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Abstract: Wafer map defect pattern classification is a critical step in semiconductor manufacturing, significantly impacting product yield
and production efficiency. To address the limitations of existing deep learning-based wafer map defect pattern classification methods,
such as poor interpretability and high computational resource consumption, this study proposes an improved feature extraction method
based on topological data analysis (TDA). By leveraging persistent homology theory, the method constructs Alpha complexes to
characterize topological structures in wafer maps and quantifies them into discriminative features. Experimental results on a synthetic
wafer map dataset, generated by emulating the geometric distribution characteristics of the WM-811K dataset, demonstrate that replacing
the conventional vietoris-rips ( VR) complex with the Alpha complex reduces the average complex construction time by approximately
82% and decreases memory usage by 10.09%. Compared to state-of-the-art models including DenseNet121, Swin Transformer, and
ConvNeXt, the TDA-based method achieves superior clustering performance, as evidenced by t-SNE visualizations, with a 17.24%
improvement in Silhouette Coefficient over the suboptimal ConvNeXt model, along with a 75% reduction in feature extraction time and a
95% reduction in peak memory consumption. When integrated with a support vector machine ( SVM) classifier, the TDA-based
framework attains an overall classification accuracy of 0.992, outperforming DenseNet (0.989 3) and Swin Transformer (0.982 0).
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Fig. 6 Five types of wafer map defects
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Table 2 Comparative evaluation of feature extraction performance and t-SNE clustering metrics across different methods

A ) B SRR, s P72 MB Silhoucj:tte Calinski Harabasz Davies Bouldin
Coefficient Score Score
TDA-based 242 5.09 177. 40 0. 68 5221.29 0. 46
DenseNet121 1024 11.32 4529.90 0.50 4 700. 44 1. 11
Swin Transformer 768 21.43 3 740.76 0.43 2 348.94 1.92
ConvNeXt 768 20. 62 3761.57 0.58 3 828.29 0. 67
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Fig. 8 t-SNE visualization of feature vector across wafer map defect types using different methods
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Table 3 Comparative performance evaluation of feature extraction methods using SVM classifier

Flod TDA-based DenseNet121 Swin Transformer ConvNeXt
Accuracy Fl1 Recall Accuracy Fl1 Recall Accuracy Fl1 Recall Accuracy F1 Recall
1 0. 987 0.987 0. 987 0.983 0.983 0.983 0.973 0.973 0.973 1. 000 1. 000 1. 000
2 0.997 0.997 0.997 0.990 0. 990 0. 990 0. 990 0.990 0.990 1. 000 1. 000 1. 000
3 0.997 0.997 0.997 0.997 0.997 0.997 0.987 0.987 0. 987 0.990 0.990 0. 990
4 0. 987 0. 987 0. 987 0. 987 0. 987 0.987 0. 987 0.987 0. 987 0.993 0.993 0.993
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Fig. 9  Confusion matrix
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