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基于 DLGS-RRT-Connect 算法的
狭窄复杂空间路径规划∗

薛佳慧　 陶贤露　 潘树国　 王　 萍　 高　 旺　 张俊豪

(东南大学仪器科学与工程学院　 综合时空网络与装备技术全国重点实验室　 南京　 210096)

摘　 要:路径规划是无人车辆实现自主导航的关键技术,决定着无人车辆能否安全高效地抵达目标点。 但是,常见的路径规划

算法在狭窄通道环境中存在收敛速度慢、规划耗时长以及路径质量差的问题。 为此,提出一种基于双层引导采样的 RRT-
Connect(DLGS-RRT-Connect)算法。 首先,在狭窄通道中预先构建引导路径,采用搜索式连接策略引导随机树在狭窄通道中沿

引导路径拓展,从而减少无效采样,提升算法在狭窄通道内的探索效率。 其次,算法引入目标偏置策略,降低采样过程中的随机

性,为随机树的生长提供方向性引导,从而进一步提升路径规划的效率。 最后,仿真结果表明,相较于常见的 Goal_bias
 

RRT、
Informed-RRT∗和 RRT-Connect 算法,DLGS-RRT-Connect 算法在狭窄通道环境中的规划成功率分别提高了 35%,60%,26%,平
均规划时长分别降低了 70. 62%,97. 65%,63. 92%,路径平均长度也分别减少了 14. 53%,16. 70%,18. 84%,可以有效改善狭窄

环境规划路径的平滑性和安全性。
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Abstract:
 

Path
 

planning
 

is
 

a
 

key
 

technology
 

for
 

unmanned
 

vehicles
 

to
 

realize
 

autonomous
 

navigation.
 

Whether
 

a
 

safe
 

and
 

smooth
 

travelable
 

path
 

can
 

be
 

quickly
 

planned
 

in
 

a
 

narrow
 

channel
 

determines
 

the
 

efficiency
 

of
 

unmanned
 

vehicles
 

in
 

performing
 

tasks
 

in
 

narrow
 

and
 

complex
 

environments.
 

However,
 

common
 

path
 

planning
 

algorithms
 

usually
 

have
 

the
 

problems
 

of
 

slow
 

convergence
 

speed,
 

long
 

planning
 

time
 

and
 

poor
 

path
 

quality
 

in
 

the
 

narrow
 

channel
 

environment.
 

For
 

this
 

reason,
 

this
 

paper
 

proposes
 

a
 

RRT-Connect
 

algorithm
 

Based
 

on
 

dual-layer
 

guided
 

sampling
 

(DLGS-RRT-Connect)
 

algorithm.
 

First,
 

the
 

guided
 

path
 

is
 

pre-constructed
 

in
 

the
 

narrow
 

channel,
 

and
 

the
 

searching
 

connection
 

strategy
 

is
 

used
 

to
 

guide
 

the
 

random
 

tree
 

to
 

expand
 

along
 

the
 

guided
 

path
 

in
 

the
 

narrow
 

channel,
 

so
 

as
 

to
 

reduce
 

the
 

invalid
 

sampling
 

and
 

improve
 

the
 

exploration
 

efficiency
 

of
 

the
 

algorithm
 

in
 

the
 

narrow
 

channel.
 

Secondly,
 

the
 

algorithm
 

introduces
 

a
 

target
 

bias
 

strategy
 

to
 

reduce
 

the
 

randomness
 

in
 

the
 

sampling
 

process
 

and
 

provide
 

directional
 

guidance
 

for
 

the
 

growth
 

of
 

the
 

random
 

tree,
 

thus
 

further
 

improving
 

the
 

efficiency
 

of
 

path
 

planning.
 

Finally,
 

the
 

simulation
 

results
 

show
 

that
 

compared
 

with
 

the
 

common
 

Goal_bias
 

RRT,
 

Informed-RRT∗ ,
 

and
 

RRT-Connect
 

algorithms,
 

the
 

DLGS-RRT-Connect
 

algorithm
 

proposed
 

in
 

this
 

paper
 

improves
 

the
 

planning
 

success
 

rate
 

in
 

narrow
 

channel
 

environments
 

by
 

35%,
 

60%,
 

and
 

26%,
 

respectively,
 

and
 

reduces
 

the
 

average
 

planning
 

time
 

by
 

70. 62%,
 

70. 62%,
 

70. 65%,
 

and
 

97. 65%,
 

and
 

63. 92%,
 

and
 

the
 

average
 

path
 

length
 

is
 

also
 

reduced
 

by
 

14. 53%,
 

16. 70%,
 

and
 

18. 84%,
 

respectively,
 

which
 

can
 

effectively
 

improve
 

the
 

smoothness
 

and
 

safety
 

of
 

planning
 

paths
 

in
 

narrow
 

environments.
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path
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0　 引　 言

　 　 随着智能无人技术的不断进步,地下管网、矿井隧

道、灾后救援及自动化仓储等狭窄复杂环境中智能无人

车辆的应用正日益受到关注,并逐渐成为提升作业效率

与安全性的关键途径[1-3]
 

。 在智能无人车辆的自主导航

中,路径规划至关重要,它决定了车辆如何在复杂环境中

高效、安全地到达目标位置[4-5]
 

。
路径规划旨在配置空间中找到一条从给定起点到目

标点的无碰撞路径,并尽可能缩短路径长度、提高平滑

性、减少计算耗时,同时满足车辆的运动约束[6-8]
 

。 目前,
常用的全局路径规划算法有 A∗算法、快速拓展随机树算

法(rapidly-exploring
 

random
 

trees,RRT)、遗传算法、蚁群

算法等[9]
 

