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摘　 要:液固两相流作为一种复杂的流动现象,普遍存在于工业生产与日常生活的各种应用场景中。 针对液固两相流中固相含

率的测量问题,设计了基于超声相控阵的固相颗粒浓度测量系统,利用线扫探头进行扫查。 分别在水箱中加入不同质量的固态

示踪粒子模拟不同固相含率的流体,并设置不同的流量,共进行了 140 个不同工况点下的信号采集,并将采集得到的矩阵转化

为图片信息,并采用灰度共生矩阵方法对图像进行特征提取,通过分析提取出的能量、熵特征值和两相流中固体粒子的浓度、流
量之间的关系,对水中固体颗粒物的浓度进行模型拟合,采用不同集成算法对液体中的粒子含量进行拟合预测,并将预测效果

进行对比。 结果表明,使用 LGBM 模型的拟合效果最好,并使用鹈胡优化算法(POA)和正弦余弦算法(SCA)智能优化算法进行

了优化,最终的模型拟合精度达到了 92. 85%,为液固两相流固相含率的测量提供了一种新的测量方法。
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Abstract:
 

Liquid
 

solid
 

two-phase
 

flow,
 

as
 

a
 

complex
 

flow
 

phenomenon,
 

is
 

widely
 

present
 

in
 

various
 

application
 

scenarios
 

of
 

industrial
 

production
 

and
 

daily
 

life
 

This
 

article
 

focuses
 

on
 

the
 

measurement
 

of
 

solid
 

content
 

in
 

liquid-solid
 

two-phase
 

flow.
 

A
 

solid
 

particle
 

concentration
 

measurement
 

device
 

is
 

designed,
 

using
 

an
 

array
 

ultrasonic
 

sensor.
 

The
 

entire
 

ultrasonic
 

phased
 

array
 

testing
 

system
 

is
 

designed,
 

and
 

the
 

corresponding
 

focusing
 

rule
 

is
 

designed
 

to
 

determine
 

the
 

corresponding
 

experimental
 

parameters
 

for
 

scanning
 

through
 

a
 

line
 

scanning
 

probe.
 

Solid
 

tracer
 

particles
 

of
 

different
 

masses
 

were
 

added
 

to
 

the
 

water
 

tank
 

to
 

simulate
 

fluids
 

with
 

different
 

solid
 

content,
 

and
 

different
 

flow
 

rates
 

were
 

set.
 

A
 

total
 

of
 

140
 

signal
 

acquisition
 

points
 

were
 

carried
 

out
 

under
 

different
 

operating
 

conditions,
 

and
 

the
 

collected
 

matrices
 

were
 

converted
 

into
 

image
 

information.
 

The
 

gray
 

level
 

co-occurrence
 

matrix
 

method
 

was
 

used
 

to
 

extract
 

features
 

from
 

the
 

images.
 

By
 

analyzing
 

the
 

extracted
 

energy
 

and
 

entropy
 

feature
 

values
 

and
 

the
 

relationship
 

between
 

the
 

concentration
 

and
 

flow
 

rate
 

of
 

solid
 

particles
 

in
 

the
 

two-phase
 

flow,
 

the
 

concentration
 

of
 

solid
 

particles
 

in
 

the
 

water
 

was
 

modeled
 

and
 

fitted.
 

Different
 

ensemble
 

algorithms
 

were
 

used
 

to
 

predict
 

the
 

particle
 

content
 

in
 

the
 

liquid,
 

and
 

the
 

prediction
 

effect
 

was
 

compared
 

the
 

results
 

showed
 

that
 

the
 

light
 

gradient
 

boosting
 

machine
 

( LGBM )
 

model
 

had
 

the
 

best
 

fitting
 

effect,
 

and
 

the
 

intelligent
 

optimization
 

algorithm
 

was
 

used
 

for
 

optimization.
 

