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摘　 要:晶圆图的缺陷模式分类是半导体生产制造过程中的重要环节,对提高产品良品率与生产效率有着重要意义。 针对现有

深度学习晶圆图缺陷模式分类方法解释性差和资源消耗高等问题,改进了一种基于拓扑数据分析( topological
 

data
 

analysis,
 

TDA)的特征提取方法,其依托持久同调理论,通过构建
 

Alpha 复形(alpha
 

complex)以挖掘晶圆图的拓扑结构,并将其转化为可

量化的拓扑特征。 实验结果表明,在基于 WM-811K 数据集构建的模拟晶圆图数据集上,采用 Alpha 复形代替原 VR 复

形(vietoris-rips
 

complex),平均复形构建时间降低了约 82%,平均内存占用降低了约 10. 09%。 此外,将基于 TDA 的方法与

DenseNet121、Swin
 

Transformer 以及新兴的 ConvNeXt 模型进行了对比,在特征提取方面,t-SNE 可视化结果显示基于 TDA 方法提

取的特征向量取得了最佳的聚类效果,相比于次优的 ConvNeXt,轮廓系数提升了 17. 24%,提取时间降低了约 75%,而内存峰值

降低了约 95%;在分类性能方面,结合支持向量机(SVM)分类器的实验表明,基于 TDA 的模型整体分类准确率高达 0. 992,优于

DenseNet(0. 989
 

3)和 Swin
 

Transformer(0. 982
 

0)。
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Abstract:
 

Wafer
 

map
 

defect
 

pattern
 

classification
 

is
 

a
 

critical
 

step
 

in
 

semiconductor
 

manufacturing,
 

significantly
 

impacting
 

product
 

yield
 

and
 

production
 

efficiency.
 

To
 

address
 

the
 

limitations
 

of
 

existing
 

deep
 

learning-based
 

wafer
 

map
 

defect
 

pattern
 

classification
 

methods,
 

such
 

as
 

poor
 

interpretability
 

and
 

high
 

computational
 

resource
 

consumption,
 

this
 

study
 

proposes
 

an
 

improved
 

feature
 

extraction
 

method
 

based
 

on
 

topological
 

data
 

analysis
 

( TDA).
 

By
 

leveraging
 

persistent
 

homology
 

theory,
 

the
 

method
 

constructs
 

Alpha
 

complexes
 

to
 

characterize
 

topological
 

structures
 

in
 

wafer
 

maps
 

and
 

quantifies
 

them
 

into
 

discriminative
 

features.
 

Experimental
 

results
 

on
 

a
 

synthetic
 

wafer
 

map
 

dataset,
 

generated
 

by
 

emulating
 

the
 

geometric
 

distribution
 

characteristics
 

of
 

the
 

WM-811K
 

dataset,
 

demonstrate
 

that
 

replacing
 

the
 

conventional
 

vietoris-rips
 

(VR)
 

complex
 

with
 

the
 

Alpha
 

complex
 

reduces
 

the
 

average
 

complex
 

construction
 

time
 

by
 

approximately
 

82%
 

and
 

decreases
 

memory
 

usage
 

by
 

10. 09%.
 

Compared
 

to
 

state-of-the-art
 

models
 

including
 

DenseNet121,
 

Swin
 

Transformer,
 

and
 

ConvNeXt,
 

the
 

TDA-based
 

method
 

achieves
 

superior
 

clustering
 

performance,
 

as
 

evidenced
 

by
 

t-SNE
 

visualizations,
 

with
 

a
 

17. 24%
 

improvement
 

in
 

Silhouette
 

Coefficient
 

over
 

the
 

suboptimal
 

ConvNeXt
 

model,
 

along
 

with
 

a
 

75%
 

reduction
 

in
 

feature
 

extraction
 

time
 

and
 

a
 

95%
 

reduction
 

in
 

peak
 

memory
 

consumption.
 

When
 

integrated
 

with
 

a
 

support
 

vector
 

machine
 

( SVM)
 

classifier,
 

the
 

TDA-based
 

framework
 

attains
 

an
 

overall
 

classification
 

accuracy
 

of
 

0. 992,
 

outperforming
 

DenseNet
 

(0. 989
 

3)
 

