提高轮

胎图像的重构质量,而且在检测异常轮胎时,能够更敏锐

地捕捉到异常轮胎与正常轮胎图像之间的差异,从而提

升对轮胎异常情况检测的准确性和鲁棒性。
1. 3　 二元并行判别网络

　 　 判别器通过区分真实与生成样本推动生成器优化,
其学习的特征与生成器特征结合辅助异常检测。 原有的
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全局判别器在评估时会忽略图像不同部分可能存在的复

杂性和多样性的问题。 例如,一张图像中可能存在某些

区域非常逼真,而其他区域则明显是由生成器伪造的,但
全局判别器却只能给出一个笼统的评分,无法具体指出

哪些部分更接近真实,哪些部分需要改进。 这种方式不

仅影响了模型训练的有效性,也导致生成器学习到不理

想的图像特征。
为了改善这一问题,引入 DDMN,如图 4 所示,代替

原有的全局判别器,能够捕捉到图像中不同区域的特征,
增强对图像的识别能力。 判别器均由四个结构块和一个

二维卷积层组成,每个结构块均包括可切换空洞卷积

( switchable
 

atrous
 

convolution,
 

SAC) [25] 、InstanceNorm 层

和
 

LeakyReLU
 

激活函数层。

图 4　 二元并行判别网络

Fig. 4　 Dual
 

discriminative
 

module
 

network

SAC 用于提取特征,其采用扩张率为 r 的空洞卷积,
　 　 　 　

通过在相邻卷积核元素间填充 r-1 个零值元素,将原始

k×k 尺寸的卷积核扩展为 k+(k-1)( r-1)尺寸,同时避免

了参数规模和计算复杂度的增加。 图 5 所示是 SAC 的

整体结构,输入首先进入全局上下文组件,通过全局平均

池化结合 1×1 卷积操作实现特征整合,随后与原始输入

进行逐元素相加融合。 经初步融合的特征图被输入至可

切换空洞卷积模块,该模块通过 Switch 函数动态计算标

准卷积与空洞卷积的权重配比,输出二者的加权结果。
最终,处理后的特征图再次进入全局上下文组件完成后

续处理。 如式(5)所示。
y = S(x)Conv(x,w,1) + (1 - S(x))Conv(x,w +

Δw,r) (5)
式中: y 为输出; x 为输入; w 表示权重; r 表示空洞率,当
r= 1 时代表普通卷积; Δw 为可学习的权重; S(x) 为

Switch 开关函数,由 5×5 的平均池化层和 1×1 的卷积层

组成。
InstanceNorm 对特征图归一化以加速训练和提升稳

定性,LeakyReLU
 

作为激活函数解决
 

ReLU
 

在负半轴梯

度为
 

0
 

的问题,利于梯度传递。 判别器 1 对生成器生成

的图像进行评估,判别器 2 对真实图像进行评估,判别器

执行各自的任务,输出两个标量值,表示图像被视为真实

的概率,并分别通过均方误差损失函数计算与真实标签

之间的差异。

图 5　 可切换空洞卷积结构

Fig. 5　 Switchable
 

atrous
 

convolution
 

structure
 

diagram

1. 4　 整体网络结构

　 　 D2GANomaly 网络模型架构如图 6 所示。 网络结构

包含 3 个子网络,第 1 个子网络是一个自编码器,作为生

成网络。 第 2 个子网络是一个再编码器,结构与生成网

络中的编码器一样。 第 3 个子网络是一个判别网络。
D2GANomaly 网络模型在编码器中将 MDRB 整合至每个

卷积层的后方,提高了模型特征提取的能力。 而在解码

器部分引入了一个 CRSD,形成双解码器结构,一个关注

全局,另一个关注细节。 将两个特征图进行融合,充分结

合两个特征图的特点,有效提高了重构能力。 此外,采用

DDMN 作为判别网络,通过结合两个判别器的输出,能够

更全面地评估图像,提升了模型缺陷检测的能力。

1. 5　 损失函数

　 　 D2GANomaly 采用了 3 个损失函数,包括重建损失、
编码损失和对抗损失。

1)重建损失表示原始输入图像 x 和通过生成网络重

建的图像 G(x) 之间的差异,重构损失函数如式 ( 6)
所示。

Lcon = Ex ~ px
‖x - G(x)‖1 (6)

