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Narrow and complex spatial path planning based on
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Abstract: Path planning is a key technology for unmanned vehicles to realize autonomous navigation. Whether a safe and smooth
travelable path can be quickly planned in a narrow channel determines the efficiency of unmanned vehicles in performing tasks in narrow
and complex environments. However, common path planning algorithms usually have the problems of slow convergence speed, long
planning time and poor path quality in the narrow channel environment. For this reason, this paper proposes a RRT-Connect algorithm
Based on dual-layer guided sampling ( DLGS-RRT-Connect) algorithm. First, the guided path is pre-constructed in the narrow channel,
and the searching connection strategy is used to guide the random tree to expand along the guided path in the narrow channel, so as to
reduce the invalid sampling and improve the exploration efficiency of the algorithm in the narrow channel. Secondly, the algorithm
introduces a target bias strategy to reduce the randomness in the sampling process and provide directional guidance for the growth of the
random tree, thus further improving the efficiency of path planning. Finally, the simulation results show that compared with the common
Goal_bias RRT, Informed-RRT" , and RRT-Connect algorithms, the DLGS-RRT-Connect algorithm proposed in this paper improves the
planning success rate in narrow channel environments by 35%, 60% , and 26%, respectively, and reduces the average planning time by
70.62%, 70.62%, 70.65%, and 97.65%, and 63.92%, and the average path length is also reduced by 14.53%, 16.70% , and
18. 84%, respectively, which can effectively improve the smoothness and safety of planning paths in narrow environments.
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Table 1 Experimental results data for each algorithm in simple scenarios
R g2 Goal_bias RRT Informed_RRT RRT_Connect DLGS-RRT-Connect
A RN 2/ % 100 100 100 100
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P B 34.913 7 34.787 0 33.509 2 29.129 8

P pg A s T e A A . SR, R A0 R A o 22
1R TR B B[] B DT IR 1 B AR R
H1E] 18 () AT 1, RRT-Connect 5733 47 A £ I 451 [
B4 JE PR BEATLAR | IR T 528 SR s (2 (s 4 =2 (1] 6 o) ¢
AR, W TIRRACR, SR, AT 2 A AR B
B2E MR AR T IS RS A la b, M
2 F ,DLGS-RRT-Connect .38 i3 454 Hbr 5| S 2% kE
TR RN AR J Ab B 7 1% | B8 70 25 Jacd s ) A v 2R ) 1
— 5 B2, R T BRI R R BT

HIZE 1 AT, 721 5137 5T, DLGS-RRT-Connect 55
A% T Goal-bias RRT ., Informed-RRT * A1 RRT-Connect
Sk, TE R I E] B g3 0 > T30, 76% |, 99. T4% il
5.26% ; (MK B6 AR B9 EE 1, 20 ik T 16. 57%

16.26%F1 13.07% , X 46455 F B, DLGS-RRT-Connect
FEAR 7S 8 38 1 37 S rh R A 4 e IR R AR, HLAE AR
i PRI B W G
3.3 BEEEHE

FEHD A ) A 45 3 S v i T8 A e A8 T A
AR, AFRXT T oRAESRA N &, A el 25k T 1 1) X
B rh AR BB/ NG T A I RPN A bR )
g HAZ B AT AR — X, R T IR A
FHARIE A T AP 8 18 N AT B AR R A RE T, A
AT T AR IR IE Y R, SRR TEIR S RN AR
FLRIZE RN E 19 FrzR, 32 2 0 4 R A HLRIPE RE 48 A
X EEA T

& 19(a) . (b) AT I, Goal-bias RRT } Informed-
RRT " LT 2 AE AR B AR X3 i E T3 2 SR A R fE 4R



- 34 - LSRR R e o

539 &

FIPeASIEIE AL HGUS 1 A a5 A B[] 3 FE AR 2 AR
B, BRULLISL T e 7% 38 G vl L o Bl AL SR A AR A
B RCREE S, A Informed-RRT * 5278 19 M0 R i 2D 45
AN 48% . I .21 1 T B T8 1520 SRASE DX Jalwfle LA 4 /)
i, Informed-RRT ™ 532 AR 0) i A28 X AMS S B B AR . #H
K 19(a) . (¢) I H, B4R Goal-bias RRT Fll RRT-Connect
SR A3 A Ik bR 1] SRS R B AR SR 5 | R A AU A
B, B TR R (R REAILR A T 1] 14 5 |
ST AR PEAR I BT A, BT I R A ) R AR
24, K 19(d) 7T F1, DLGS-RRT-Connect B
fig 38 48 R U R s LU D YOR AR Bl 1B A T, I
R AR G | T AR P AL T T AT R AR [

0 5 10 15 20 25 30

(a) Goal-bias RRTL ¥
(a) Goal-bias RRT algorithm

0 5 10 15 20 25 30
(¢) RRT-Connect.#:
(¢) RRT-Connect algorithm

i, PR A AR A R 2 Tl P 2
DLGS-RRT-Connect £ %] i 1) #% 42 78 % 4 % J5 1 A Pr
27t

FH2e 2 AT fE B8 @ 1 350, DLGS-RRT-Connect
AT 55 40 3 B L, 767 R B 1 40 Sl sk 2> 1
48.23% 97.33% 47. 48% , 18- 359 3% AR U 4 s b
T 92.32% .94. 68% 84. 25% , 1 #2102 K B F 4531l
WL T 21.50% . 25. 50% 24. 86% , % A8 bR By 4 TF %
W], DLGS-RRT-Connect REMS7E Bk 7% 38 1H & 5t v = AOR K]
R e 4 VI R A, B T R A R A N R ) %
R

Ke . i a

0 5 10 15 20 25 30
(b) Informed-RRT* 5. ¥

(b) Informed-RRT* algorithm

- A
G

2k — BB

20 |

15 1

10 |

5k

0 5 10 15 20 25 30
(d) DLGS-RRT-Connect%f.#:
(d) DLGS-RRT-Connect algorithm

F19 Bl i A5 03k Y B A RIS 25

Fig. 19 Path planning results for each algorithm in a narrow channel
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Table 2 Experimental result data of each algorithm in narrow channel scene

HREi2 7N Goal_bias RRT Informed_RRT " RRT_Connect DLGS-RRT-Connect
HX 1%/ % 94 48 97 100
SRR/ 0.014 1 0.273 3 0.013 9 0.007 3
SRR UEL 482 696 235 37

SR 55.460 1 58.443 0 57.940 9 46.538 5
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Fig.20  Path planning results for each algorithm in the obstacle corridor scenario
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Table 3 Experimental result data for each algorithm in the obstacle corridor scenario

(R ZE =L Goal_bias RRT Informed_RRT " RRT_Connect DLGS-RRT-Connect
LRI/ % 65 40 74 100
R =FIR AR 0.019 4 0.243 0 0.015 8 0. 005 7
TR 588 729 432 2
YR 53.080 3 54. 460 2 55.902 7 45.368 0
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Path planning results for each algorithm in the maze scenario
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Table 4 Experimental result data of each algorithm in the maze scenario

AR =L Goal_bias RRT Informed_RRT RRT_Connect DLGS-RRT-Connect
R II%/ % 8 7 66 100
SER R/ 0.037 9 0.2258 0.039 4 0.029 9
S AR AL 890 912 679 2
TR 58.207 4 56. 168 5 60.232 8 47.474 7
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