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摘　 要:基于数据驱动的软测量建模方法在流程工业中有着广泛的应用。 流程工业中,辅助数据常常会受到异构、杂糅的噪声

的污染,且工业数据中线性相关与非线性相关共存,而噪声问题和不合理的相关关系表达均会严重影响软测量模型的预测结

果。 在协同分摊噪声算法的基础上提出一种基于融合相关性的协同分摊噪声算法进行软测量建模。 首先,采用融合了关注线

性相关性的 Pearson 系数和关注非线性相关性的 Spearman 系数的融合相关性系数优化协同分摊噪声算法,使协同分摊噪声算

法中数据可信度计算更合理,更符合工业数据中线性相关与非线性相关共存的情况。 然后,结合卷积神经网络( convolutional
 

neural
 

networks,CNN)搭建软测量模型。 在脱丁烷塔数据集上进行多降噪方法、多模型和多回归方法的交叉组合实验,结果表

明,该优化后的降噪算法较基础的协同分摊噪声算法、小波变换降噪、降噪自编码器有着较强的降噪能力;所搭建的软测量模型

有着较优的预测精度及较小的预测误差,其中决定系数(r-square,R2 )指标和均方误差(mean
 

squared
 

error,MSE)分别为 0. 971
 

6
和 0. 001
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Abstract:
 

Data-driven
 

soft-sensing
 

modeling
 

plays
 

a
 

critical
 

role
 

in
 

process
 

industries,
 

yet
 

faces
 

challenges
 

from
 

heterogeneous
 

noise
 

contamination
 

and
 

the
 

coexistence
 

of
 

linear
 

and
 

nonlinear
 

correlations
 

in
 

industrial
 

datasets.
 

These
 

issues
 

significantly
 

compromise
 

model
 

prediction
 

accuracy.
 

To
 

address
 

this,
 

we
 

propose
 

a
 

fused
 

correlation-based
 

collaborative
 

shared
 

noise
 

algorithm
 

for
 

robust
 

soft-sensing
 

modeling.
 

The
 

algorithm
 

integrates
 

Pearson
 

correlation
 

coefficients
 

( linear
 

relationships)
 

and
 

Spearman
 

rank
 

correlation
 

coefficients
 

(nonlinear
 

relationships )
 

to
 

compute
 

data
 

credibility,
 

thereby
 

optimizing
 

noise
 

allocation
 

under
 

mixed
 

correlation
 

conditions.
 

A
 

convolutional
 

neural
 

network
 

(CNN)
 

is
 

subsequently
 

employed
 

to
 

construct
 

the
 

soft-sensing
 

model.
 

Experiments
 

on
 

a
 

debutanizer
 

column
 

dataset
 

demonstrate
 

the
 

superiority
 

of
 

the
 

proposed
 

method.
 

The
 

FC-CSNA
 

outperforms
 

baseline
 

denoising
 

techniques,
 

including
 

wavelet
 

transform,
 

denoising
 

autoencoders,
 

and
 

the
 

original
 

collaborative
 

shared
 

noise
 

algorithm,
 

in
 

noise
 

suppression.
 

The
 

hybrid
 

model
 

achieves
 

state-of-the-art
 

prediction
 

performance,
 

with
 

an
 

R2 score
 

of
 

0. 971
 

6
 

and
 

mean
 

squared
 

error
 

(MSE)
 