and
 

Swin
 

Transformer
 

(0. 982
 

0).
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0　 引　 言

　 　 近年来,智能手机、智能机器人、新能源汽车等下游

产业市场的规模持续增长,驱动半导体行业飞速发展,晶
圆的生产制造呈现出大规模化和工艺尺寸微缩化的同

时,多工序叠加效应同样导致缺陷产生概率呈指数级上

升。 遵循电子系统检测的“十倍成本法则”,芯片级未检

出的缺陷在封装后环节将造成 10 倍级经济损失,这使得

晶圆级缺陷的早期检测成为质量管控的关键环节。 在此

背景下,基于测试结果生成的晶圆图(Wafer
 

Map)通过可

视化呈现缺陷空间分布特征,不仅能够直观地反映出晶

圆的整体质量状况,其揭示的缺陷聚集模式(例如特定区

域的频繁失效标记)能帮助工程师快速定位问题所在,从
而指导针对性的改进措施,最终提升产品良率与经济效

益。 可以说,高效可靠的晶圆图缺陷模式分类技术已成

为现代半导体制造流程中保障系统可靠性、提升良率和

降低成本不可或缺的一环。
在神经网络兴起之前,晶圆图缺陷模式分类主要依

赖传统机器学习方法,这类方法通过手工设计特征(如聚

类特征、密度 / 几何 / Radon 特征) 结合分类器(如支持向

量机(support
 

vector
 

machine,SVM))、软投票集成) 实现

分类,在数据集 WM-811K[1] 上准确率可达 94%以上[2-3] 。
但其性能高度依赖特征工程经验,且难以捕捉复杂缺陷

的深层空间关联。 部分学者尝试引入图论方法进行空间

噪声过滤,如 Ezzat 等[4] 提出的邻接聚类算法,虽在高复

杂度缺陷处理中表现优异,但仍受限于小样本验证与参

数敏感性等问题,未能实现工业级应用。
随着 2012 年深度学习方法在 ImageNet 竞赛中取得

突破, 以卷积神经网络 ( convolutional
 

neural
 

network,
 

CNN)为代表的端到端模型开始广泛应用于晶圆图缺陷

模式分类[5-7] 。 Chen 等[8] 提出多源双通道 CNN 特征融

合框架,结合 ECOC-SVM 分类器,在 WM-811K 上实现了

96. 4%缺 陷 识 别 准 确 率; Nafi 等[9] 则 验 证 了 多 种
 

Transformer 模型在晶圆图缺陷模式分类上的有效性,为
该领域提供了新选择。 此外,一些混合方法也展现出潜

力,Kang 等[10] 的动态加权融合框架,通过动态加权融合

手工特征分类器与卷积神经网络的优势,提升晶圆图缺

陷模式分类的准确率。
然而,深度学习模型虽然表现出强大的特征学习能

力,但在晶圆图缺陷模式分类中仍存在几个明显的不足。
首先,CNN 作为黑箱模型,其多层卷积与池化操作缺乏

可解释性,导致缺陷判定依据难以追溯,从而阻碍缺陷成

因分析与工艺优化;其次,深层网络提取的特征维度高且

混杂大量冗余信息,不仅增加计算复杂度,还阻碍模型对

关键缺陷特征的针对性学习,导致模型泛化性下降;最

后,深层 CNN 模型复杂度较高,训练和推理过程需要大

量计算资源,不仅导致检测速度慢,难以满足实时性要求

高的检测场景,而且模型体积庞大,占用大量内存,不利

于在资源受限的嵌入式设备或本地环境中部署。
在此背景下,计算拓扑学( computational

 

topology)的

发展为特征表示提供了新的理论工具。 以持久同

调(persistent
 

homology) [11] 为核心的计算框架,通过多尺

度拓扑特征量化方法,成功建立了从复杂数据中提取拓

扑不变量的数学基础。 随着如 GUDHI、Ripser 等开源软

件包的诞生,简化了将拓扑特征集成到深度学习模型中

的过程,使得拓扑特征与深度学习的融合成为可能。 与

CNN 相比,拓扑数据分析(topological
 

data
 

analysis,
 

TDA)
能够提取数据内在的拓扑结构信息,提供更具可解释性

的缺陷特征,同时提取的特征维度较低,模型更加轻量

化,无需额外的高性能硬件支持,易于在本地进行部署。
2023 年,Ko 等[12] 率先将 TDA 应用于晶圆图缺陷模式分

类,并取得了显著的性能提升。 尽管如此,其研究在复形

构建、数据集的真实性以及模型评估的全面性方面仍有

进一步优化的空间。 本文在此基础上,提出一系列创新

性的改进,以充分挖掘 TDA 在晶圆图缺陷分析中的

潜力。
1)复形构建优化,将原方法的 VR 复形( vietoris-rips

 

complex)替换为
 

Alpha 复形( Alpha
 

complex),得到了更

高的计算效率与更精简的拓扑结构,显著降低了 VR 复

形固有的高维噪声干扰,实现 5. 7 倍的构建速度提升与

10. 09%的内存压缩。
2)数据集重构与拓扑特征分析,以当前规模最大的

晶圆图数据集
 

WM-811K 为参照,生成了基于真实缺陷

分布特征的像素化模拟数据集,相比原方法采用的点云

数据集更加真实。 在此基础上,运用 TDA 的方法,对 5
种典型的晶圆图缺陷类型展开了深入的拓扑性质分析。

3)跨架构验证,最后,在实验对比中,除了原方法采

用的传统 CNN 模型外,还引入了 Swin
 

Transformer 模型以

及新兴的 ConvNeXt 模型,以更全面地评估所提出方法的

性能。

1　 拓扑数据分析(TDA)

1. 1　 基础理论

　 　 单纯形( simplex) 和单纯复形( simplicial
 

complex)
(图 1)是拓扑学与几何学领域的核心基础概念[13] ,它们

是实现原始数据向拓扑分析适用形式转化的关键工具,
在数据的结构化表征与拓扑特征挖掘中发挥着不可或缺

的作用。
单纯形的定义是在 n - 维欧几里得空间 Rn 中,k + 1

个几何独立的点 v0,v1,…,vk(k≤ n) 的凸包称为一个 k -
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单纯形(k-simplex)。
单纯复形是欧几里得空间 Rn 中的有限单纯形集合,