式中:‖‖1 表示 L1 范数。
2)编码损失表示原始输入样本通过编码器得到的隐

向量 Z 与重构样本再次通过编码器得到的隐向量 Z′ 之
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图 6　 D2 GANomaly 网络模型

Fig. 6　 D2 GANomaly
 

network
 

model

间的差异,编码损失函数如式(7)所示。
Lenc = Ex ~ px

‖Z -Z′‖2 (7)
式中:‖‖2 表示 L2 范数。

3)对抗损失对抗损失的核心目的是通过生成器与判

别器的动态博弈,强制生成器精确学习正常样本的数据

分布,对抗损失函数如式(8)所示。
Ladv = Ex ~ px

‖MSE(D(x)) - MSE(D(G(x)))‖2

(8)
式中: D(x) 表示真实数据样本 x 在判别器上的输出;
D(G(x)) 为生成数据样本 G(x) 在判别器上的输出;
‖‖2 表示 L2 范数。

2　 实验

2. 1　 实验数据集

　 　 实验采用公开的 MVTec
 

AD[26] 数据集和实验室自制

的轮胎 X 光图像数据集开展。
1)MVTec

 

AD 数据集

MVTec
 

AD 数据集包含 15 个类别,涵盖 5 种纹理与

10 种物体(如胶囊、榛子、拉链等),总计 5
 

354 张图像,
1

 

900 个标注区域。 其中,训练集包含 3
 

629 张无缺陷图

像,测试集包含 1
 

725 张图像(正常样本与缺陷样本)。
测试集涵盖 73 种不同类型的缺陷,如外观缺陷,结构缺

陷等。 该数据集类别分布呈现不平衡性、类内样本存在

较大变异性、部分缺陷具有细微性,能够有效模拟真实工

业场景,为算法性能的验证提供了高度贴近实际应用的

测试环境。 MVTec
 

AD 数据集( 胶囊) 部分图片如图 7
所示。

图 7　 MVTec
 

AD 数据集展示图

Fig. 7　 MVTec
 

AD
 

dataset
 

display
 

diagram

2)自制轮胎 X 光图像数据集

实验室自制的轮胎 X 光图像数据集包含训练集、测
试集、真值标注 3 部分,遵循“训练-测试-评估”的标准流

程,确保模型训练、性能验证和结果量化的完整性。 训练

阶段选取 10
 

000 张无缺陷轮胎 X 光图像作为训练样本,
如图 8 所示。 模型完成训练后,通过测试集评估其训练

效能。 该测试集包含无缺陷图像与缺陷图像两类,其中

缺陷图像包含 4 种不同类型的轮胎 X 光缺陷样本,无缺

陷图像与缺陷图像均为 1
 

908 张。 具体缺陷类型及数量

如表 1 和图 9 所示。
2. 2　 实验相关参数

　 　 1)参数设置
 

在模型参数优化中,选用性能稳健、收敛快的 Adam
优化器[27] ,兼具动量与自适应学习率优势。 动量参数设

为 b1 = 0. 5、b2 = 0. 999,其中 b1 根据 WGAN-GP 稳定性理

论[28] 取值,增强对梯度变化的敏感度,利于对抗训练动
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图 8　 轮胎 X 光图像无缺陷样本图

Fig. 8　 Tire
 

X-ray
 

normal
 

sample
 

image

图 9　 轮胎 X 光图像缺陷样本图

Fig. 9　 Tire
 

X-ray
 

abnormal
 

sample
 

image

表 1　 轮胎 X 光图像缺陷类型及数量

Table
 

1　 Types
 

and
 

number
 

of
 

defects
 

in
 

Tire
 

X-ray
缺陷类型 图像数量

杂质 513
气泡 499

帘线弯曲 441
胎稀 455
混合 1

 