of
 

0. 001
 

1,
 

validating
 

its
 

effectiveness
 

in
 

handling
 

industrial
 

data
 

complexity.
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0　 引　 言　

　 　 流程工业是国民经济的重要支柱产业,其生产过程

的复杂性以及重要性决定了采用自动控制技术的必要性

和紧迫性。 由于受到生产环境、设备生产工艺和生产成

本等因素的限制,一些关键过程变量难以通过硬件传感

器(仪表)进行直接的快速测量。 近年来,在控制和检测

领域兴起的数据驱动软测量建模技术是解决上述问题的

有效方法之一[1] 。
软测量是采用间接测量的思路,在关键变量和辅助

变量之间建立数学模型,以实现对关键变量的快速估计

或预测的一种技术。 仅使用过程数据,且不考虑其物理

意义使该建模技术在工业生产过程中得到了广泛应

用[2] 。 目前,有大量的工作借助深度学习进行软测量研

究,例如基于自编码器及其改进的[3-7] 、基于对抗网络

的[8-9] 、基于注意力机制的[10-13] 等等。 这些研究极大的促

进了软测量技术的发展,但对于传感器的数据噪声问题

研究进展缓慢。
通常情况下,由传感器测量和收集的流程数据会混

杂着大量的复杂噪声。 数据中混杂的噪声种类繁多,且
分布不均[14] 。 目前,在软测量领域,主流方法是使用小

波过滤降噪(wavelet
 

denoising,WTD) [15-16] 和降噪自编码

器网络( denoising
 

auto-encoder,DAE) [17-19] 来对复杂噪声

进行数据清理。 小波过滤方法利用小波分解得到不同强

度分布的细节分量,然后进行小波重构,对细节分量进行

阈值化降噪处理。 文献[15]采用基于 Haar 母波的 5 级

分解对精馏塔数据进行小波过滤,再结合高斯过程回归

构建软测量模型,在精馏塔底产物苯浓度估计中具有精

度高、建模复杂度低的优点。 文献[16]采用斯皮尔曼相

关性系数进行辅助变量的选择,利用基于 Sym8 小波

Heursure 准则的 3 级分解作为阈值分解参数,并结合支

持向量机回归( support
 

vector
 

regression,SVR) 对转子的

热变形进行分析和预测,实验结果表明,在对工业数据进

行噪声清洗后,该模型的预测性能较基础模型有着较大

的提升。 去噪自编码器网络是一种基于神经网络强大学

习能力的降噪方法。 将特定的噪声添加到数据中,然后

训练 DAE 网络来捕获该特定噪声的特征,并重构不含该

特定噪声的数据原始输入。 一旦训练完成,网络就变成

了特定噪声的过滤网络。 文献[17] 采用具有层次感知

注意力机制的堆叠去噪自编码器对数据进行噪声清洗,
随后采用具有尺度感知注意力机制的多尺度残差网络构

建软测量模型,在脱丁烷塔数据集上的实验表明,去噪多

尺度残差深度网络(denoising
 

and
 

multiscale
 

residual
 

deep
 

network,DMRDN)较对比网络有着较强的预测性能。 文

献[19]结合堆叠的降噪自编码器与人工神经网络构建

软测量模型,利用深层架构提取输入数据的高阶特征,与
浅层学习方法相比,深层降噪模型有着较优的预测性能

和泛化能力。
WTD 降噪方法可看作是对数据添加了一个函数约

束,阈值的选择会严重影响降噪效果,且进行多次阈值选

择后,会造成后选覆盖先选的现象。 另外,WTD 方法的

适用性较差,对已知特性的噪声降噪效果较好,对其他噪

声降噪效果较差。 DAE 网络的降噪能力来源于向数据

中添加的特定噪声,用于训练的噪声的选择会严重影响

基于 DAE 的模型预测效果。 另外,DAE 方法不适用于多

种噪声混杂的数据。 WTD 和 DAE 方法是从不同角度进

行噪声清洗,但这两种方法均是将数据噪声进行分类讨

论,但数据中的噪声是异构的、杂糅的,这种对单一类型

噪声的清理操作是不合理的。
在 2022 年,Gao 等[20] 提出一种基于密度峰值聚类的

协同分摊噪声( collaborative
 

apportionment
 

noise,CAN)算

法,将数据中的各类噪声看作一个整体,统称为复杂噪

声,再由数据自身的可信度、偏差和偏置度进行噪声清

理。 通过在脱丁烷塔过程数据和工业蒸汽量数据上的实

验对比验证了 CAN 算法较 WTD 和 DAE 有着较好的泛

化能力。 但 CAN 算法在设计上存在缺陷,在 CAN 算法

中,数据需要清洗的噪声量主要由数据各属性的可信度

来加权分配。 其中数据的可信度由 Pearson 相关性系数

确定,而 Pearson 相关性系数主要反映数据间的线性相关

性,但工业生产中收集的流程数据是线性和非线性关系

共存的,且非线性关系占主导地位。
综上所述, 本文提出融合协同分摊噪声 ( hybrid

 

