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Liang Nan'  Gao Shiwei’  Zhang Wei'  Tian Tian>  Xue Ruizheng
(1. Institute of Applied Physics, Henan Academy of Sciences, Zhengzhou 450000, China; 2. School of Computer Science and

Engineering, Northwest Normal University, Lanzhou 730000, China; 3. Henan Technical College of Construction, Zhengzhou
450000, China; 4. Henan Guojian Medical Equipment Co. , Ltd. , Shangqgiu 476002, China)

Abstract: Data-driven soft-sensing modeling plays a critical role in process industries, yet faces challenges from heterogeneous noise
contamination and the coexistence of linear and nonlinear correlations in industrial datasets. These issues significantly compromise model
prediction accuracy. To address this, we propose a fused correlation-based collaborative shared noise algorithm for robust soft-sensing
modeling. The algorithm integrates Pearson correlation coefficients ( linear relationships) and Spearman rank correlation coefficients
(nonlinear relationships ) to compute data credibility, thereby optimizing noise allocation under mixed correlation conditions. A
convolutional neural network ( CNN) is subsequently employed to construct the soft-sensing model. Experiments on a debutanizer column
dataset demonstrate the superiority of the proposed method. The FC-CSNA outperforms baseline denoising techniques, including wavelet
transform, denoising autoencoders, and the original collaborative shared noise algorithm, in noise suppression. The hybrid model
achieves state-of-the-art prediction performance, with an R*score of 0. 971 6 and mean squared error (MSE) of 0. 001 1, validating its
effectiveness in handling industrial data complexity.
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Table 1 Debutanizer dataset description
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