908

态平衡,b2 可优化稀疏梯度[29] 确保长期训练的鲁棒性。
初始学 习 率 设 为 1 × 10-4, 处 于 Adam 典 型 推 荐 范

围[27](1×10-3 ~ 1×10-5)内,可避免训练初期梯度爆炸或

震荡。 隐变量维度 Z 依据 DCGAN[30] 的基准设置为 100,
可有效捕捉并表征数据中的关键特征。 模型训练 100
轮,第 80 ~ 100 轮模型进入稳态,此轮次被广泛验证能平

衡训练充分性与效率[28,30-31] 。
2)实验平台配置

 

实 验 的 开 发 平 台 配 置 为 Python3. 8 和
 

Pytorch1. 10. 0,深度卷积神经网络开发工具。 计算机的

硬件配 置 为 Intel ( R )
 

Xeon ( R )
 

Gold
 

6430、 NVIDIA
 

GeForce
 

RTX
 

4090
 

GPU、 24 G
 

内 存。 编 程 环 境 为

Ubuntu20. 04 操作系统。
3)评价指标

本文采用受试者工作特征曲线下面积( area
 

under
 

curve,
 

AUC)和平均精度( average
 

precision,
 

AP) 作为核

心评价指标,对不同模型在检测任务中的性能展开量化

评估与对比分析。
(1)

 

评价指标 AUC
AUC 指 代 的 是 受 试 者 工 作 特 征 曲 线 ( receiver

 

operating
 

characteristic
 

curve,ROC)曲线下面积。 ROC 曲

线以假正类率( false
 

positive
 

rate,FPR) 为横轴,真正类

率(true
 

positive
 

rate,TPR)为纵轴,反映模型区分正常样

本与缺陷样本的整体能力。 FPR 和 TPR 计算如式( 9)
所示。

FPR = FP
FP + TN

TPR = TP
TP + FN

ì

î

í

ï
ï

ï
ï

(9)

式中:FP 为误判为缺陷的正常样本数;TN 为正确识别的

正常样本数;TP 为正确识别的缺陷样本数;FN 为漏检的

缺陷样本数。
AUC 借助遍历所有可能分类阈值,得到不同的 FPR

和 TPR 点,连接这些点就形成了 ROC 曲线,而 AUC 用于

评估模型性能,取值范围在 0 ~ 1 之间,AUC 值越大,表明

模型区分正样本和负样本的能力越强。
(2)

 

评价指标 AP
AP 是对精确率-召回率曲线( precision-recall

 

curve,
PRC)的量化评估指标。 PRC 曲线以召回率为横轴,精确

率为纵轴,能够更真实地反映模型在目标类别上的识别

效能。 召回率和精确率的计算如式(10)所示。

Recall = TP
TP + FN

Precision = TP
TP + FP

ì

î

í

ï
ï

ï
ï

(10)

AP 是通过对 PRC 曲线上不同召回率点对应的精确

率进行加权平均得到的,本质上是对 PRC 曲线所反映信

息的进一步提炼和总结,用于综合衡量模型在识别正例

方面的性能。
2. 3　 实验结果分析

　 　 1)MVTec
 

AD 数据集

为了验证所提方法的有效性,将本文方法与 4 种典

型的异常检测方法在 MVTec
 

AD 数据集上进行详细对比

分析,实验结果如表 2 所示。
从表 2 可知,改进后的 D2GANomaly 模型在 MVTec

 

AD 数据集的 15 类缺陷检测中,AUC 均值为 0. 781,较原

始 GANomaly 模型提升了 0. 138。 相较于 AnoGAN、 F-
AnoGAN 和 Skip-GANomaly, AUC 均 值 分 别 提 升 了

0. 209、0. 203 和 0. 094,验证了改进方法的有效性。 在不

同模型对同种缺陷的 AUC 值对比中,AnoGAN 在 grid 缺

陷检测、GANomaly 在 transistor、wood、zipper 缺陷检测以

及 Skip-GANomaly 在 zipper 缺陷检测上,呈现出一定的优

势。 这是因为不同类型缺陷的图像背景在复杂程度上存

在差异,且模型复杂度各不相同。 在处理一些具有简单

纹理或几何特征的缺陷时,复杂度较低的模型反而能更

聚焦于这些缺陷的关键特征,因此个别模型会在检测精
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度上体现出优势。 不过,总体而言,多数缺陷种类在不同