它需满足以下两个条件。
1)如果 δ ∈K 是一个 k-单纯形,那么 δ 的所有面(包

括它本身)也属于 K。
2)对于任意两个单纯形 δ 1,δ 2 ∈ K, 它们的交集

δ 1 ∩ δ 2 要么是空集,要么是 δ 1 和 δ 2 的一个公共面。

图 1　 单纯形与单纯复形

Fig. 1　 Simplex
 

and
 

simplicial
 

complex

在拓扑数据分析中,提取数据的拓扑特征需要一种

抽象方法,以构建能够反映数据内在结构的单纯复形。
这 种 抽 象 的 方 法 在 持 久 同 调 理 论[11] 中 被 称 为

滤(filtration),其本质上是一个随参数变化的复形序列,
常见的复形类型包括 VR 复形和

 

Alpha 复形。 当参数

α(Alpha 复形)或者参数 r ( VR 复形)逐渐增大时,单纯

形会经历动态生成或消亡,这导致了拓扑结构中连通分

支的合并以及环或孔的生成与消亡。 通过追踪这些拓扑

特征在不同尺度下的变化来捕捉数据拓扑性质,这便是

持 久 同 调 的 核 心 思 想。 为 了 可 视 化 这 些 信 息

Edelsbrunner 等[11] 和 Cohen-steiner 等[14] 提出将每个拓扑

特征的诞生时间 b ( birth)和消亡时间 d ( death) 作为坐

标点绘制二维散点图, 就得到了持久图 ( persistence
 

diagram,PD)。
PD 以点集 (b,d) 形式呈现拓扑特征及其在特定滤

下的生命周期, b
 

为生成时刻, d 为消亡时刻。 点到对角

线 b = d的距离(即持久性 d - b )是衡量特征稳定性的关

键指标。 通常认为,低持久性点代表噪声,而高持久性点

则反映了数据集固有的拓扑结构。 PD 中零维同调

群(H0)的点表示连通分支( connected
 

components),一维

同调群(H1)的点代表环(loops)或孔(holes)。
为了将 PD 上的拓扑特征输入到深度学习模型中,

Adams 等[15] 提出将 PD 中的每个点映射到二维网格上,
并使用高斯核函数对每个点的持久性进行加权,生成一

种标准化的图像表示———持久图像( persistence
 

image,

PI)。 PI 上每个像素的强度量化了 PD 中映射到该像素

对应邻域内的点的集中程度,高强度区域标识了数据中

更为显著或稳定的拓扑结构,该表示方法不仅实现了拓

扑特征的结构化转换,还通过归一化处理使不同尺度的

PD 具有可比性,为后续拓扑特征分析提供了标准化

输入。
1. 2　 VR 复形与 Alpha 复形的定义与构建过程

　 　 VR 复形是基于点集和距离参数构建的抽象单纯复

形,其具体定义如下:给定点集 X ∈ Rn 和参数 r ≥ 0,VR
复形 VR(X,r) 是一个抽象单纯复形,包含元素如下。

1)顶点集,所有点 x ∈ X。
2)单纯形,对于 X 的一个非空子集 φ = {x0,x1,…,

xk}(k ≥ 0),若其任意两点满足 d(x i,x j) ≤ r,则 φ 对应

的单纯形属于 VR(X,r)。
Alpha 复形在 GUDHI[16] 的定义是给定点集 Y ∈ Rn

和参数 α ≥ 0, Alpha 复形 Alpha(Y,α)是德劳内三角剖

分(delaunay
 

triangulation)的一个子复形(subcomplex),它
只包含那些外接圆(或球,在三维情况下)半径的平方不

超过 α 的单纯形。 Alpha 复形包含以下元素。
1)顶点集,所有点 y ∈ Y。
2)边,对于任何两个点 y i,y j ∈ Y,如果存在一个空心

球 B,其半径平方 r2 ≤ α,并且 B恰好包含 y i 和 y j,同时 B
的内部不包含 Y 中的任何其他点,则 y i 和 y j 之间有一

条边。
3) k - 单纯形(k≥2),对于任意一组 k + 1 个点 y0,

y1,…,yk ∈ Y ,如果存在一个空心球 B ,其半径平方 r2 ≤
α ,它可以包围这 k + 1 个点,并且 B 的内部不包含 Y 中

的任何其他点,则这些点形成一个 k - 维单纯形。
以点集 P = {[4,

 

4],
 

[3,
 

5],
 

[5,
 

5],[4,
 

7],
 

[6,
 

2],
 

[8,
 

2],[8,
 

7],
 

[10,4],[10,8],[12,6],[6,8]}
为例,图 2 所示为当 α = 0. 5,1,1. 5,2,2. 5,3 时的 Alpha
复形与当 r= 1,2,3,3. 5,4,4. 5 时的 VR 复形。

图 2 中,虚线圆表示半径为 r / 2,用来判定点间距离;
粉色虚线边框的三角形表示德劳内三角剖分的结果;蓝
色表示 0-单纯形;橙红色表示 1-单纯形;绿色填充表示 2-
单纯形;紫色填充表示 3-单纯形;红色填充表示 4-单纯