。 其中,RRT 算法因其建模简单、具有概率完

备性且采样搜索高效,近年来成为解决高维规划问题的

主流方法[10]
 

。 然而,由于其随机采样特性,在狭窄复杂

空间中难以获得有效采样点导致搜索效率降低,规划路

径蜿蜒曲折[12-13]
 

。
针对上述问题, 国内外学者提出了许多改进措

施[14]
 

。 Kuffner 等[15] 提出了
 

RRT-Connect
 

算法,在规划

过程中采用双向树生长与贪婪连接启发式,有效实现了

搜索树的双向快速扩展。 为了提高采样效率,减小采样

的随机性,Lavalle 等[16] 提出了 Goal_bias
 

RRT,将目标点

以一定概率设置为采样点,以此引导随机树的生长。
Karman 等[17] 提出了 RRT∗ 算法,在传统 RRT 算法的基

础上引入了父节点重选择机制,在采样的过程中不断优

化采样点与随机树的连接距离,在保持在线规划效率的

同时实现规划路径的渐进最优,提高了路径质量。 为了

进一步提高采样效率, Gammell 等[18] 提出的 Informed-
RRT∗算法将采样区域限制在一个椭球体中,而不对整个

空间进行随机采样。 随着采样次数的迭代逐步缩小采样

区域,同时不断更新采样点与随机树的连接关系,从而更

加高效地实现规划路径的渐进最优。 此外,Liao 等[19] 提

出一种 F-RRT∗算法,基于三角形不等式创建新节点,并
结合父节点重选择策略,从而优化路径成本,显著提高了

初始 解 的 质 量 和 收 敛 速 度。 Li 等[20] 提 出 的 PQ-
RRT∗(potential

 

quick-RRT∗ )算法通过引入基于势场的

采样策略引导采样点向目标点靠近,并在父节点重选择

时将搜索范围扩大至祖先节点,从而优化了初始解的质

量和收敛速度,同时保持了渐进最优性。
经过众多专家学者的深入研究,改进的 RRT 算法在

采样效率、收敛速度以及路径质量等方面已经获得显著

提升。 然而,在狭窄复杂的环境中,RRT 算法及其改进算

法由于难以获得有效采样点,仍然难以高效规划出平滑

路径。 针对 RRT 及其改进算法在狭窄复杂空间中存在

的规划效率低、收敛速度慢及路径质量差等问题,本文在

RRT-Connect 算法的基础上提出了一种基于双层引导采

样的 RRT-Connect
 

(RRT-Connect
 

algorithm
 

based
 

on
 

dual-
layer

 

guided
 

sampling,DLGS-RRT-Connect)
 

算法。 首先,
使用快速桥接法提取狭窄通道特征点,对特征点进行聚

类分析并通过构建最小生成树的方式构建狭窄通道引导

路径。 然后,通过狭窄通道引导路径以及目标偏置策略

对随机树的生长方向进行双层引导,加速随机树在狭窄

通道中的拓展,提高初始路径的规划效率。 随后,通过贪

婪剪枝、转角优化以及四阶贝塞尔曲线平滑的方式对路

径进行了优化处理。

1　 RRT 算法及其改进算法

1. 1　 传统 RRT 算法

　 　 RRT 是一种基于采样的路径规划算法,其核心思想

是通过在自由空间随机采样,并在可行区域拓展随机树,
不断探索环境,最终找到从起点到目标点的可行路径。

如图 1 所示,传统 RRT 算法的实现步骤如下:
1)

 

在自由空间中进行随机采样得到点 xrand;
2)

 

若是 xrand 不在障碍物中,则计算随机树上离
 

xrand

最近的点 xnear;
3)

 

若是 xnear 与 xrand 的距离小于拓展步长 step,则将

xrand 作为新节点 xnew,否则从 xnear 向着 xrand 的方向拓展一

个步长 step 得到新节点 xnew;
4)

 

判断随机树与新节点 xnew 的连接是否会与障碍

物碰撞,若是不碰撞则将 xnew 加入随机树中,反之则返回

步骤(1)重新进行采样;
5)

 

计算随机树的新节点 xnew 与目标点 xgoal 的距离,
若是两点距离小于 d 则代表随机树可以与目标点 xgoal 相

接,路径搜索完成,反之则重复上述步骤,通过不断采样

迭代拓展随机树的搜索范围。
1. 2　 RRT-Connect 算法

　 　 RRT-Connect 算法在 RRT 的随机采样基础上,从起

点和目标点分别生成两棵随机树,并引入启发式拓展策

略,通过动态切换拓展方式,使两棵树相连,从而生成起

点至目标点的全局路径。
如图 2( a)所示,算法以规划起点 x init 和目标点 xgoal

为根节点同时进行两棵随机树的拓展。 在一个生长周期

中,一颗随机树在可行驶区域进行随机采样得到 xrand,选
择该随机树上距离 xrand 最近的点作为生长点,从该点向

xrand 的方向以一定步长 step 进行拓展得到一个新的节点

xnew1,若是生长点到 xnew1 的拓展过程中不与障碍物碰撞,
则完成一次随机采样拓展。 此时,另一棵随机树选择树

上距离 xnew1 最近的点作为生长点进行启发式拓展,从该
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图 1　 RRT 算法原理