模型下的 AUC 值仍低于改进后的 D2GANomaly 模型。 综

上所述,改进后的 D2GANomaly 模型在异常检测任务中

具有较强的普适性。
表 2　 MVTec

 

AD 数据集 AUC 值实验结果对比

Table
 

2　 Comparison
 

table
 

of
 

experimental
 

results
 

for
 

AUC
 

values
 

on
 

MVTec
 

AD
 

dataset
种类 AnoGAN[12] F-AnoGAN[13] GANomaly[9] Skip-GANomaly[10] D2GANomaly(本文)
bottle 0. 680 0. 503 0. 747 0. 764 0. 820
cable 0. 560 0. 612 0. 627 0. 613 0. 803

capsule 0. 593 0. 534 0. 531 0. 671 0. 780
carpet 0. 302 0. 543 0. 443 0. 625 0. 752
grid 0. 879 0. 762 0. 801 0. 808 0. 844

hazelnut 0. 654 0. 637 0. 676 0. 668 0. 804
leather 0. 691 0. 588 0. 694 0. 648 0. 814

metal_nut 0. 350 0. 426 0. 428 0. 673 0. 752
pill 0. 384 0. 435 0. 456 0. 617 0. 838

screw 0. 720 0. 652 0. 667 0. 760 0. 820
tile 0. 669 0. 721 0. 593 0. 619 0. 778

toothbrush 0. 438 0. 552 0. 680 0. 690 0. 748
transistor 0. 545 0. 527 0. 723 0. 623 0. 698

wood 0. 579 0. 578 0. 781 0. 746 0. 753
zipper 0. 537 0. 605 0. 809 0. 781 0. 716
均值 0. 572 0. 578 0. 643 0. 687 0. 781

　 　 2)实验室自制数据集

为了进一步验证改进后的模型在图像缺陷检测方面

相较于其他模型具备更优越的性能,在实验室自制数据

集上进行了详细的对比实验分析。 对 GANomaly 和当下

具有代表性的模型与 D2GANomaly 进行比较,得到的

ROC 和 PRC 对比如图 10、11 所示。

图 10　 ROC 对比

Fig. 10　 ROC
 

comparison
 

chart

观察图 10 可以看到,假正类率较低时,D2GANomaly
的真 正 类 率 最 高, 曲 线 下 覆 盖 面 积 最 大, 表 明

D2GANomaly 能以更低的误报率, 识别出更多真实异

常(轮胎缺陷),对异常的识别与区分能力更强,性能

最优。
观察图 11 可知,D2GANomaly 曲线整体处于上方区

域,在召回率变化过程中,其精确率始终维持相对较高水

平,曲线覆盖面积更大。 这表明 D2GANomaly 既能有效

图 11　 PRC 对比

Fig. 11　 PRC
 

comparison
 

chart

识别更多真实轮胎缺陷,又能降低将正常样本误判为异

常的情况,性能表现尤为突出。
(1)对比实验

本文对模型 AnoGAN、F-AnoGAN、GA-Nomaly、Skip-
GANomaly 以及 D2GANomaly 进行训练和测试,得到的结

果如表 3 所示。
表 3　 轮胎 X 光图像实验结果对比

Table
 

3　 Comparison
 

table
 

of
 

experimental
 

results
values

 

of
 

tire
 

X-ray
 

images
模型 AUC AP

AnoGAN12] 0. 741 0. 803
F-AnoGAN[13] 0. 669 0. 682
GANomaly[9] 0. 786 0. 747

Skip-GANomaly[10] 0. 807 0. 792
D2GANomaly(本文) 0. 923 0. 911
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　 　 根据以上数据分析,改进后的 D2GANomaly 模型在