collaborative
 

apportionment
 

noise,HCAN) 算法,并结合卷

积神经网络( convolutional
 

neural
 

networks,CNN) 构建了

HCAN-CNN 模型。 在 HCAN 算法中, 采用 Pearson 和

Spearman 相关性融合的相关性系数来确定数据各属性的

可信度,使得可信度计算更为合理。

1　 相关理论

1. 1　 协同分摊噪声算法

　 　 协同分摊噪声算法[20] 是在两个假设条件下设计开

发的。 首先,认为获得的数据为单一工况条件下收集的

数据。 其次,认为样本中心点数据是不理想条件下存在

的唯一完全无噪声数据。
CAN 算法是由可信度( credibledegree,CD)对各属性

进行加权分摊噪声; 由数据与样本中心点之间的偏

差(deviation,Dev)来确定噪声削弱方向;由各数据与样

本中心点之间的偏置(bias
 

degree,BD)来确定噪声含量;
由强度因子(reduction

 

degree,RD)超参数进行调节,控制

CAN 算法的清理过程。 若输入的原始辅助数据为 X ,进
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行噪声清理后的输出辅助数据为 X′ ,则 CAN 算法可表

示为:
X′ = X - (1 - CD) × BD × Dev × RD (1)
其中, CD 由各辅助数据与关键变量之间的 Pearson

相关性系数归一化后确定。 若辅助数据为 X ,关键变量

为 Y,则 CD 的计算过程可表示为:

CD = ρ(X,Y) / ∑ ρ(X,Y) (2)

Dev 由各数据与样本中心的差值确定。 若辅助数据

为 X ,样本中心数据为 μ ,则 Dev 的计算过程可表示为:
Dev = X - μ (3)
BD 由各数据与样本中心数据之间的欧氏距离进行

归一化后确定。 BD 的计算过程可表示为:

BD = d(X,μ) / ∑d(X,μ) (4)

1. 2　 相关性系数

　 　 Pearson 相关性系数( pearson
 

correlation
 

coefficient,
PCC)又称为线性相关性系数,两个连续的随机变量 X 与

Y 之间的 PCC 可定义为 ρXY :

ρXY =
∑(x -X- )(y -Y-)

∑(x -X- ) 2 ∑(y -Y-) 2
(5)

式中: X- 和 Y- 为随机变量 X 和 Y 的均值。
Spearman 相 关 性 系 数 ( spearman

 

correlation
 

coefficient,SCC)是衡量秩序相关性,被认为是最好的非

线性相关性系数,用于度量独立变量 X 与依赖变量 Y 之

间的相关方向。 SCC 被定义为等级变量之间的 PCC,可
定义为 γXY :

γXY =
∑(x -X- )(y -Y-)

∑(x -X- ) 2∑(y -Y-) 2
(6)

式中: X- 和 Y- 为独立变量 X 和依赖变量 Y 的均值。
融 合 相 关 性 系 数 ( hybrid

 

correlation
 

coefficient,
HCC) [3] 是融合了 PCC 和 SCC 的相关性系数。 为了更好

的反映复杂变量之间的相关关系,采用调谐参数 α 来调

整融合系数中 ρXY 与 γXY 之间的比值,采用调谐参数来调

整融合系数中 PCC 与 SCC 之间的比值,使线性和非线性

系数之比在 0 ~ 1 之间变化。 融合相关性系数 λXY 可

表示为:
λXY = α | ρXY | + (1 - α) | γXY | (7)