形。 受限于二维空间,高维单纯形(如 3-单纯形的四面

体、4-单纯形的五胞体)通过顶点连接与面填充示意,其
几何形态需通过组合拓扑性质理解。

从图 2 可以看出,VR 复形的构建存在维度膨胀问

题:随着 r 值的增大,高维单纯形的过度生成易引入噪声

干扰,导致拓扑特征失真。 相较之下,Alpha 复形基于德

劳内三角剖分,能更精确拟合数据的底层几何结构。 其

核心优势在于受数据维度约束,仅需处理顶点、边及三角

形等低维结构,这使得单纯形数量显著少于 VR 复形,计
算效率更高。
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图 2　 Alpha 复形的构建过程(a)与 VR 复形的构建过程(b)
Fig. 2　 Construction

 

process
 

of
 

the
 

Alpha
 

complex
 

(a)
 

and
 

the
 

VR
 

complex
 

(b)

1. 3　 VR 复形与 Alpha 复形的比较

　 　 为了深入探讨 VR 复形与 Alpha 复形在处理不同特

征数据时的性能差异,进行了对比实验。 实验使用了自

主制作的晶圆图模拟数据集,涵盖聚集、密集、稀疏、环形

和划痕等五种代表性晶圆图缺陷类型,每种类型各 300
张,尺寸均为 510×510。

在统一计算环境下,本文对每张晶圆图像分别构建

VR 复形和 Alpha 复形,记录其构建时间、内存占用、单纯

形数量以及 PD 上的特征点数量,并按缺陷类别取均值。
本实验在提取特征点后对坐标进行了归一化,VR 复形的

最大 r 值设为 30,最大单纯形维度设为 2,实验结果如表

1 所示,其中单纯形数量四舍五入取整,其他数据保留两

位小数。

表 1　 不同缺陷类型下 VR 复形与 Alpha 复形构建性能对比

Table
 

1　 Performance
 

comparison
 

of
 

VR
 

and
 

Alpha
 

complex
 

construction
 

across
 

defect
 

types

类别
构建时间 / ms 占用内存 / MB 单纯形数量 特征点数量

VR Alpha VR Alpha VR Alpha VR Alpha
聚集 9. 66 2. 8 78. 46 69. 87 655

 

015 884 225. 50 259. 69
密集 12. 31 2. 03 87. 29 78. 1 894

 

612 973 207. 55 299. 12
稀疏 0. 17 0. 35 78. 91 78. 91 8

 

526 169 37. 23 53. 39
环 24. 58 2. 49 109. 15 82. 61 1

 

685
 

204 1
 

136 229. 50 269. 41
划痕 0. 61 0. 38 80. 64 80. 64 24

 

428 268 56. 19 78
平均值 9. 42 1. 66 86. 89 78. 04 653

 

557 686 151. 19 191. 92

　 　 实验结果表明,相比 Ko
 

等[12] 采用的 VR 复形,本文

改进的 Alpha 复形在计算效率和特征提取方面均有显著

优势。
1)计算效率显著提升。 Alpha 复形在聚集、密集和

环类型中展现出显著的时间效率优势,平均构建时间相

比 VR 复形降低了约 82%,这表明 Alpha 复形更适合实时

或大规模数据处理场景。
2)内存占用大幅降低。 Alpha 复形的内存消耗普遍

低于 VR 复形,平均内存较 VR 复形降低了 10. 09%。 这

种差异源于 Alpha 基于德劳内三角剖分的几何约束,减

少了冗余单形的生成,从而优化了内存利用率,尤其在密

集或环形缺陷中更为显著。
3)拓扑结构更精简。 Alpha 复形的单纯形数量显著

低于 VR 复形,证明 VR 复形在高维拓展过程中产生大量

冗余结构。 而 Alpha 复形通过几何约束剔除无效连接,
避免了因数据维度膨胀而导致的额外计算与内存负担。
以 Ring 类型缺陷为例,VR 复形生成 1

 

685
 

204 个单纯

形,而 Alpha 复形仅生成 1
 

136 个,二者相差约 1
 

483 倍。
4)特征提取能力更强大。 VR 复形的平均单纯形数

量大约是 Alpha 复形的 953 倍,但是从这些拓扑结构中
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提取的特征点却少于 Alpha 复形。 这说明 Alpha 复形具