The
 

final
 

model
 

fitting
 

accuracy
 

reached
 

92. 85%,
 

providing
 

a
 

new
 

measurement
 

method
 

for
 

measuring
 

the
 

solid
 

content
 

of
 

liquid-solid
 

two-phase
 

flow.
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0　 引　 言

　 　 液固两相流作为一种典型的两相流动现象,液固两

相水平输运已在有色冶金、石油化工、
 

矿物输送等众多

行业中广泛应用[1] ,其中液固两相流中固相相含率的测

量尤为重要,例如污水中固相颗粒物浓度的测量对确定

污水状态具有重要意义。
对于液固两相流中固相含率的检测,迄今为止已经

发展出了多种方法,传统的测量方法为过滤法、烘干法等

直接测量方法[2] ,以其效率低、操作复杂、损耗高等问题

存在一定局限性;现代测量方法主要包括放射性、电学和

超声波方法。 γ 射线检测法通过溶液对射线的衰减建立

固相含量模型[3] ,但存在辐射风险;电学法(电容法、电
导法)分别通过液固两相流介电常数 / 电导率变化推算浓

度[4] ,但存在分辨率低、稳定性差等问题;超声测量因非

接触、高精度优势成为主流。 董照诚等[5] 通过数值模拟

与实验研究得出固相浓度与衰减系数呈正相关,粒径与

衰减系数呈负相关。 张世玮等[6] 将传统单散射模型适用

范围扩展至高浓度浆液,提升反演精度。 夏一丹等[7] 创

新性地提出了一种基于聚焦式超声波传感器的悬移质浓

度测量方法,基于超声波在悬移质混合介质中的能量衰

减特性,建立了衰减系数与浓度间的函数关系模型。 张

述仁等[8] 对不同浓度不同粒径的悬移质水样进行了超声

衰减实验,并采用蚁群算法对固相浓度进行了反演。 在

声阻抗法测量领域,纪晓明等[9] 构建了超声阻抗谱与颗

粒浓度、粒径参数的定量关联模型并验证了该模型在液

固两相流参数检测中的适用性。
上述超声测量法均是通过对超声波原始信号的衰减

进行分析,从而反演出悬浮液固相含率,而这种信号衰减

法通常依赖单一物理量
 

(如声波衰减系数)
 

与颗粒浓度

的关系,忽略了颗粒分布的空间异质性对声波传播的多

维度影响,可能导致复杂工况下的模型失效,且超声波信

号在传播过程中易受环境噪声和悬浮液内部复杂流

动(湍流、气泡)
 