2　 HCAN-CNN 软测量模型

　 　 考虑到工业流程数据是线性与非线性关系糅合,只
考虑数据间的线性关系的不合理性,本文采用融合相关

性系数来进行融合可信度( hybrid
 

credible
 

degree,HCD)
计算,优化文献[20]提出的 CAN 算法,并结合卷积神经

网络构建 HCAN-CNN 软测量模型。 HCAN-CNN 模型具

有两个阶段:第 1 个阶段是融合协同分摊噪声阶段,用来

对输入数据进行噪声削弱,并设定强度因子;第 2 个阶段

是卷积回归阶段,对设定好强度的已清理数据进行深层

特征提取,最后利用全连接神经网络进行回归分析,并输

出关键变量的预测数据 Ypred。 HCAN-CNN 模型如图 1
所示。

图 1　 HCAN-CNN 模型流程

Fig. 1　 HCAN-CNN
 

model
 

flowchart

　 　 其中,为了控制实验变量,在卷积回归阶段,采用与

文献[20]相同的结构参数,即设定 3 个卷积层,在第 2 和

第 3 卷积层之间穿插一个最大池化层,最后连接一个 3
层的全连接网络。 模型总体流程如算法 1 所示。
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算法 1:HCAN-CNN 软测量模型流程

输入:原始输入辅助数据 X,关键变量 Y
输出:关键变量预测值 Ypred

融合协同分摊噪声阶段:

　 　 初始化:

　 　 设定 HCAN 算法中调谐参数 α 和强度因子 RD

　 　 循环计算:

　 　 　 　 1.
 

根据式(7)计算融合可信度 HCD

　 　 　 　 2.
 

根据式(3)、(4)计算偏差 Dev 和偏置 BD

　 　 　 　 3.
 

根据式(1)对原始输入辅助数据 X 进行降噪处理

　 　 整个数据集遍历完成时结束

中间输出:HCAN 算法降噪处理后辅助变量 X′

卷积回归阶段:

　 　 初始化:

　 　 　 　 1.
 

设定结构参数

　 　 　 　 2.
 

设定优化器、卷积核大小、步长、填充方式、激活函数、迭
代次数、误差函数

　 　 循环计算:
　 　 　 　 进行特征提取、筛选、反向传播

　 　 参数收敛时结束

输出:关键变量预测值 Ypred

3　 实验分析

3. 1　 数据集介绍

　 　 烯烃分离装置脱丁烷塔是工业炼油中分离液化石油

气和稳定轻烃的重要工业炼化炉,主要用于脱硫和石脑

油裂解。 脱丁烷塔的主要流程如图 2 所示,该化工过程

主要有六种设备,即热交换器、塔顶冷凝器、底部再沸器、
回流泵、液化石油气分离器的进料泵和回流蓄能器。 为

了实现稳定的化工生产且保证气态产物的产品质量,必
须使脱丁烷塔底部的丁烷含量最小化,因此对塔内丁烷

含量的实时测量是实现精准控制该炼油过程的关键所

在。 但实际上,能反映丁烷含量的 C4 的浓度并不能直接

测量,而是需要借助气相色谱仪对随后的脱异戊烷塔顶

部的输出气体进行持续测量分析。
气相色谱仪对脱丁烷塔过程中丁烷含量的分析测量

具有严重的滞后性,不能满足该炼化过程的实时精确控

制。 因此,根据图 2 中 7 个数据采集点进行过程数据采

集。 该过程中共采集 2
 

390 条数据,各数据说明如表

1 所示。

图 2　 脱丁烷塔主要流程[9]

Fig. 2　 Main
 

process
 

of
 

the
 

debutanizer
 

column[9]

3. 2　 模型评价指标

　 　 在参考多位研究人员发表的文献后,选择如下 4 种

通用模型准确性评价指标: 平均绝对值误差 ( mean
 

absolute
 

error, MAE )、 均 方 误 差 ( mean
 

squared
 

error,
MSE)、均方根误差( root

 

mean
 

square
 

error,RMSE)、决定

系数(r-square,R2)。
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表 1　 脱丁烷塔数据集说明