Fig. 1　 Principle
 

of
 

RRT
 

algorithm

点向 xnew1 方向不断以步长 step 进行拓展得到新节点

xnew2,直到随机树在该方向上与障碍物相撞或者 xnew1 和

xnew2 相遇。 考虑到两棵树的平衡性,在不同拓展周期动

态切换两树的拓展策略,促使两棵随机树更快相接。 如

图 2(b)所示,当 xnew1 和 xnew2 相遇时两棵随机树连接成

为航路树,在航路树上进行回溯即可得到从规划起点到

目标点的全局路径。

图 2　 RRT-Connect 算法原理

Fig. 2　 Principle
 

of
 

RRT-Connect
 

algorithm

相较于 RRT 算法,RRT-Connect 通过双向拓展以及

贪婪拓展策略极大地提高了规划效率。 但在具有狭窄通

道的环境中,RRT-Connect 算法仍然存在难以取得有效采

样点的缺陷,且其规划路径的质量仍无法满足无人车辆

正常行驶的需求。

2　 DLGS-RRT-Connect 算法

　 　 传统 RRT 及 RRT-Connect 算法在狭窄通道中难以获

得足够的有效采样点,限制了随机树在复杂环境中的拓

展能力。 为提高采样效率,本文提出了一种基于狭窄通

道引导路径及目标偏置引导的双层引导采样方法,极大

程度上优化了算法在狭窄通道内的搜索过程。 最后,本
文通过对初始路径进行优化最终生成了安全且平滑的可

行驶路径,算法框架如图 3 所示。

图 3　 DLGS-RRT-Connect 算法框架图

Fig. 3　 DLGS-RRT-Connect
 

algorithm
 

framework
 

diagram

2. 1　 构建狭窄通道引导路径

　 　 引导路径为随机树在狭窄通道中的拓展提供引导作

用,使得随机树能够快速拓展通过狭窄通道。 本文首先

通过快速桥接法提取狭窄通道的特征点,然后利用 K-
means 算法对特征点进行聚类分析,所提取到的关键点

能够准确识别并概括狭窄通道中的重要结构特征。 最

后,通过两次构建最小生成树的方式构建狭窄通道引导

路径。
1)通道特征点提取

一般的桥接法通过随机采样找到位于障碍物中的

点,在该点附近不断进行高斯采样直到在通道中搭建有

效桥梁。 这种提取通道特征点的方式效率较低,且易于

在通道拐弯处错误搭建桥梁,从而获取错误的通道特征

点,误导后续的路径规划过程。 为高效提取狭窄通道特

征点,本文通过贪婪连接的方式构建狭窄通道桥梁网络,
并使用正交检测法对所构建桥梁进行筛选,从而避免了

在凹陷拐角处获得错误特征点。 通道特征点的提取方式

如下。
(1)桥梁构建。 如图 4 所示,在地图中随机撒点,将

处于障碍物中的采样点放入到集合 Need_node 中。 将

Need_node 中的采样点两两组合,若是两点 x1、x2 间距离

在一定范围内,且两点连线的中点 xmid 不在障碍物中,则
判定 x1、x2 能够组成桥梁。

(2)桥梁筛选。 对桥梁进行正交测试,如图 5 所示,
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图 4　 构建狭窄通道桥梁网络

Fig. 4　 Building
 

a
 

network
 

of
 

narrow
 

passage
 

bridges

取 x1、x2 连线的垂直平分线上与 x1、x2 连线中点一定距

离的两点 test_node1、 test_node2 若是它们都不在障碍物

内,则判定 x1、x2 组成的桥梁不位于拐角处,桥梁有效。
(3)通道特征点提取。 筛选得出所有有效桥梁,取

桥梁中点得到狭窄通道特征点集合 bridge_node。

图 5　 正交检测

Fig. 5　 Orthogonal
 

detection

如图 6 所示,快速桥接法能够在进行相同数量采样

的情况下获得更多桥梁,提高桥梁生成效率,同时能够避

免拐角处生成错误特征点,以防影响后续狭窄通道引导

路径的构建。
使用快速桥接法获得的通道特征点较为集中地分布

在通道中线附近,能够较高程度地表征狭窄通道的可通

行区域。 但是,过多冗余的特征点会给后续规划过程带

来不必要的计算量,降低规划效率。
由图 6 可知,通道特征点既有密集分布区域,也存在

孤立特征点。 采用聚类分析方法能够很好地提取出最能

反映狭窄空间结构特性的引导点。 为了减少重合度较高

图 6　 快速桥接法获取通道特征点

Fig. 6　 Fast
 

bridging
 

method
 

to
 

obtain
channel

 

feature
 

points

的冗余特征点,本文利用 K-means 算法对获取的通道特

征点进行聚类分析。 首先在特征点中随机选择一定数量

的点作为类簇中心,通过计算各特征点与类簇中心的距

离对特征点进行聚类划分,距离越近则相似度越高。 随

后通过计算簇内所有特征点位置的均值以更新簇中心的

位置,更新位置后的簇中心更加贴近簇内特征点的真实

分布中心。 最后重复执行“特征点重分配”及“簇中心重

计算”两个步骤直到簇内距离的平方和( SSE)不再显著

下降,簇内距离的平方和为:

SSE = ∑
K

i = 1
∑
x∈Ci

| | x - μ i | |
2 (1)

式中:K 是簇的数量;C i 是第 i 个簇;x 是簇 C i 中的数据

点; μ i 是簇 C i 的中心。
通过不断调整簇中心的位置和重新分配特征点,K-

means 算法能够找到一个局部最优的解,使得狭窄通道

特征点与最终得到的簇中心的簇内距离平方和最小。 由

此得到的簇中心既可以很好地概括狭窄通道的空间特

性,适合作为狭窄通道的引导点。 如图 7 所示,通过 K-
means 算法提取的引导点能够有效代表狭窄通道可行驶

区域。
2)构建引导路径

通过聚类分析得到的狭窄通道引导点虽能够表征狭

窄通道的可行驶区域的空间结构特性,但不具备对可行

驶区域连通方向的描述。 构建狭窄通道引导路径能够最

大程度地概括可通行区域的特征,对后续随机树在狭窄

通道中的拓展提供方向性的引导。
本文利用狭窄通道引导点构建最小生成树来生成引

导路径,引导路径的构建过程如图 8 所示。 图论中将联

通所有点的无向图称为生成树,构建狭窄通道引导点的

最小生成树能够找到通道中最短的可行驶路径[21]
 