的影响,同时计算复杂度高,尤其在高浓

度或多粒径场景下难以实时应用。 而本文采用的将采集

得到的矩阵信息转为图片,并直接利用灰度共生矩阵

法(gray-level
 

Co-occurrence
 

matrix,GLCM)对图像进行特

征提取,通过多维度特征值与固相含率的关系进行分析

并建立预测模型,此方法不但保留了颗粒分布的空间信

息,能够直观监测到颗粒在液体中的局部分布情况,避免

了由颗粒分布不均带来的误差;同时本文设计了超声相

控阵测试系统,采用阵列超声传感器测量水平管道中的

液固两相流,使用多阵元换能器进行声束的偏转聚焦,对
比其他超声波传感器具有空间分辨率高、测量范围广等

优势,避免了传统传感器模式下,声场覆盖范围有限,容

易因颗粒分布不均导致局部浓度误判。 本文采用超声阵

列传感器的线性扫查方式进行测量,采集了不同流量和

固相浓度的工况点,并将采集的数据进一步进行可视化

图像转化,采用灰度共生矩阵法对图像进行特征提取,采
用多种集成算法对不同流量以及提取出的能量与熵进行

拟合模型,反演得到固体粒子含量的预测值,并通过对比

和优化得到最优的预测模型。

1　 超声相控阵测试系统

1. 1　 测量原理

　 　 超声相控阵使用的换能器由多个相互独立的压电晶

片阵列组成,相邻阵元间距为 d。 延时器模块按设置好

的发射聚焦法则分别计算各阵元声束发射的延迟时间,
并将整合后的脉冲信号分别加载至各个阵元,由于延迟

的存在,各阵元发射的声束相位存在差异,从而控制声束

相位,实现超声波的波束扫描、偏转和聚焦。 波束遇到异

质界面时发射回波信号,按一定规则和时序控制接收阵

元的接收并进行信号处理,得到检测点的反射信号,原理

如图 1 所示。

图 1　 超声发射原理

Fig. 1　 Schematic
 

diagram
 

of
 

ultrasonic
 

emission

1. 2　 测试系统设计

　 　 整个超声检测装置由阵列超声传感器、超声波换能

器、监控主机构成,如图 2 和图 3 所示。

图 2　 超声传感器与监控主机

Fig. 2　 Ultrasonic
 

sensor
 

and
 

monitoring
 

unit

其中阵列超声传感器为 CTS-PA22X 超声相控阵检

测仪,它的一端通过网线与监控主机连接,另一端与超声
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图 3　 超声波换能器

Fig. 3　 Ultrasonic
 

transducer

换能器相连,探头对耦合的待检测直管段进行 4 个方向

的扫描检测,实验选用的扫描方式为线性扫描,共采集

128 个方向的声束所得到的回波幅值,每个方向上采集

448 个数据点,即每次采集可以获得一个 128 × 448
 

的

矩阵。
相控阵探头频率为

 

5
 

MHz,64
 

阵元,阵元间距为

1. 0
 

mm,其波长为 0. 3 mm, 所能识别的最小界面为

0. 15 mm,即 150
 

μm,而固态玻璃微珠的粒径远大于其波

长,同时由于水中固态粒子玻璃微珠的声阻抗远大于水

的声阻抗,故超声波在液固界面检测中几乎全反射。 采

样频率为每个工况点采集 5
 

min,采集 10 次。 由于管道

外壁为曲面,为了保证探头扫查充分,采用适用曲面的楔

块,通过耦合剂将相控阵探头、楔块与管道充分贴合,这
样探头与管壁就能通过楔块进行紧密贴合,达到更好的

实验效果,图 4 所示为探头楔块固定现场。

图 4　 探头楔块安装现场

Fig. 4　 Probe
 

wedge
 

installation
 

site

2　 实验测试

2. 1　 实验装置

　 　 实验是在河北大学计量仪器实验室进行。 水箱中的

水及其中的固态粒子先通过水泵充满管道中,流经了其

中一路准确度为 U= 0. 1%(k= 2)的科里奥利质量流量计

进行测量,通过调节阀和开关阀调节流量,接着流经与管

道耦合的探头位置的测试管段进行数据的采集,管道长

0. 5
 

m,内径为 50
 

mm。 实验装置系统如图 5 所示。

图 5　 实验装置

Fig. 5　 Diagram
 

of
 

the
 

experimental
 

setup

2. 2　 实验参数范围

　 　 分别在水箱中加入不同质量的固态粒子。 采用的粒

子为固态玻璃微珠,实验参数范围如表 1 所示,固态玻璃

微珠的密度约为 2
 

500
 

kg / m3,形状为圆球体,其中浓度 C
为质量浓度。 两个流量点之间间隔 3

 

m3 / h,共设置 7 个

流量点。 图 7 所示为数据采集的实验现场。
表 1　 实验参数范围

Table
 

1　 Range
 

of
 

experimental
 

parameters
流量 Ql / (m3·h-1 ) 粒子直径 / μm 粒子质量 / kg 浓度 C / %

6~ 24 500~ 700 50 ~ 250 5 ~ 25
 

图 6　 实验现场

Fig. 6　 Diagram
 

of
 

the
 

experimental
 

site

3　 数据分析与处理

　 　 将采集得到的矩阵转化为图片信息,再分别对图像

信息进行特征进行提取,并分别比较相同流量情况下提

取出的能量和熵特征值随加入粒子含量的变化关系,以
及加入相同含量的粒子情况下提取出的能量特征值随液

体流量的变化情况。 最后用得到的数据集进行拟合模

型,得到加入粒子质量的预测值。
3. 1　 矩阵转图像

　 　 将采集到的矩阵转为图片,可大致观察不同含量和

流速的粒子在水中的分布情况,图 7 所示为探头固定在

管道下方,流量为 6
 

m3 / h 时,分别加入 50 ~ 250
 

kg 粒子

时的情况,图 7(a) ~ ( e)每张图中为一个工况点采集 10
次依次排开。
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图 7　 不同重量粒子在介质中的分布情况(Ql
 = 6