Table
 

1　 Debutanizer
 

dataset
 

description
过程变量及关键变量 变量描述

u1 塔顶温度
u2 塔顶压强
u3 回流流量
u4 流向下一流程流量
u5 中间层温度
u6 底部温度 A
u7 底部温度 B
y 丁烷含量

3. 3　 实验结果与分析

　 　 实验采用文献[3-4,20-21]中对数据的预处理操作,
使用 u5 的历史数据和关键变量 y 对数据进行扩展,具体

的数据展开如增广矩阵式(8)所示。 在将数据传递到回

归分析阶段之前,对数据填充 3 列零值,使用增广矩阵

式(9)作为 CNN 网络第 k 个采样瞬间的原始观测输入变

量。 总共使用 2
 

390 个数据样本用于模型的训练和测

试,其中 1
 

000 个样本作为训练数据,其余样本用于测试

数据。

u1(k),u2(k),u3(k),u4(k),u5(k),u5(k - 1),u5(k - 2),u5(k - 3),
(u6(k) + u7(k)) / 2,y(k - 1),y(k - 2),y(k - 3),y(k - 4)

é

ë

ê
ê

ù

û

ú
ú

T

(8)

u1(k),u2(k),u3(k),u4(k),u5(k),u5(k - 1),u5(k - 2),u5(k - 3),
(u6(k) + u7(k)) / 2,y(k - 1),y(k - 2),y(k - 3),y(k - 4),0,0,0

é

ë

ê
ê

ù

û

ú
ú

T

(9)

　 　 为了验证 HCAN 方法的可行性,本文选择文献[20]
中使 用 的 基 于 堆 栈 自 编 码 器 神 经 网 络 ( stacked

 

autoencoder
 

neural
 

network, SAE-NN ) 和卷积神经网络

CNN 用于基回归模型。 在 HCAN 阶段,选择文献[3] 中的

设置,设定调谐参数 α = 0. 5。 在回归分析阶段,回归器

的参数设置均采用文献[20]中的设置,即将优化器设定

为“Adam”,卷积核大小设定为 2×2,步长设定为 1,填充

方式设定为“Same”,激活函数设定为“ ReLU”,迭代次数

设定为 20,损失函数设定为“ MAE”,全连接神经网络的

神经元个数设定为 [ 40, 20, 10, 1], 激活函数设定为

“ReLU”,学习率设定为 0. 01。
在 HCAN 阶段,采用试错法寻找 HCAN 算法中的 RD

参数,这里选择了 6 种模型,分别是采用 PCC 计算数据

可信度的 CAN-SAE-NN 模型和 CAN-CNN 模型, 采用

SCC 计算数据可信度的 SCC-CAN-SAE-NN 模型和 SCC-
CAN-CNN 模型,采用 HCC 计算数据可信度的 HCAN-
SAE-NN 模型和 HCAN-CNN 模型,在[ 0,0. 1,0. 2,0. 3,
0. 4,0. 5,0. 6,0. 7,0. 8,0. 9,1. 0]范围内不同 RD 值的变

化趋势,所有试验结果均是多次实验后取得的均值,如图

3 所示。

图 3　 不同模型在不同 RD 值下的损失变化

Fig. 3　 Losses
 

of
 

different
 

models
 

under
 

different
 

RD
 

values

　 　 当模型强度因子 RD = 0. 0 时,表明未对数据进行降

噪操作,是一组消融对比实验。 当强度因子 0 < RD ≤ 1
时,表明对数据进行降噪操作,并随着 RD 值的增大,降
噪操作越强。 由图 3 可知,随着强度因子 RD 的增加,各
模型损失的变化趋势有着较大的不同,为了更清晰的得