有更好的几何形状的敏感性,能够更精确地捕捉缺陷的

持久同调特征。
综上所述,Alpha 复形通过几何约束,在计算效率和

特征质量之间取得了更好的平衡。 相比 VR 复形,这些

特性使其在处理大规模低维数据时更具优势,既能保持

几何拓扑特征的完整性,又降低了冗余计算开销。

2　 用 TDA 处理晶圆图并分析其拓扑特征

　 　 基于前述的拓扑数据分析理论基础,本章将详细阐

述提取与处理晶圆图拓扑特征的具体步骤,并深入探讨

晶圆图的拓扑学特征。 通过对晶圆图进行拓扑分析,旨
在揭示不同类型晶圆图缺陷所蕴含的内在拓扑结构,并
从中提取具有区分性的拓扑特征,为后续的缺陷识别与

分类提供理论依据。
2. 1　 晶圆图的处理流程

　 　 本文参考 Ko 等[12] 提出的方法,将晶圆图拓扑特征

提取与处理的具体步骤分为 3 步。
1)特征图构建。 首先将原始晶圆图( RGB 格式) 转

换为 HSV 色彩空间以增强颜色与亮度区分度。 再通过

预设 HSV 阈值(黄色缺陷区域)生成二值掩码,提取目标

像素坐标。 最后利用 NumPy 库定位目标像素位置后,采
用线性映射将其坐标归一化至[0,1]区间,形成标准化

点云数据集。
2)持久同调计算并与 PD 生成。 利用 GUDHI 库的

AlphaComplex 包来构建点云的几何拓扑结构,并通过

simplex
 

tree 追踪拓扑特征随参数变化的演化过程。 在这

个过程中,计算每个拓扑特征的持久性,并以此来生

成 PD。
3)PD 到 PI 的转换与向量化。 计算 PD 上每个拓扑

特征的零维和一维的持久性区间,并剔除无限值的零维

区间,通过高斯核函数进行空间平滑分别生成零维与一

维 PI,将二者展平并拼接为综合特征向量。
上述步骤的流程如图 3 所示,受图片大小限制,图 3

中只分别展平并拼接了部分的向量。

图 3　 晶圆图拓扑特征提取与处理示意图

Fig. 3　 Schematic
 

diagram
 

of
 

topological
 

feature
 

extraction
 

and
 

processing
 

for
 

wafer
 

maps

2. 2　 晶圆图拓扑特征分析

　 　 本文选取的模拟晶圆图数据集,包含聚集( Cluster)、
密集 ( Dense )、 稀 疏 ( Sparse )、 环 ( Ring ) 以 及 划

痕(Scratch)5 种缺陷类型。
晶圆图的缺陷按产生机制和分布特征可以分为 3

类,随机缺陷、系统缺陷和组合缺陷。 随机缺陷是无规

律、随时间和空间变化而产生的,形成原因复杂多样。 系

统缺陷则是可重复出现的,通常表现出明显的聚集现象,
可以通过缺陷分布和形貌类型识别工艺或仪器中的异

常,例如光刻过程中掩膜位置的错位或蚀刻过程中的过

度蚀刻。 组合缺陷则是由随机缺陷和系统缺陷共同构

成,表现出更复杂的特征。 在本文的模拟数据集中,稀疏

缺陷对应随机缺陷,密集缺陷对应系统缺陷,其余则被定

义为组合缺陷。 为了更清晰地分析晶圆图缺陷的拓扑特

征,分析过程剔除了组合缺陷中包含的随机缺陷,从而聚

焦于其系统性缺陷部分的拓扑结构。 图 4 和 5 所示分别

为 5 种缺陷类型的晶圆图空间分布及其基于 Alpha 复形

的持久图。
由图 4 可见,每种缺陷都有明显的拓扑特征:
1)聚集缺陷表现为数据点在局部空间内的非均匀高

密度分布,形成一个或多个连通分支。 若聚集区域内部

存在空洞,则可能产生一维同调群(H1)。 在 PD 上,该类

型缺陷表现为大量的短寿命零维特征(对应 H0 同调群),
反映了局部高密度的连通分支。 由于数据点的聚集,可
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图 4　 滤除随机缺陷点后的 5 种典型晶圆图缺陷类型

Fig. 4　 Five
 

typical
 

wafer
 

map
 

defect
 

types
 

after
 

filtering
 

out
 

random
 

defect
 

points

图 5　 5 种典型晶圆图缺陷的持久图

Fig. 5　 Persistence
 

diagrams
 

of
 

five
 

typical
 

wafer
 

map
 

defects

能存在局部孔洞引起的一维同调特征,表现为 PD 上出

生尺度较小的一维点。
2)密集缺陷的点密度低于聚集缺陷,点间距也相对

较大。 因此,需要更大的过滤尺度
 

( filtration
 

scale)才能

形成连通分支,这在 PD 上体现为零维特征点的寿命普

遍较长,表明连通分支的形成需要更大的尺度。 由于数

据点分散,可能存在更多由噪声或局部结构引起的一维

同调特征,表现为 PD 上出生尺度较小的一维点。
3)稀疏区域由大量孤立点构成,点密度显著低于密

集缺陷。 与密集缺陷类似,形成连通分支需要更大的过

滤尺度,因此,零维特征点的寿命较长。 由于数据点总数

较少,一维特征点的数量也相应减少。 同时,由于点密度

低,可能存在由噪声或偶然结构引起的长寿命一维点,其

出生尺度相对较大。
4)环形缺陷最显著的特征是一维洞。 在 PD 上,该

类型缺陷表现为一个具有显著持久性的一维特征点,其
生死时间差远大于其他特征点,表明该环形结构具有拓

扑稳定性。 其余特征点的寿命较短,接近对角线,可视为

由噪声或局部扰动引起的拓扑噪声。
5)划痕可以被视为一个细长的、一维的结构。 它可

能表现为单个或多个连通分支,弧形划痕可能在特定尺

度下形成一维洞。 在 PD 上,零维特征点的数量较少,寿
命较短,反映了划痕简单的连通特性。 如果划痕形成闭

合或近似闭合的路径,则可能存在一个出生尺度极小的

一维特征点,指示环形结构。
分析表明,不同类型缺陷在 PD 上展现出独特的拓
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扑特征。 零维特征点的时空分布与点密度密切相关,而
一维特征点的持久性暗示着真实环形结构与孔洞。 这一