 

m3 / h)

Fig. 7　 Distribution
 

of
 

particles
 

of
 

different
 

weights
 

in
 

the
 

medium
 

(Ql = 6
 

m3 / h)

其中白色的为水中加入的粒子,红色为与探头耦合

的楔块和管壁。 从图 7 可以大致看出,随着加入的粒子

克重依次增大,观察到的粒子在水中的分布也逐渐增多。
将上述图像分别进行二值化处理,便于后续的图像

处理和特征提取。 图 8 所示为二值化处理后的图像。

图 8　 二值化处理后图像

Fig. 8　 Binarized
 

image

3. 2　 图像特征提取

　 　 本文研究采用 GLCM 对 128×448 阶矩阵转化的图片

信息的纹理特征进行提取。 灰度共生矩阵如图 9 所示。
该方法于 20 世纪 70 年代提出[10] ,通过统计图像中特定

空间关系的像素对灰度值联合分布规律(图 9 中相距 d
的像素点(x1,y1 )与(x2,y2 )灰度值分别为 i、j 的概率),
量化纹理粗糙度、方向性及空间复杂度[11] 。 具体流程为

针对预设距离 d 和方向 θ(0°、45°、90°、135°),计算各方

向灰度共生矩阵 P
 

( i,j),并由此导出能量、对比度、相关

性与熵等统计量,分别表征纹理均匀性、局部对比强度、
结构相似度及随机性特征[12] 。 本文提取了 θ 为

 

( 0°、

45°、90°、135°)4 个方向上的能量和熵作为特征值,是由

于能量和熵之间不相关,受彼此的影响小,并且便于计算

还能得到较高的分类精度,这对纹理区分有较好效果。

图 9　 灰度共生矩阵

Fig. 9　 Gray-level
 

co-occurrence
 

matrix

能量是灰度共生矩阵所有元素值的平方和,这个特

征值用于度量图像纹理的灰度变化稳定程度,反映了图

像灰度分布的均匀程度和纹理粗细度[13] ,其表达式

如下:

Energy = ∑
L-1

i = 0
∑
L-1

j = 0
p( i,j) 2 (1)

式中:P
 

( i,j)是 GLCM 中的元素,表示灰度值为 i 和 j 的
像素对出现的概率;L 是图像的灰度级。

能量表征纹理的一致性,能量越大说明纹理的一致

性越高[14] 。 如果图像的纹理比较均匀,即图像中大部分

区域的灰度值相似,那么 GLCM 中的元素分布会比较集

中,导致能量值较大。 如果图像的纹理比较复杂或不均
匀,即图像中不同区域的灰度值差异较大,那么 GLCM 中

的元素分布会比较分散,导致能量值较小。 图 10
 

( a) ~
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(g)所示为当探头置于管道下方时,流量 Q l = 6,9,12,15,
18,21,24

 