到我们的结论,在分析时进行分组分析。
其中,基础模型分别是 SAE-NN 和 CNN。 在以 SAE-

NN 为基模型的组别中一共有 3 个模型,分别是 CAN-

SAE-NN、SCC-CAN-SAE-NN、HCAN-SAE-NN。 其中 CAN-
SAE-NN 在 RD 低时表现较好,但随着 RD 增加,MAE 和

RMSE 迅速上升,表现最不稳定;SCC-CAN-SAE-NN 相较

于 CAN-SAE-NN 有一定的优化效果,但在 RD 较大时损

失上升的依旧明显;采用融合相关性的协同分摊噪声算

法模型 HCAN-SAE-NN 与前面两者相比更加稳定,尤其

是 RMSE 的变化幅度较小,说明 HCAN 机制在 SAE-NN
结构上提升了鲁棒性。 在以 CNN 为基模型的组别中也
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有 3 个模型,分别是 CAN-CNN、 SCC-CAN-CNN、 HCAN-
CNN。 其中 CAN-CNN 模型在 RD 较小时 MAE 和 RMSE
表现良好,但随着 RD 的增大,损失上升较快;相较于

CAN-CNN 模型,SCC-CAN-CNN 模型性能有所提升,但在

RD 增大时仍然出现损失上升趋势; 与前两者相比,
HCAN-CNN 在所有 RD 值下的 MAE 和 RMSE 都是最低

的且没有出现明显的上升趋势,说明 HCAN 机制对 CNN
结构的提升最为明显。

其中, 采用 PCC 计算可信度的 CAN-SAE-NN 和

CAN-CNN 模型与采用 SCC 计算可信度的 SCC-CAN-
SAE-NN 和 SCC-CAN-CNN

 

4 种模型 MAE 损失和 RMSE
损失的变化趋势表现为先减小后逐步增大,且 4 种模型

的损失最低点均小于消融组。 而采用 HCC 计算可信度

的 HCAN-SAE-NN 和 HCAN-CNN 模型的 MAE 损失与

RMSE 损失在 RD 值增大时表现出稳步下降的趋势,且损

失值均小于消融组。 上述实验可表明 PCC、SCC 和 HCC
 

3 种方法在计算数据可信度方面有着不同的表现,其中,
由 HCC 优化的 CAN 方法表现较优,在不同 RD 值下均能

降低模型损失。
综上所述,可以得出结论,采用融合相关性的协同分

摊噪声算法 HCAN 较 CAN 以及 SCC-CAN 有着明显的优

势,HCAN 机制的改进是有效的。 可表明 PCC、SCC 和

HCC
 

3 种方法在计算数据可信度方面有着不同的表现,
其中,由 HCC 优化的 CAN 方法表现较优,在不同 RD 值

下均能降低模型损失。
为了证明本文所提出采用 HCC 优化 CAN 方法以及

提出的 HCAN-CNN 模型性能,采用多降噪方法、多模型

和多回归方法进行交叉对比实验。 在所涉及的方法和模

型中,降噪方法有刻出来高斯噪声的 DAE、基于 sym8 的

小波降噪 WTD、基于 PCC 计算可信度的 CAN、基于 SCC
计算可信度的 SCC-CAN 和基于 HCC 计算可信度的

HCAN;不同的模型及回归方法有 SAE-NN 和 CNN;对比

模型有基于 PCC 的 VWSAE- ρ 、基于 SCC 的 VWSAE- γ 、
基于 HCC 的 Hybrid

 

VWSAE 和质量驱动模型 SQAE-NN
以及去噪多尺度残差深度网络 DMRDN。 其中为了明显

观察到模型性能的提升,在交叉对比实验中,将 SCC-
CAN-SAE-NN 和 SCC-CAN-CNN 模型的 RD 值设定为

0. 1,将 HCAN-SAE-NN 和 HCAN-CNN 模型的 RD 值分别

设定为 1. 0 和 0. 6。
　 　 采用多种方法及模型进行交叉组合实验,结果如表

2 所示。 从表 2 可以看出,HCAN-CNN 模型较优化前有

着明显的提升,具体表现在有着较低的 MAE、 MSE 和

RMSE 损失,有着较高的 R2 指标。 由多次独立实验取均

值可以看出,HCAN-CNN 模型较对比模型有着较优的指

标得分。
为了更直观的比较模型的性能,本文提取了前述 6

种模型的预测结果,用于对预测误差进行对比分析,如图

4 ~ 9 所示。
表 2　 脱丁烷塔数据集下多模型多方法交叉实验结果对比

Table
 

2　 Cross-experimental
 

results
 

of
 

multiple
 

models
 

and
methods

 

under
 

the
 

Debutanizer
 

column
 

dataset
模型 RD MAE MSE RMSE R2

SCC-CAN-SAE-NN 0. 1 0. 035
 

7 0. 003
 

3 0. 056
 

9 0. 911
 

0
CAN-SAE-NN[9] 0. 2 0. 036

 