。
Prim 算法是一种用于寻找无向图的最小生成树的
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图 7　 聚类后通道特征点分布情况

Fig. 7　 Distribution
 

of
 

channel
 

feature
 

points
 

after
 

clustering

图 8　 引导路径构建流程

Fig. 8　 Guided
 

path
 

building
 

process

算法。 算法从任意点开始,寻找连接树中节点的权重值

最小的边,若该边的另一端不在树中则将该边加入生成

树,反之则从余下的边中寻找最小的边进行添加,直到所

有顶点都在生成树中。 如图 9 所示,首先以两引导点间

距离为权重,构建狭窄通道引导点的无向图,同时对无向

图中的边进行碰撞检测,仅保留引导点间的安全连接关

系。 使用 Prim 算法寻找无向图的最小生成树,并在构建

过程中加入碰撞判断,可以提取出一条较短的狭窄通道

引导路径。

图 9　 寻找无向图的最小生成树

Fig. 9　 Finding
 

the
 

minimum
 

spanning
 

tree
of

 

an
 

undirected
 

graph

由于在通道交叉路口形成通道引导点的概率较低,
受碰撞条件约束难以通过构建一次最小生成树去连接各

通道分支。 当通道狭长,特征点距离过远时用于引导路

径与拓展树连接的识别点数量不足,加大了拓张树与引

导路径的连接难度。 于是,本文对生成树较长的树枝进

行插值,增添通道引导点,并二次构建最小生成树,尽可

能使用一条引导路径概括相通的狭长通道,通道引导路

径构建结果如图 10 所示。 通过上述方法提前构建通道

引导路径能够避免在狭窄通道内进行路径规划,提高含

有通道场景的规划成功率。

图 10　 构建狭窄通道引导路径

Fig. 10　 Constructing
 

narrow
 

passage
 

guided
 

paths

2. 2　 双层引导采样的 RRT-Connect 算法

　 　 1)目标引导采样策略

随机树通过随机采样的方式进行拓展虽能快速探索

环境,但因采样缺乏方向性,导致在非目标区域进行了大

量的无效采样,降低了路径搜索效率。 针对此问题,本文

考虑在采样过程中加入目标引导策略,以一定概率 P 将

非采样随机树的根节点作为采样点,以(1-P)的概率通

过随机采样得到采样点,为拓展树的生长方向提供指导。

xrand =
xgoal,P ≤ Pgoal

xrandom,P ≥ Pgoal
{ (2)

2)搜索式连接引导路径

由于 RRT-Connect 算法在通道环境中获取有效采样

点的概率较低,其在具有通道场景的环境中往往难以找

到通道入口,并且难以在通道内完成路径规划。 使用快

速桥接法构建狭窄通道引导路径可以避免随机树在通道

内部进行采样拓展,并且可以引导随机树快速搜索到通

道入口,提高具有通道场景下的规划成功率和规划效率。
如图 11 所示,随机树每次获得新的节点 xnew 时在其

周围一定范围内进行搜索,若是有引导节点位于其搜索

范围内则通过该引导节点实现拓展树与引导路径的连

接。 引导路径与拓展树连接后成为拓展树的一部分,参
与后续拓展树生长和搜索过程。 算法持续迭代,直到两

棵拓展树相遇,从相遇点向两棵拓展树回溯,得到从起点

到终点的可通行路径 DLGS-RRT-Connect 算法的伪代码

如算法 1 所示。
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图 11　 引导路径与拓展树连接

Fig. 11　 Guided
 

paths
 

and
 

expansion
 

tree
 

connections

算法 1:
 

DLGS-RRT-Connect 算法

输入:起点 xinit,目标点 xgoal,障碍物 obs,拓展步长 steep,最大迭代次数

K,特征点集合 key_nodes
输出:拓展树 T1 ,T2

1:
 

V1 ←{xinit};E1 ← Ø ;T1 ←(V1 ,E1 )
 

;
2:

 

V2 ←{xgoal};E2 ← Ø ;T2 ←(V2 ,E2 )
 

;i←0;
3:

 

while
 

i<K
 

do
4:

 

　 　 xrand1 ←Sample( i);i←i+1;
5:

 

　 　 xnear1 ←Nearst(T1 ,xrand1 );
6:

 

　 　 xnew1 ←Steer(xnear1 ,xrand1 );
7:

 

　 　 if
 

not
 

in_barrier(xnew1 )
 

and
 

not
 

collision(xnear1 ,xnew1 )
 

then
8:

 

　 　 　 　 V1 ←V1 ∪ {xnew1 };
9:

 

　 　 　 　 E1 ←E1 ∪ {(xnear1 ,xnew1 )};
10:

 

　 　 　 　 xnear2 ←Nearst(T2 ,xnew);
11:

 

　 　 　 　 xnew2 ←Steer(xnear2 ,xnew1 );
12:

 

　 　 　 　 for
 

node
 

in
 

key_nodes
 

do
13:

 

　 　 　 　 　 　 if
 

near(xnew1 ,node)
 

then
14:

 

　 　 　 　 　 　 　 　 V1 ←V1 ∪ {node};
15:

 

　 　 　 　 　 　 　 　 for
 

node
 

in
 

key_nodes
 

do
16:

 

　 　 　 　 　 　 　 　 　 　 if
 

connect(node,node1 )
 

then
17:

 

　 　 　 　 　 　 　 　 　 　 　 　 V1 ←V1 ∪ {node1 };
18:

 

　 　 if
 

not
 

in_barrier(xnew2 )
 

and
 

not
 

collision(xnear2 ,xnew2 ) then
19:

 

　 　 　 　 V2 ←V2 ∪ {xnew2 };
20:

 

　 　 　 　 E2 ←E2 ∪ {(xnear2 ,xnew2 )};
21:

 

　 　 　 　 do
22:

 

　 　 　 　 　
 

x′new2 ←Steer(xnear2 ,xnew2 );
23:

 

　 　 　 　 　
 

if
 

not
 

in_barrier(x′new2)
 

and
 

not
 

collision(x′near2,x′new2)then
24:

 

　 　 　 　 　 　 　
 

V2 ←V2 ∪ {x′new2 };
25:

 

　 　 　 　 　 　 　
 

E2 ←E2 ∪ {(x′new2 ,xnew2 )};
26:

 

　 　 　 　 　 　 　
 

xnew2 ←x′new2 ;
27:

 

　 　 　 　 　
 

else
 

break;
28:

 

　 　 　 　 while
 

not
 

xnew2
 =

 

xnew1

29:
 

　 　 if
  

xnew2
 = xnew1

  then
 

return
 

(V1 ,E1 ),
 

(V2 ,E2 );
30:

 

　 　 if
 

􀰙 V2 􀰙
 

<
 

􀰙 V1 􀰙
 

then　 Swap(V1 ,V2 );
 

31:
 

return
 

T1 ,T2

　 　 如图 12( a) 所示,在需要通过狭窄通道的环境中,
RRT-Connect 算法的起点树与终点树都在各自的空间中

进行了大量采样,但一直达到迭代次数上限也未必能成

功寻找到可行驶路径。 这也反映了 RRT-Connect 算法在

需要穿越狭窄通道的场景中往往难以获得有效采样点,
从而导致其有较高可能无法寻找到通道入口并在狭窄通

道中规划出安全的可行驶路径。 如图 12
 

( b) 所示,
DLGS-RRT-Connect 算法通过将起点树或终点树与引导

路径进行连接,使得拓展树能够快速生长通过狭窄通道,
解决了采样算法难以在狭窄通道中形成路径的问题。

图 12　 改进前后的 RRT-Connect 算法

Fig. 12　 RRT-Connect
 

algorithm
 

before
 

and
 

after
 

improvement

2. 3　 路径优化

　 　 无人车辆的运动需满足其运动学约束,路径应平滑,
并尽量减少转弯次数和转弯半径。 尽管 DLGS-RRT-
Connect 算法能较好地规划狭窄通道内的路径,但由于采

样拓展和通道引导点生成的随机性,规划路径中存在冗

余点,导致路径曲折蜿蜒,不符合无人车辆的运动需求。
为此,本文采用剪枝的方法去除冗余点,结合转角优化提

升规划路径在通道转角处的安全性,并利用四阶贝塞尔

曲线对路径进行平滑处理。
1)路径关键点提取

如图 13
 

( a) 所示,从路径点 x1 开始对路径进行剪

枝,连接点 x1 和 x3,若是两点的连线不与障碍物碰撞则

连接 x1 和 x3,如此剔除冗余点 x2。 由于三角形两边之和

大于第三边,剪枝后的路径必然小于原有路径。 如图

13
 

(b)所示,当对整条路径进行剪枝时,从起点 x init 开始
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依次连接路径上后续节点进行剪枝操作,直到两点连线

与障碍物碰撞。 接着以最后一次剪枝操作的连线节点 x1

为剪枝起点进行剪枝操作。 以此类推,直到完成整条路

径的剪枝优化。 如图 13
 

( c)所示,经过剪枝处理后的规

划路径的质量有显著提升。

图 13　 路径剪枝处理

Fig. 13　 Route
 

pruning

2)转角优化

剪枝后的路径在狭窄通道的转弯处可能过于靠近障

碍物,在拟合平滑后易与障碍物发生碰撞。 此外,由于无

人车辆具有一定体积,路径在拐弯处需与障碍物保持足

够的安全距离。 因此,将剪枝路径的转角节点沿角平分

线方向向外贪婪扩张一定距离,在保证剪枝路径安全性

的前提下使其远离转弯方向。
转角扩张后,剪枝路径在转弯处的曲率增大,可能超

出无人车辆底盘的最大转向角限制。 为此,本文采用转

角剪切的方法,对扩张后的转角进行角度约束,使平滑后

的路径更贴合剪枝路径,并降低碰撞风险。
如图 14 所示,进行转角优化后的规划路径更加符合

无人车辆在狭窄通道中的行驶需求。
3)路径平滑

剪枝路径在转角处二阶不连续,为使路径更加符合

车辆实际运动的需求,本文使用四阶贝塞尔曲线对剪枝

图 14　 剪枝路径转角优化

Fig. 14　 Pruning
 

path
 

corner
 

optimization

路径进行平滑。 n 阶贝塞尔曲线的公式如式(3)所示。

C(u) = ∑
n

i = 0
Bn,i(u)P i

Bn,i(u) = n!
i! (n - i)!

u i(1 - u) n-i

ì

î

í

ï
ï

ïï

(3)