m3 / h
 

时,提取出的 4 个方向维度的能量随加入

粒子克重增加的变化情况。
由图 10 可知,随着粒子浓度的增加,即污水浓度的

增大,4 个方向提取出的能量均呈减小的趋势。 粒子浓

度由 5%增大到 25%时,提取出的能量值大致从 0. 9 减小

至 0. 74。 这是由于随着颗粒数量增加,它们的分布变得

更加复杂和随机,导致图像的纹理变得更加复杂,图像中

的灰度变化更频繁,不同灰度值之间的组合更多样化,不
同灰度之间的变化更加频繁,而能量是 GLCM 中每个元

素的平方和,如果纹理越不均匀或复杂,GLCM 的元素分

布会更分散,各元素的值相对较小,平方和就会更小,导

致能量值降低,而当水中颗粒较少时,图像中的灰度变化

可能较少,像素对的灰度组合比较集中,GLCM 中的元素

会有较高的值,因此能量较高。
熵表示系统无序性变化程度[15] ,在灰度共生矩阵中

用于衡量图像纹理的复杂度和信息量[16] 。 当共生矩阵

中元素分布均匀时,熵值较小;反之,当共生矩阵元素分

布随机或复杂时,熵值较大[17] 。 熵值越大,表示图像的

纹理越复杂,信息量也越大[18] ,其表达式如下:

Ent = - ∑p( i,j)logp( i,j) (2)

图 11(a) ~ (g)所示为当探头置于管道下方时,流量

Q l = 6,9,12,15,18,21,24
 

m3 / h
 

时,提取出的 4 个方向维

度的熵随加入粒子克重增加的变化情况。

图 10　 能量随克重变化关系

Fig. 10　 The
 

relationship
 

between
 

energy
 

and
 

weight
 

variation

　 　 由图 11 可知,流量一定时,随着示踪粒子浓度的增

加,4 个方向维度提取出的熵均呈增大的趋势。 粒子浓度

由 5%增大到 25%时,提取出的熵大致从 0. 34 增大至 0. 7。
这是由于从式(2)可知,熵的计算公式为 GLCM 中所有元

素的概率乘以它们的对数值之和,再取负数。 当水中颗粒

较少时,背景(水)占据大部分区域,颗粒稀疏分布,图像较

为均匀,此时相邻像素之间的灰度变化不大,GLCM 中的元

素集中在主对角线附近,即 i≈j 的位置,这样的分布比较

集中,导致各个 P( i,j)的值较大。 此时计算出的熵比较

低,系统的随机性低。 当颗粒增多时,图像的纹理变得更

加复杂。 颗粒的密集分布会导致更多的边缘和不同灰度

值之间的过渡,相邻像素的灰度差异增大。 这会使得

GLCM 中的元素分布更加分散,每个P(i,j)的值较小。 此

时计算出的熵更高,系统的随机性更高。
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图 11　 熵随克重变化关系

Fig. 11　 The
 

relationship
 

between
 

entropy
 

and
 

weight
 

variation

3. 3　 相关性分析

　 　 相关性分析用于检验自变量与因变量之间是否存在

相关性,只有当自变量与因变量之间存在相关性时,变量

才能更好地表征出预测变量。 Pearson 相关系数是一种

线性的相关性系数,通过计算两个变量之间的协方差与

它们标准差的乘积之比来衡量线性相关性,该系数的值

在-1 ~ 1,其中-1 表示完全负相关,0 表示不相关,1 表示

完全正相关,其计算公式如下:

r =
∑

n

i = 1
(x i -x-)(y i -y-)

∑
n

i = 1
(x i -x-)

2 ∑
n

i = 1
(y i -y-)

2

(3)

式中:x i、y i 为两个变量的第 i 个观测值; x、y 为两个变量

的样本均值;n 为样本数量。
对数据集绘制 Pearson 相关热图进行相关性分析,如

图 12 所示。 由图 12 结果可知,加入粒子的克重与能量

的相关性系数为-0. 89,呈较强的负相关,粒子克重与提

取出的熵的相关性系数为 0. 9,为较强的正相关,与前文

所得到的结论一致,相关系数的绝对值和相关性水平强

弱的判断标准如表 2 所示。

表 2　 Pearson 相关系数强度分级

Table
 

2　 Pearson
 

correlation
 

coefficient
intensity

 

classification
相关性水平 相关系数绝对值

及弱或无相关性 0 ~ 0. 1
弱相关 0. 1 ~ 0. 3

中等相关 0. 3 ~ 0. 5
强相关 0. 5 ~ 0. 8

极强相关 0. 8 ~ 1. 0

　 　 由相关热力图计算得出的信息可知,液体流量和提

取出的 4 个方向维度的能量呈负相关,相关性系数 r 的
最大绝对值为 0. 32

 