4 0. 003
 

1 0. 055
 

3 0. 916
 

1
DAE-CNN[9] - 0. 041

 

3 0. 003
 

1 0. 054
 

9 0. 917
 

4
HCAN-SAE-NN 1 0. 032

 

6 0. 002
 

3 0. 047
 

6 0. 937
 

7
VWSAE- ρ

 [10] - - - 0. 038
 

9 0. 943
 

8
VWSAE-NN[11] - 0. 027

 

7 - 0. 037
 

9 0. 944
 

4
WTD-CNN[9] - 0. 025

 

4 0. 001
 

9 0. 039
 

8 0. 949
 

2
DMRDN[6] - - - 0. 037

 

9 0. 956
 

1
VWSAE- γ

 [10] - - - 0. 033
 

6 0. 958
 

0
Hybrid

 

VWSAE[10] - - - 0. 030
 

8 0. 961
 

5
SQAE-NN[12] - 0. 022

 

0 - 0. 030
 

3 0. 964
 

6
CAN-CNN[9] 0. 1 0. 023

 

0 0. 001
 

2 0. 034
 

9 0. 966
 

6
SCC-CAN-CNN 0. 1 0. 022

 

3 0. 001
 

2 0. 034
 

0 0. 968
 

2
HCAN-CNN 0. 6 0. 020

 

7 0. 001
 

1 0. 031
 

7 0. 971
 

6

图 4　 SCC-CAN-SAE-NN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 4　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

SCC-CAN-SAE-NN
 

model
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图 5　 CAN-SAE-NN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 5　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

CAN-SAE-NN
 

model

图 6　 HCAN-SAE-NN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 6　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

HCAN-SAE-NN
 

model

图 7　 CAN-CNN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 7　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

CAN-CNN
 

model
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图 8　 SCC-CAN-CNN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 8　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

SCC-CAN-CNN
 

model

图 9　 HCAN-CNN 模型在脱丁烷塔数据集上的预测结果与预测误差

Fig. 9　 The
 

prediction
 

results
 

and
 

prediction
 

errors
 

of
 

the
 

HCAN-CNN
 

model

　 　 图 4 ~ 9 中,以预测结果与真实数据的对比可以看

出,HCAN-CNN 模型具有较好的预测效果,预测值较对

比模型更加贴合真实数据。 同时,从各模型的预测误差

可以看出,HCAN-CNN 模型的误差范围更小。 从误差面

积比较来看,HCAN-CNN 模型的误差面积更小,表明其

预测误差较其他对比模型更小。

4　 结　 论

　 　 本文针对工业数据中线性相关与非线性相关共存,
且数据中存在复杂噪声问题,提出以融合相关性系数计

算数据的可信度,来优化采用 Pearson 相关性系数计算数

据可信度的协同分摊噪声算法,并结合卷积神经网络搭

建 HCAN-CNN 软测量模型。 在本文中采用多降噪方法、
多模型和多回归方法的交叉组合进行实验,结果表明优

化后的 HCAN 方法较优化前有着较高的提升,且优化后

较优化前可信度计算方法更合理。 与其他降噪方法对比

表明,HCAN 方法具有更好的噪声抑制效果。 与多模型

和多回归方法对比表明,本文提出的 HCAN-CNN 模型具

有更高的预测精度以及更小的预测误差。
虽然本文提出的 HCAN 较优化前有着较大的提升,

但 CAN 算法理论建立在单一工况下,不易直接推广到多

工况场景下。 因此,下一步的工作是设计多工况条件下

对复杂噪声的削弱操作,同时提高多限制条件下的模型

预测精度。
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