式中:P i 为贝塞尔曲线的控制点,这些控制点确定了贝

塞尔曲线的形态; μ 代表贝塞尔曲线的参数;Bn,i 为 n 次

Bernstein 基函数。
通过在路径上确认 5 个控制点即可构造一个四阶贝

塞尔曲线对路径进行拟合。 为了保证拟合效果,本文在

剪枝路径中插入辅助点,采用分段拟合的方式实现对规

划路径的平滑。 为了保证平滑路径的二阶连续性,每一

段拟合曲线的起点与前一段拟合曲线的终点相重合。 插

值点的分布如图 15 所示,其中 x i( i = 1,2,3,4)为剪枝路

径的节点,每两个剪枝节点之间插入 3 个辅助点 P i,j( i =
1,2;j = 1,2,3,4,5)。 以剪枝节点为中心左右分别取两

个辅助点构成一组控制点,基于控制点构造四阶贝塞尔

曲线对折线 P i,1P i,5 进行拟合,实现该段路径的平滑。 将

多段平滑路径进行组合拼接即可实现对整段剪枝路径的

平滑,平滑路径如图 16 所示。

图 15　 分段平滑

Fig. 15　 Segmental
 

smoothing

3　 测试结果与讨论

3. 1　 仿真实验环境

　 　 地下管网、矿井隧道等场景通常由错综复杂的狭窄

通道结构组成,并且因功能需求或自然成因形成大量厅
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图 16　 规划路径平滑处理

Fig. 16　 Planning
 

path
 

smoothing

　 　 　

式联通空间,致使可通行区域拓扑结构高度复杂。 同时,
多岔路的迷宫特性进一步增加了无人系统的路径规划

难度。
为验证 DLGS-RRT-Connect 算法在此类狭窄复杂空

间中进行路径规划的性能,本文针对性地设计了狭窄通

道场景、障碍走廊场景以及迷宫场景。 此外,为了检验算

法在较为常见的开阔环境中的规划性能,测试算法的环

境适应性,本文还设计了一种障碍物稀疏的简单场景。
仿真场景如图 17 所示。

本文利用 Python 语言编写程序,在 4 种地图中进行

了 Goal _ bias
 

RRT、 Informed-RRT∗ 、 RRT-Connect、 DLGS-
RRT-Connect 算法的仿真对比实验。 将每种算法在各场

景中重复实验 100 次,统计并分析规划成功率、平均规划

时长、平均迭代次数以及规划路径的平均长度。

图 17　 仿真环境地图

Fig. 17　 Simulation
 

environment
 

map

3. 2　 简单场景

　 　 在 障 碍 物 稀 疏 的 简 单 场 景 下 Goal-bias
 

RRT、
Informed-RRT∗ 、RRT-Connect 以及 DLGS-RRT-Connect 四
种路径规划算法的规划结果如图 18 所示。 表 1 为 4 种

算法在简单场景中的规划性能指标进行了统计和对比。

由图 18(a)可知,Goal-bias
 

RRT 算法通过引入目标

导向策略,虽然在采样过程中提高了规划效率,但当随机

树在沿终点生长的方向遇到障碍物时,缺乏有效的绕行

机制,导致产生较多冗余采样点,从而使得规划路径呈现

出较大的曲折性。 图 18( b) 为 Informed-RRT∗ 算法的表

现,该算法通过逐步收敛椭圆形采样区域来优化路径,使
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图 18　 简单场景中各算法的路径规划结果

Fig. 18　 Path
 

planning
 

results
 

for
 

each
 

algorithm
 

in
 

a
 

simple
 

scenario

表 1　 简单场景中各算法实验结果数据

Table
 

1　 Experimental
 

results
 

data
 

for
 

each
 

algorithm
 

in
 

simple
 

scenarios
比较指标 Goal_bias

 

RRT Informed_RRT∗ RRT_Connect DLGS-RRT-Connect
规划成功率 / % 100 100 100

 

100
 

平均规划时长 / s 0. 002
 

6 0. 695
 

0 0. 001
 

9
 

0. 001
 

8
 

平均迭代次数 120 117 29
 

27
 

平均长度 34. 913
 

7 34. 787
 

0 33. 509
 

2
 

29. 129
 

8
 

得路径逐渐逼近最优解。 然而,其迭代优化过程较为缓

慢,带来了较大的时间开销,从而降低了整体规划效率。
由图 18(c)可知,RRT-Connect 算法通过从起点和终点同

时扩展两棵随机树,并采用贪婪策略促使树之间朝向彼

此生长,显著提高了搜索效率。 然而,其得到的路径质量

较差,规划路径往往过于贴合障碍物,存在安全隐患。 相

比之下,DLGS-RRT-Connect 算法通过结合目标引导采样

策略和路径后处理方法,能够在较短时间内高效规划出

一条平滑且安全的路径,显著提高了路径规划的质量和

效率。
由表 1 可知,在简单场景下,DLGS-RRT-Connect 算

法相较于 Goal-bias
 

RRT、Informed-RRT∗ 和 RRT-Connect
算法, 在规划时间上分别减少了 30. 76%、 99. 74% 和

5. 26%;在规划路径的平均长度上,分别减少了 16. 57%、

16. 26%和 13. 07%。 这些结果表明,DLGS-RRT-Connect
在非狭窄通道的场景中能够提高规划效率,且在路径质

量上也表现出较为明显的改善。
3. 3　 狭窄通道场景

　 　 在地下管网、矿井等场景中常通过狭窄通道连接各

个区域。 但是对于采样算法而言,如何在较为宽阔的区

域中寻找到狭小的通道入口并在狭窄通道中快速规划出

平滑且安全的可通行路径是一个难题。 为了验证各算法

寻找通道入口并在狭窄通道内进行路径规划的能力,本
文设计了一个狭窄通道场景。 各算法在该场景下的路径

规划结果如图 19 所示,表 2 为 4 种算法的规划性能指标

对比分析。
由图 19 ( a)、( b) 可知,Goal-bias

 

