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Lightweight PCB defect detection algorithm based on STR-DETR
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Abstract: To address the challenges of existing PCB defect detection models, which suffer from excessive parameters, high
computational complexity, and limited deploy ability on industrial edge devices with constrained computing resources, we propose a
lightweight defect detection algorithm based on STR-DETR. First, we construct a novel backbone network, G-StarNet, by integrating
group convolution into the lightweight StarNet architecture. This modification significantly reduces model complexity while preserving
multi-scale feature extraction capabilities. Second, within the adaptive feature interaction module, a statistical feature-based self-
attention mechanism replaces the conventional multi-head self-attention, effectively lowering computational overhead. Third, the
RetBlockC3 module is designed by combining the Manhattan self-attention mechanism and its decomposed form. By incorporating a
distance-dependent attenuation strategy, this module prioritizes local feature representation and reduces computational complexity from
quadratic to linear scaling. Finally, we introduce a new loss function, FSN Loss, which mitigates the adverse effects of shape/scale
variations and imbalanced sample distributions on bounding box regression, thereby enhancing both localization and classification
accuracy. Experimental results demonstrate that the improved algorithm achieves an mAP@ 0. 5 of 96. 7%. Compared with the baseline
model, it reduces parameters by 50. 8%, computational load by 55.4%, and increases detection speed by 23.7%. These findings
validate the algorithm’ s effectiveness in meeting the requirements of lightweight small-target detection tasks.
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Table 2 Comparison of ablation experiment results

TR mAP@0. 5/% F1 {8/ % FPS/fps Params/ ( x10%) HHEE/(x10°)
RT-DETR ( Baseline ) 95. 1 94.2 115.3 19.9 57.0
RT-DETR+A 93.6 92.5 136. 8 11.4 32.6
RT-DETR+A+B 9.5 93.9 137. 1 1.1 31.9
RT-DETR+A+B+C 95.0 94. 1 143.0 9.8 25.4
RT-DETR+A+B+C+D 96.7 95.3 142. 6 9.8 25.4
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Fig. 10  Comparison diagram of loss functions
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Table 3 Comparison of mainstream algorithms

B mAP@O.5/% FPS/fps Params/(x10°) 1EH/(x10%)

YOLOv5s 89.3 156.0 7.2 16.5
YOLOv5m 94.6 97. 4 21.2 48.3
YOLOv8s 92.5 128.7 11.2 28.8
YOLOv8m 96.9 76. 4 25.9 78.9

YOLOXs 91.6 132.5 9.3 26.8
RT-DETR 95.1 115.3 19.9 57.0
STR-DETR 96.7 142.6 9.8 25.4

M 3 A1, A SCHE B STR-DETR 6 Y (1) 46 1004
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Table 4 Comparison of different lightweight

backbone networks

Backbone mAP@O0. 5/% Params/ ( X 106) i3 /(% 10° )
FasterNet 93.3 13.6 35.9
MobileNet V4 93.5 13.9 40.7
VanillaNet 92.8 12.5 34.2
GhostNet V2 93.7 14.6 39.5
Shufflenet V2 93.0 12.7 34.9
G-StarNet 93.6 11.4 32.6
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Table 5 Edge device deployment results

i mAP@O0.5/% FPS/fps Params/(x10°) Weights/MB
RT-DETR 95.1 9 19.9 40.5
STR-DETR 96.6 17 9.8 18. 1
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