发现为基于拓扑特征的晶圆图缺陷模式分类提供了理论

依据,也体现了 TDA 的方法在可解释性上具有显著

优势。

3　 实验方案

3. 1　 数据集

　 　 WM-811K
 

数据集是专门用于晶圆图缺陷检测和分

类任务的一个大型公开数据集。 其凭借规模大、多样性

高而被广泛应用于晶圆图缺陷模式分类领域[5] 。 但其缺

陷类别定义粗略、数据陈旧以及部分单缺陷晶圆图中多

种缺陷共存等问题,对利用 TDA 的方法提取晶圆图拓扑

特征构成挑战。 特别是,数据集中不同尺寸和比例的晶

圆图使得固定坐标系下的拓扑特征提取变得复杂。 例

如,小尺寸晶圆图(如 20×20)中的密集型缺陷可能与大

尺寸图(如 160×160)的聚集型缺陷具有相似拓扑特征。
为了解决这一挑战并提高模型的泛化能力,采用模拟数

据集成为一种可行的新方案[17-19] 。 借助模拟数据集,研
究人员能够在统一标准下创建具备可控变量的数据集,
进而更高效地开展缺陷分析与模型训练工作。

本文参考了 WM-811K 数据集中缺陷模式的特点,开
发了一套晶圆图模拟数据集生成模型。 其包含 5 种缺

陷,分别是聚集、密集、稀疏、环以及划痕各 300 张,尺寸

均为 510×510,图 6 所示为 5 种缺陷的示例,这些模拟缺

陷的形态特征与真实晶圆图的缺陷模式高度吻合。
1)稀疏( Sparse) 利用 numpy 库中的 random 函数随

机选取缺陷点的数量。 在给定的宽高范围内随机生成各

缺陷点坐标(x,
 

y)并保证这些点处于圆形区域内,最后

在图上绘制符合条件的点。
nsparse ~ Uniform(10,60)
2)密集( Dense) 生成方式与稀疏缺陷相似,通过增

加缺陷点数量来提高密度。
ndense ~ Uniform(120,240)
3)聚集(Cluster):由聚集部分和随机部分构成。 聚

集部分使用
 

random
 

函数以正态分布随机采样中心点,结
合随机半径和缺陷数量通过极坐标系生成缺陷簇。 随机

部分仿照稀疏缺陷生成缺陷点。
nrandom ~ Uniform(10,60)
ncluster ~ Uniform(250,350)
rcluster ~ Uniform(5,10)
4)环(Ring)由环状部分与随机部分构成。 环状部

分在半径为 R 的晶圆边缘用 linspace 函数生成均匀分布

的角度,再用黄色点绘制缺陷区域。 随机部分同样仿照

稀疏缺陷生成缺陷点。

nrandom ~ Uniform(10,60)
θring ~ Uniform(0,2π)
r = R
5)划痕(Scratch) 由划痕部分与随机部分构成。 随

机部分仿照稀疏缺陷生成缺陷点。 划痕部分分为线性划

痕与弧形划痕。 线性划痕使用 random 函数在半径为 R
的晶 圆 区 域 内 随 机 选 择 起 点、 方 向 和 长 度, 使 用

Bresenham 算法绘制直线。 弧形划痕同样在晶圆区域内

随机生成弧的中心点、半径、起始角度和角度跨度,然后,
利用 linspace 函数采样弧上的点,绘制黄色弧形划痕。
单条与多条(2 ~ 3 条)划痕的比例为 2 ∶ 1。

nrandom ~ Uniform(10,60)
θline_scratch ~ Uniform(0,2π)
d line_scratch ~ Uniform(R / 3,2R)
rarc_scratch ~ Uniform(2R / 3,3R / 2)
start_θarc_scratch ~ Uniform(0,2π)
span_θarc_scratch ~ Uniform(π / 3,π / 2)

3. 2　 特征提取方法对比与可视化验证

　 　 为了证明 TDA 的方法在晶圆图缺陷提取上具备独

特优势,采用模拟数据集进行实验。 首先将所提出的

TDA 方法与经典模型的特征提取部分进行对比。
1)基于 TDA 的方法。 如第 2 节所述,先从晶圆图中

提取缺陷点数据完成特征图构建;然后利用
 

Alpha 复形

计算持久同调生成 PD;最后将 PD 转化为 PI 并向量化,
PI 的分辨率设置为 11×11,零维特征带宽取 0. 002,一维

特征带宽取 0. 001,权重函数选用双峰高斯混合模型权

重函数,最后拼接不同维度特征向量再标准化即可得到

包含了拓扑信息的 121 维特征向量。
2)基于 CNN 的方法。 CNN 作为深度学习模型,在

图 像 处 理 和 计 算 机 视 觉 任 务 中 应 用 广 泛。 像

GoogLeNet[20] 用 不 同 尺 寸 卷 积 核 提 取 多 尺 度 特 征,
ResNet[21] 引入残差连接, DenseNet[22] 采用密集连接机

制,均展现出强大的特征提取能力。 本文选用 121 层的

DenseNet121 进行对照实验,其密集连接结构可有效保留

多尺度特征,在保持计算效率的同时具备较强的局部特

征表达能力。
3)基于 Transformer 的方法。 Transformer 采用自注意

力机制学习全局上下文信息,克服了 CNN 局部感受野的

限制。 经典模型如 Vision
 

Transformer[23] 将图像划分为序

列化图像块并利用自注意力机制建模, DeiT ( data-
efficient

 

image
 

transformers ) [24] 引 入 蒸 馏 机 制, Swin
 

Transformer[25] 采用分层结构和移动窗口自注意力。 本文

选用 Swin-T 结构的 Swin
 

Transformer 进行对照实验,其分

层窗口注意力机制可捕捉全局上下文信息,有效缓解了

传统 CNN 的局部感受野限制。
4) 融 合 了 CNN 和 Transformer 优 势 的 方 法。
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图 6　 5 种晶圆图缺陷类型