RRT 及 Informed-
RRT∗算法需要在非目标区域中进行较多采样才能够找
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到狭窄通道入口,增添了规划过程的时间消耗和迭代次

数。 除此以外,由于狭窄通道中难以通过随机采样获得

有效采样点,导致 Informed-RRT∗算法在的规划成功率较

低,仅为 48%。 并且当地形限制椭圆采样区域难以缩小

时,Informed-RRT∗算法的规划路径难以收敛到最优。 由

图 19(a)、( c)可知,虽然 Goal-bias
 

RRT 和 RRT-Connect
算法分别通过目标导向策略和贪婪策略引导采样点的生

成,提高了规划成功率,但其对随机树生长方向的引导也

导致了规划路径的质量较低,具有贴近障碍物和存在较

多波折的现象。 由图 19( d)可知,DLGS-RRT-Connect 能
够通过搜索式连接策略以较少次采样找到通道入口,并
通过连接狭窄通道引导路径快速规划出可行驶路径。 同

时,由于狭窄通道桥梁点聚类之后多位于通道中线附近,
DLGS-RRT-Connect 规划出的路径在安全性方面有所

提升。
由表 2 可知,在狭窄通道场景中,DLGS-RRT-Connect

相较于另外 3 种算法,在平均规划时长上分别减少了

48. 23%、97. 33%、47. 48%,在平均迭代次数上分别减少

了 92. 32%、94. 68%、84. 25%,在路径的平均长度上分别

减少了 21. 50%、25. 50%、24. 86%。 这些指标的提升表

明,DLGS-RRT-Connect 能够在狭窄通道场景中高效规划

出安全且平滑的路径,体现了更强的计算性能和规划路

径的优越性。

图 19　 狭窄通道中各算法的路径规划结果

Fig. 19　 Path
 

planning
 

results
 

for
 

each
 

algorithm
 

in
 

a
 

narrow
 

channel

表 2　 狭窄通道场景中各算法实验结果数据

Table
 

2　 Experimental
 

result
 

data
 

of
 

each
 

algorithm
 

in
 

narrow
 

channel
 

scene
比较指标 Goal_bias

 

RRT Informed_RRT∗ RRT_Connect DLGS-RRT-Connect
规划成功率 / % 94 48 97

 

100
 

平均规划时长 / s 0. 014
 

1 0. 273
 

3 0. 013
 

9
 

0. 007
 

3
 

平均迭代次数 482 696 235
 

37
 

平均长度 55. 460
 

1 58. 443
 

0 57. 940
 

9
 

46. 538
 

5
 

3. 4　 障碍走廊场景

　 　 走廊场景是地下管网、矿井隧道等室内环境中最为

常见的场景之一,无人系统常常需要从一个区域通过狭

窄的门框和走廊岔路进入另一个区域。 在这种环境中,
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如何快速规划出既安全又平滑的可通行路径,是一个具

有挑战性的任务。 为验证算法在这种环境下的规划性

能,本文设计了障碍走廊场景。 在此场景中,无人车辆需

要通过两个狭小的门框以及一段具有岔路的狭窄走廊方

能成功抵达目标点。 各算法在该场景下的路径规划结果

如图 20 所示,表 3 为 4 种算法的规划性能指标对比

分析。
由图 20 可知,Goal-bias

 

RRT 和 Informed-RRT∗ 算法

依赖于大量采样才能生成规划路径,这不仅导致较高的

计算开销,还导致规划路径较为曲折。 同时,由于障碍走

廊场景中的可通行区域占比较小,使得 Goal-bias
 

RRT 和

Informed-RRT∗算法获得有效采样点的效率较低,导致在

障碍走廊场景中其规划成功率较低。 RRT-Connect 算法

虽通过双向搜索和贪婪策略提高了规划成功率,但其规

划路径会出现过于贴近障碍物以及大幅度转折的现象。
由图 20(d)可知,DLGS-RRT-Connect 能够以极少次采样

完成随机树与通道引导路径的连接,同时受益于目标引

导采样策略和贪婪策略,实现了障碍走廊环境中的快速

路径规划。
由表 3 可得,在障碍走廊场景中,相较于另外 3 种算

法,DLGS-RRT-Connect 在规划成功率上分别提升了

35%、60%、26%,在平均规划时长上分别减少了 70. 62%、
97. 65%、63. 92%, 在 平 均 迭 代 次 数 上 分 别 减 少 了

99. 66%、99. 73%、99. 54%,在规划路径的平均长度上分

别减少了 14. 53%、16. 70%、18. 84%。 实验结果表明,
DLGS-RRT-Connect 在狭窄且多障碍的走廊通道场景中

具有明显优势。 它通过构建狭窄通道引导路径快速高效

地规划出了安全且平滑的行驶路径。

图 20　 障碍走廊场景中各算法的路径规划结果

Fig. 20　 Path
 

planning
 

results
 

for
 

each
 

algorithm
 

in
 

the
 

obstacle
 

corridor
 

scenario

表 3　 障碍走廊场景中各算法实验结果数据
Table

 

3　 Experimental
 

result
 

data
 

for
 

each
 

algorithm
 

in
 

the
 

obstacle
 

corridor
 

scenario
比较指标 Goal_bias

 

RRT Informed_RRT∗ RRT_Connect DLGS-RRT-Connect
规划成功率 / % 65 40 74

 