,0. 3≤ | r | <0. 5,呈低到中度相关,需
要进一步采用 t 检验法计算 t 值对相关系数进行显著性

检测并确定显著性水平 p 的值,当 p<0. 5 时,认为两变量

之间存在一定相关性关系,当 p<0. 01 时,认为两变量之
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图 12　 相关性热图

Fig. 12　 Related
 

heat
 

maps

间显著相关[19] 。 t 值的计算公式如下:

t = r· n - 2
1 - r2 (4)

代入 r= -0. 32,样本数量 n = 140,计算得到 t 值为-
3. 968,根据 t 值通过统计软件计算确定显著性水平 p 的

值为 p ≈ 0. 001
 

2 < 0. 01,表明液体流量与能量( GLCM
 

提取)呈负相关且负相关性高度显著,所以虽然 Pearson
相关系数绝对值

 

0. 32
 

属于低到中等强度,但其显著性表

明该二者的相关性具备一定的参考研究价值。
粒子克重分别为定值时,能量与流量的关系如图 13

所示,可以看出,当加入的粒子克数不变时,能量( GLCM
 

提取)随流量的增大均呈减小的趋势,与图 12 相关热力

图计算得出的结论一致。
这一现象可通过流体力学中的关键公式及物理机制

进行解释。 首先流量的增大意味着流速的增大,流速与

流量的关系如下:
Q = A·v (5)

式中:A 为管道横截面积。 流速提升直接增强了流体对

颗粒的拖曳力( Drag
 

Force),当流体流动处于层流状态

时,颗粒所受的拖曳力与流速的关系表达式如下:
Fd = 6πμrv (6)

式中:Fd 为拖曳力;μ 为流体的动力黏度;r 为颗粒半径;v
为流体流速。 当流体流动处于湍流状态时,颗粒受到的

拖曳力与流速的关系表达式如下:

Fd = 1
2
ρCdAv

2 (7)

式中:ρ 为流体密度;Cd 为阻力系数,与颗粒形状和雷诺

数有关,球形颗粒在高雷诺数
 

(Re>4
 

000)
 

的湍流区域,
颗粒的阻力系数通常取为常数,约为

 

0. 44[20] ;A 为颗粒

的迎流面积。 流体的流动状态是层流还是湍流主要与雷

诺数有关,当雷诺数 Re>4
 

000 时,流动状态为湍流。 雷

诺数的计算公式如下:

Re = ρ·v·D
μ

(8)

式中:ρ 为水的密度;v 为水的流速;D 为管径;μ 为水的动

力黏度。 实验的流量工况点与其对应的流速及雷诺数如

表 3 所示。
表 3　 流量-流速-雷诺数对照

Table
 

3　 Flow-velocity-Reynolds
 

number
 

comparison

流量 / (m3·h-1 ) 流速 / (m·s-1 ) 相关系数绝对值

6 0. 85 42
 

500
9 1. 27 63

 

500
12 1. 70 85

 

000
15 2. 13 106

 

500
18 2. 55 127

 

500
21 2. 97 148

 

500
24 3. 39 169

 

500

　 　 雷诺数均大于 4
 

000,表明实验的流动状态为湍流,
故颗粒所受的拖曳力与流体流速的二次方成正比,当流

量增大时流速增大,颗粒所受的拖曳力增大,颗粒更容易

被流体驱动。 同时颗粒跟随流体流动时需要克服沉降速

度,受到重力、浮力和拖曳力三者的共同作用,当拖曳力
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图 13　 能量随流量变化关系

Fig. 13　 The
 

relationship
 

between
 

energy
 

and
 

liquid
 

phase
 

flow
 

rate

大于净重力时,颗粒才会被携带,根据 Stokes 定律,颗粒

的沉降速度公式[21] 如下:

vt =
2gr2(ρp - ρ)

9μ
(9)