Fig. 6　 Five
 

types
 

of
 

wafer
 

map
 

defects

ConvNeXt[26] 是 Meta
 

AI 于 2022 年提出的卷积神经网络

架构。 它通过逐步“ 卷积化” Transformer 设计,并借鉴

ResNet 训练技巧,构建了纯卷积模型,在图像分类等任务

中性 能 与 Transformer 相 当 甚 至 更 优。 本 文 选 用

ConvNeXt-Base 的权重文件作为基准模型,在网络末端进

行特征向量提取。
为了提高深度学习模型的泛化能力、降低计算资源

需求,DenseNet,Swin
 

Transformer 以及 ConvNeXt 采用了

在
 

ImageNet
 

数据集上预训练的 V1
 

版本权重文件。
本文的所有实验均在配备 NVIDIA

 

GeForce
 

RTX
 

3060
 

Laptop
 

GPU(用于 DenseNet121、Swin
 

Transformer 和

ConvNeXt) 和 Intel
 

12th
 

Gen
 

Core
 

i7-12700H
 

CPU(用于

TDA 方法)的平台上进行,实验流程如图 7 所示。 对 4 种

方法提取的特征向量进行了 t-SNE 降维和可视化,困惑

　 　 　 　

度选择默认值 30,结果如图 8 所示。 特征提取及
 

t-SNE
聚类性能指标对比如表 2 所示,本文实验选的聚类指标

如下:

图 7　 实验流程

Fig. 7　 Experimental
 

flowchart

表 2　 不同方法的特征提取性能与 t-SNE 聚类效果评估指标对比

Table
 

2　 Comparative
 

evaluation
 

of
 

feature
 

extraction
 

performance
 

and
 

t-SNE
 

clustering
 

metrics
 

across
 

different
 

methods

特征向量维度 特征提取耗时 / s 内存峰值 / MB
Silhouette
Coefficient

Calinski
 

Harabasz
Score

Davies
 

Bouldin
Score

TDA-based 242 5. 09 177. 40 0. 68 5
 

221. 29 0. 46
DenseNet121 1

 

024 11. 32 4
 

529. 90 0. 50 4
 

700. 44 1. 11
Swin

 

Transformer 768 21. 43 3
 

740. 76 0. 43 2
 

348. 94 1. 92
ConvNeXt 768 20. 62 3

 

761. 57 0. 58 3
 

828. 29 0. 67

　 　 注:加粗表示最优值

　 　 1)轮廓系数(Silhouette
 

Coefficient),该指标结合了内

聚度和分离度,用于评估每个样本与其所在簇的紧密程

度以及与其他簇的分离程度。 其值范围为[ -1,1],值越

接近 1 表示聚类效果越好。
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图 8　 不同方法提取的晶圆图缺陷特征向量 t-SNE 可视化对比

Fig. 8　 t-SNE
 

visualization
 

of
 

feature
 

vector
 

across
 

wafer
 

map
 

defect
 

types
 

using
 

different
 

methods

2)Calinski
 

Harabasz
 

指数,该指数定义为类间离散度

与类内离散度的比值。 类间离散度越大、类内离散度越

小,指数值越大,说明聚类效果越好。
3)Davies

 

Bouldin
 

指数,该指数衡量每个簇与其他所

有簇之间的平均相似度,值越小表示聚类效果越好。
实验结果表明,与其他 3 种模型相比,基于 TDA

 

的

方法仅靠低维的特征向量就实现了最佳的聚类性能,在
3 种聚类指标上均排名第一。 此外,TDA

 

方法在实验中

显著降低了计算耗时和内存占用, 相比于新兴 的

ConvNeXt 模型,基于 TDA
 

的方法特征提取时间降低了约

75%,内存峰值仅为其 4. 7%。 这主要归因于
 

TDA
 

的无

监督特征提取过程,它直接从输入数据计算拓扑特征,无
需深度学习模型所需的训练过程(即使是预训练模型也

需要加载权重和适配计算图),并避免了卷积和池化等复

杂操作。 这种仅依赖
 

CPU
 

的轻量级计算特性使得
 

TDA
 

更适合嵌入式设备或实时分析应用。 尽管当前实验基于

特定晶圆图数据集,但 TDA 方法的核心优势(拓扑敏感

性和计算效率)表明其在不同工业检测场景中具有推广

潜力。
3. 3　 模型性能指标

　 　 本研究采用 SVM 作为统一分类器,系统评估 TDA、
DenseNet121、Swin

 

Transformer 和 ConvNeXt 四类特征提

取方法的分类性能。 基于线性核 SVM(参数默认设置),
通过五折交叉验证((5-fold

 

cross-validation)) 获取准确

率(Accuracy)、召回率(Recall)、F1 分数及混淆矩阵(图 9)。
上述指标,计算公式为:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Recall = TP
TP + FN