100
 

平均规划时长 / s 0. 019
 

4 0. 243
 

0 0. 015
 

8
 

0. 005
 

7
 

平均迭代次数 588 729 432
 

2
 

平均长度 53. 080
 

3 54. 460
 

2 55. 902
 

7
 

45. 368
 

0
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3. 5　 迷宫场景

　 　 地下管廊、矿井等复杂场景通常由狭窄曲折的走廊

组成,具有较为复杂的连通性和迷宫般的结构。 如何在

大量交错复杂的通道岔路中高效地规划出可行驶路径对

于无人系统的路径规划来说是一个巨大的挑战。 为了验

证算法在多岔路狭窄复杂环境中的规划性能,本文设计

了一种迷宫场景。 各算法在该场景下的路径规划结果如

图 21 所示,表 4 为 4 种算法的规划性能指标对比分析。
由图 21(a)、(b)可知,在岔路较多的复杂迷宫场景

中 Goal-bias
 

RRT 和 Informed-RRT∗算法需要在起始点周

围进行大量采样才能靠近目标区域进行搜索,这种尝试

性的采样效率极低,导致两种算法难以在岔路较多的迷

宫场景中成功规划出路径。 RRT-Connect 算法虽然通过

双向拓展和贪婪策略提高了规划的成功率,但也因为这

种强引导性采样的方式导致其生成的规划路径易出现极

端转折现象和过于贴近障碍物的现象,路径质量较差。
由图 21(d)可知,DLGS-RRT-Connect 能够通过连接狭窄

通道,引导随机树迅速拓展至迷宫场景的各个通道,从而

高效规划出安全且平滑的行驶路径。
由表 4 可得,在迷宫场景中,相较于另外 3 种算法,

DLGS-RRT-Connect 在规划成功率上分别提升了 92%、
93%、34%, 在平均规划时长上分别减少了 21. 11%、
86. 76%、24. 11%, 在 平 均 迭 代 次 数 上 分 别 减 少 了

99. 78%、99. 78%、99. 71%,在规划路径的平均长度上分

别减少了 18. 44%、15. 48%、21. 18%。 实验结果表明,
DLGS-RRT-Connect 能够在复杂的迷宫场景中,快速高效

地规划出高质量的路径,尤其适用于包含大量岔路和走

廊的环境。

图 21　 迷宫场景中各算法的路径规划结果

Fig. 21　 Path
 

planning
 

results
 

for
 

each
 

algorithm
 

in
 

the
 

maze
 

scenario

表 4　 迷宫场景中各算法实验结果数据

Table
 

4　 Experimental
 

result
 

data
 

of
 

each
 

algorithm
 

in
 

the
 

maze
 

scenario
比较指标 Goal_bias

 

RRT Informed_RRT∗ RRT_Connect DLGS-RRT-Connect
规划成功率 / % 8 7 66

 

100
 

平均规划时长 / s 0. 037
 

9 0. 225
 

8 0. 039
 

4
 

0. 029
 

9
平均迭代次数 890 912 679

 

2
 

平均长度 58. 207
 

4 56. 168
 

5 60. 232
 

8
 

47. 474
 

7
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　 　 在 3 种不同的具有狭窄通道的环境中,DLGS-RRT-
Connect 算法相较于其他算法在规划成功率、平均规划时

长、平均迭代次数以及规划路径的平均长度上均有显著

优势。 该算法通过引导路径指引随机树在狭窄通道中的

拓展,极大地提升了在狭窄通道中的规划效率。 此外,在
普通场景中,该算法虽然没有展现出其独特的优势,但与

其他算法相比性能仍有提升。 同时,该算法通过路径优

化处理显著提高了路径的平滑度和安全性,弥补了采样

算法路径质量差的问题。 总体而言,DLGS-RRT-Connect
算法在多种场景中均展现出了其高效、高质的路径规划

能力。

4　 结　 论

　 　 针对 RRT 算法在狭窄复杂环境中易于出现的规划

成功率低、耗时长以及规划路径质量差的问题,本文提出

了 DLGS-RRT-Connect。 该算法基于快速桥接法,利用栅

格地图构建场景中狭窄通道的引导路径,从而实现对狭

窄复杂场景的空间特征描述。 通过狭窄通道引导路径辅

助搜索过程,使得随机树在狭窄通道场景中快速高效拓

展,从而改善了算法在狭窄通道中难以获得有效采样点

的问题,提升了在狭窄复杂环境中的搜索效率。 同时,在
路径点的采样过程中,算法引入了目标偏置引导策略,降
低了采样的随机性,进一步提高了规划速度。 此外,通过

贪婪剪枝和分段四阶贝塞尔平滑的方式对规划路径进行

后处理,显著提高了规划路径的质量。
实验结果表明,在狭窄通道、障碍走廊以及迷宫场景

中,相较于 Goal _ bias
 

RRT、 Informed-RRT∗ 以及 RRT-
Connect 算法,DLGS-RRT-Connect 的规划成功率最高,消
耗时间最少,路径长度最短。 尤其在狭窄且复杂的通道

环境中,DLGS-RRT-Connect 算法在规划成功率上相较

Goal_bias
 

RRT、Informed-RRT∗和 RRT-Connect 算法分别

提高了 35%、60%、26%。 在平均规划时长上,相较于以

上算法分别降低了 70. 62%、97. 65%、63. 92%。 规划路

径的平均长度也分别减少了 14. 53%、16. 70%、18. 84%。
体现出了该算法在狭窄复杂空间中进行路径规划的显著

优势。 此外,在简单场景下,该算法在规划效率和规划路

径的质量上都有显著提升。 总体 而 言, DLGS-RRT-
Connect 算法具有较高的环境适用性。
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