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Research on tire defect detection based on D’GANomaly

Liu Yunting Feng Xinyue Li Siwei Zhang Zhixing
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Abstract: Aiming at the issues of insufficient feature representation capability of latent vectors for positive samples, suboptimal
reconstructed image quality by the decoder, and inadequate discriminative ability of the discriminator in the GANomaly model, a tire X-
ray image defect detection method based on D*GANomaly is proposed. First, a multi-scale dynamic residual block ( MDRB) is
introduced into the encoder, which combines adjustable kernel convolution ( AKConv) with residual connections to dynamically fuse
multi-scale features and enhance fine-grained feature extraction capabilities. Second, a channel residual sub-pixel decoder (CRSD) is
incorporated into the decoder section, utilizing dual decoders for parallel learning to optimize the reconstruction quality of complex
textures and details. Finally, the discriminator employs a dual discriminative module network (DDMN) , which uses switchable atrous
convolution (SAC) to select the optimal dilation rate, thereby enhancing the model’ s ability to detect defects of varying sizes in tire X-
ray images and improving its discriminative performance. Experimental results demonstrate significant improvements in two core
performance metrics, Area under the receiver operating characteristic curve ( AUC) and average precision ( AP). Compared to the
original GANomaly model, the proposed method achieves a 13. 7% increase in AUC and a 16. 4% increase in AP. This indicates that the
improved model effectively enhances the accuracy of tire defect detection.
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Multi-scale dynamic residual block diagram
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Table 3 Comparison table of experimental results

values of tire X-ray images

BT AUC AP
AnoGAN'? 0.741 0. 803
F-AnoGAN!!3! 0. 669 0. 682
GANomaly!®’ 0.786 0. 747
Skip-GANomaly '’ 0. 807 0.792
D?GANomaly ( A37) 0.923 0.911
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Fig. 12 Comparison of encoding loss curves
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Fig. 13 Comparison of reconstruction loss curves
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Table 4 Ablation experiment data table

By Ul AR N LA Re

GANomaly 0. 815 0. 804 0. 769 0. 745 0.786
GANomaly+MDRB 0.816 0. 841 0. 892 0. 861 0. 850
GANomaly+CRSD 0. 809 0. 826 0.948 0. 862 0.855
GANomaly+DDMN 0.754 0. 804 0.939 0. 959 0. 878
GANomaly+MDRB+CRSD 0.853 0. 877 0.977 0. 965 0.913
GANomaly+MDRB+DDMN 0. 831 0. 854 0.989 0. 986 0.910
GANomaly+MDRB+CRSD+DDMN 0. 848 0. 828 0. 980 0. 980 0. 923

R YR TH il 52 56 19 B0E , ANESIE T DZGANomaly 1
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BN T $ TR A 1 R 11 5 B AR T, DATR A B3l I 190 250 i
KT, 25 BP0 1Y) R 0 394 b B T .
51\ MDRB i, JERlARAE SR EUS BI i fk, AUC (IR T =
0. 850; Ffi 5| A CRSD B, 76 42 Fh 5 #4 P& 5 5 it A [] Bsf
otk TR A 5% R B 68 11, AUC {H L7+ & 0.855; %
DDMN BB 46 Ji 42 Ja 40 11 25 0, U0 B4 R 5 B 5K

({5 22 1] 24 5+ B RE 74858 AUC {8 F T2 0. 878, 124 3
A REIVE I RS AUC [EERTF 2 0. 923, AU
TR SRR B AT AR T T R A 1 BE T .
3 4 it

ASCHR Y D?GANomaly 7Y 8 5 4R 119 GANomaly
RETR ) SERl I St #8825 | A MDRB, $2 5 17 X5 40 1 19
FRIEER IR J7 5 A 253843 51 A\ CRSD, 42 = Ab #4227
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