(2)

F1 = 2TP
2TP + FP + FN

(3)

式中: TP (True
 

Positive)为正类且被预测为正类的样本

数; TN ( True
 

Negative) 为负类且被预测为负类的样本

数; FP (False
 

Positive)为实际为负类但被错误预测为正

类的样本数: FN (False
 

Negative)为实际为正类但被错误

预测为负类的样本数。
实验流程实施以下控制:
1)将数据集均分 5 个数量相等的互斥子集,轮替选

择一个作为验证集,其余 4 个子集合并作为训练集。
2)各特征提取方法共享相同数据划分与 SVM 参数。
3)指标取 5 次均值以消除随机性,结果如表 3 所示。
从结果来看,新兴的 ConvNeXt 展现了最强分类性

能,在交叉验证中实现平均准确率 0. 996
 

0,其中两个 fold
达到完美分类(1. 000

 

0),证实其作为前沿视觉模型的优
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　 　 　 表 3　 不同特征提取方法在 SVM 分类器下的性能评估

Table
 

3　 Comparative
 

performance
 

evaluation
 

of
 

feature
 

extraction
 

methods
 

using
 

SVM
 

classifier

Flod
TDA-based DenseNet121 Swin

 

Transformer ConvNeXt
Accuracy F1 Recall Accuracy F1 Recall Accuracy F1 Recall Accuracy F1 Recall

1 0. 987 0. 987 0. 987 0. 983 0. 983 0. 983 0. 973 0. 973 0. 973 1. 000 1. 000 1. 000
2 0. 997 0. 997 0. 997 0. 990 0. 990 0. 990 0. 990 0. 990 0. 990 1. 000 1. 000 1. 000
3 0. 997 0. 997 0. 997 0. 997 0. 997 0. 997 0. 987 0. 987 0. 987 0. 990 0. 990 0. 990
4 0. 987 0. 987 0. 987 0. 987 0. 987 0. 987 0. 987 0. 987 0. 987 0. 993 0. 993 0. 993
5 0. 993 0. 993 0. 993 0. 990 0. 990 0. 990 0. 973 0. 973 0. 973 0. 997 0. 997 0. 997

平均值 0. 992 0. 992 0. 992 0. 989 0. 989 0. 989 0. 982 0. 982 0. 982 0. 996 0. 996 0. 996

图 9　 混淆矩阵

Fig. 9　 Confusion
 

matrix

势。 基于 TDA 的方法次之,在无监督特征基础上,取得

0. 992
 

0 平均准确率,相较监督学习的 DenseNet( 0. 989
 

3)和 Swin
 

Transformer(0. 982
 

0)更具竞争力,这验证了该

特征提取方式能够更有效地捕捉数据中的关键信息,从
而提高了模型的分类能力。 进一步通过混淆矩阵(图 9)
分析发现,基于 TDA 的方法与其他 3 种模型对密集、聚
集与环形缺陷的识别准确率达到了 100%,这与其稳定的

拓扑不变性密切相关。 这 3 类缺陷在持久同调分析中呈

现显著的零维 / 一维拓扑特征。 在稀疏和划痕缺陷的识

别上略逊一筹,这可能是因为划痕的特征多变且不易捕

捉,尤其是短划痕的拓扑特征不够明显,对于线性划痕来

说,没有弧形划痕较为显著的一维拓扑特征。 此外,稀疏

缺陷中的随机缺陷点形成的偶然结构同样可能产生一维

特征点,这对划痕与稀疏缺陷的分类带来了挑战。

4　 结　 论

　 　 本文聚焦于改进一种利用 TDA 从晶圆图各类缺陷
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模式中提取特征向量的新颖方法。 与传统方法着重追求

高分类精度不同,本文旨在探索 TDA 方法在晶圆图缺陷

特征提取中的潜力,对比 TDA 与其他特征提取方法的优

劣,以解决模型复杂、特征维度高以及缺陷模式与特征向

量关系难以解释等问题。
为了应对上述挑战,本文改进了一种基于拓扑数据

分析的新兴晶圆图缺陷模式分类方法。 通过复形的优

化,使得复形构建时间降低了约 82%、内存占用降低了

10. 09%,通过构建更精简的拓扑结构获得了更强大的特

征提取能力。 特征提取可视化实验结果表明,该方法在

聚类性能、特征提取时间以及峰值内存等指标上显著优

于现有的经典方法,包括基于卷积神经网络的方法、基于

Transformer 的方法以及融合了 CNN 与 Transformer 优势

的新兴模型 ConvNeXt,这充分证明了本文所提方法在晶

圆图缺陷模式分类领域的优越性和应用潜力。 尽管在加

入分类器部分后,性能表现不如新兴模型 ConvNeXt,但
依旧强于 DenseNet 和 Swin

 

Transformer 等经典模型。 值

得注意的是,基于 TDA 的方法在特征提取效率(特征提

取耗时较 ConvNeXt 模型提升约 3 倍)、资源消耗(内存峰

值较 ConvNeXt 降低约 95%)方面展现出明显的优势,尤
其在高速、低资源条件下具有广阔的应用前景。 未来,结
合深度学习与拓扑分析的多模态融合、扩展到大规模数

据处理,将为 TDA 技术的应用开辟更广阔的空间,为多

领域的智能分析提供新的解决方案。
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