相同的轮胎 X 光图像数据集上,其 AUC 值和 AP 值均展

现出显著的提升。 具体而言,相较于原始的 GANomaly 模

型,D2GANomaly 的 AUC 值提高了 0. 137,AP 值提高了

0. 164。 此外,与 AnoGAN、F-AnoGAN 和 Skip-GANomaly 相

比,D2GANomaly 在 AUC 值上分别提升了 0. 182、0. 254 和

0. 116,在 AP 值上分别提升了 0. 108、0. 229 和 0. 119。 这一

系列实验结果有力地验证了 D2GANomaly 模型的有效性。
编码损失衡量的是输入图像的潜在表示和重构图像

的潜在表示之间的差距。 基于模型的结构组成,基础模

型与改进后的模型进行了编码损失对比,对比如图 12
所示。

图 12　 编码损失函数曲线对比

Fig. 12　 Comparison
 

of
 

encoding
 

loss
 

curves

观察图 12 可以发现,GANomaly 模型编码损失的收

敛值为 0. 022
 

7,改进后的模型 D2GANomaly 的收敛值为

0. 016 6,编码损失下降了 0. 006
 

1。

　 　 重构损失衡量的是输入图像和生成器生成的重构图

像之间的差距,依据模型结构组成的特点,选取当前具有

代表性的模型进行比较,对比如图 13 所示。

图 13　 重构损失函数曲线对比

Fig. 13　 Comparison
 

of
 

reconstruction
 

loss
 

curves

观察图 13 可以发现,D2GANomaly 的重构损失函数

比其他几个模型都要小,D2GANomaly 的重构损失基本上

接近 0. 015,表明模型具有很好的重构能力。
综上结果表明,改进后的模型在捕捉和重建图像方

面具有较强的能力,确保了更高质量的图像重建,提高了

模型的异常检测能力。
(2)消融实验

在相同实验条件下,通过消融实验评估各模块对模

型性能的贡献。 以 GANomaly 为基准模型,在轮胎 X 光

图像数据集上展开测试。 所有实验均遵循先前提及的相

同参数设置,以确保实验的一致性和准确性。 实验结果

如表 4 所示。

表 4　 消融实验数据表

Table
 

4　 Ablation
 

experiment
 

data
 

table
模型 气泡 杂质 胎稀 帘线弯曲 混合

GANomaly 0. 815 0. 804 0. 769 0. 745 0. 786
GANomaly+MDRB 0. 816 0. 841 0. 892 0. 861 0. 850
GANomaly+CRSD 0. 809 0. 826 0. 948 0. 862 0. 855
GANomaly+DDMN 0. 754 0. 804 0. 939 0. 959 0. 878

GANomaly+MDRB+CRSD 0. 853 0. 877 0. 977 0. 965 0. 913
GANomaly+MDRB+DDMN 0. 831 0. 854 0. 989 0. 986 0. 910

GANomaly+MDRB+CRSD+DDMN 0. 848 0. 828 0. 980 0. 980 0. 923

　 　 本次消融实验的数据,不仅验证了 D2GANomaly 在

轮胎 X 光图像缺陷检测任务中的有效性,还揭示了不同

模块对于提升模型性能的重要作用,从混合缺陷的数据

来看,各模块对模型识别缺陷的能力均有显著提升:单独

引入 MDRB 时,基础特征提取得到优化,AUC 值提升至

0. 850;单独引入 CRSD 时,在提升重构图像质量的同时

优化了混合异常识别能力, AUC 值上升至 0. 855; 将

DDMN 模块替换原全局判别器后,识别重构图像与真实

图像之间差异的能力增强,AUC 值上升至 0. 878。 而当 3
个模块协同作用时,混合 AUC 值跃升至 0. 923,不仅突破

了单模块的局限,更全面提升了缺陷检测的能力。
3　 结　 论

　 　 本文提出的 D2GANomaly 模型,在原始的 GANomaly
模型的基础上,编码器部分引入 MDRB,提高了对细节的

特征提取能力;解码器部分引入 CRSD,提高处理复杂背

景和细节的能力,进而提升了重构图像质量;用 DDMN
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代替原有的全局判别器,增强了鉴别能力。 实验结果表

明,该方法在轮胎 X 光图形缺陷检测任务中具有较高的

准确率和鲁棒性。 然而,实验发现,相较于其他类型的缺

陷,杂质缺陷区域与正常背景的灰度差异较小,导致

D2GANomaly 模型对其检测效果欠佳。 未来研究将聚焦

于缺陷与背景差异较小场景下的检测方法,重点探索如

何放大低对比度缺陷与正常背景间的细微特征差异,进
一步提升异常检测的判别精度。
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