式中:vt 为颗粒的沉降速度;ρp 为颗粒密度;g 为重力加

速度。 当流体流速 v>vt 时,颗粒会被携带,当流体流量增

大时,更容易达到 v>vt,颗粒不容易沉降并更容易被携带

跟随液体流动。
由于本文实验中的流动状态为湍流,故湍流强度也

是一个需要考虑的关键因素。 流量增大会使湍流增强,
湍流中的涡旋和脉动速度有助于携带悬浮颗粒,防止其

沉降。 在湍流中,流体速度由平均速度和脉动速度组成,
表达式如下:

U( t) =u- + u( t) (10)

式中: u 为不会随着时间变化的平均速度;u( t)为脉动速

度。 速度脉动的均方值为脉动速度平方的时间平均,表
征脉动速度的能量强度,均方值越大,表明速度波动越剧

烈,湍流携带能量的能力越强,其表达式如下:

u2 = 1
T ∫T

0
u( t) 2dt (11)

湍流动能表示流体因湍流运动而储存的动能,是量

化湍流中脉动速度所携带能量的关键参数,其表达式

如下:

k = 3
2
u2 (12)

湍流动能越高,颗粒越容易在水中保持悬浮状态,这
是由于湍流的扩散效应,垂直方向的湍流脉动产生随机

升力,可以抵消颗粒沉降,其表达式如下:

D t = Cμ
k2

ε
(13)

式中:D t 为湍流扩散系数;ε 为湍流耗散率。 当流量增大

时湍流增强,湍流动能增大,湍流耗散系数 D t 增大,颗粒

的扩散能力增强。
表 4 为取颗粒粒径的平均值 0. 7

 

mm,颗粒密度 ρp 为

2
 

500
 

kg / m3,计算得到的各参数的值。
表 4　 参数对照

Table
 

4　 Parameter
 

comparison
流量 Q /

(m3·h-1 )
拖曳力 Fd /

N
沉降速度 vt /

(m·s-1 )
湍流动能 k

耗散系数 Dt /
(m2·s-1 )

6 1. 23×10-5 0. 052 0. 005
 

4 2. 1×10-4

9 2. 76×10-5 0. 052 0. 012
 

1 4. 8×10-4

12 4. 89×10-5 0. 052 0. 021
 

6 8. 5×10-4

15 7. 62×10-5 0. 052 0. 033
 

8 1. 3×10-3

18 1. 10×10-4 0. 052 0. 048
 

6 1. 9×10-3

21 1. 49×10-4 0. 052 0. 066
 

0 2. 6×10-3

24 1. 94×10-4 0. 052 0. 086
 

4 3. 5×10-3

　 　 由以上公式机理分析和计算可知,当流量增大时,流
速增大,颗粒受到流体的拖曳力增大,颗粒更容易被流体

携带驱动,同时更容易抵消粒子的沉降速度,粒子不容易

发生沉降而是更容易被流体携带,另外湍流动能增强,产
生的升力使颗粒在水中更容易保持悬浮,同时湍流扩散
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系数增大,使颗粒更容易在水中分散开来,这些多种因素

共同作用都使流量增大时,固体颗粒更容易被流体携带

而分散在水中,单位体积的液体内固体颗粒的克重更高,
单位体积内的固相含率更高,由图 7 和 10 的分析结果可

知,单位水的体积内加入的粒子克数越高,图像的复杂度

越高,图像的无序性越高,GLCM 提取出的能量越低。
综上,由对能量值和熵随工况变化的规律来看,符合

固液两相流的流动特性,验证了超声相控阵法对液固两

相流相界面参数的测量与分析的有效性。
3. 4　 粒子含量预测模型的分析

　 　 对于液固两相流悬浮液特征参数来说,多种机器学

习回归模型均可对其进行建模,不同算法对数据分布、噪
声、特征交互的假设不同,最终的拟合效果将存在差异,

需验证哪种假设更贴合实际数据,因此,本文使用多种回

归模型对气液两相流特征参数进行建模分析,旨在选出

与本文数据适应程度最高的回归模型,本文选取了以下

几种回归模型进行建模研究,线性回归( linear
 

regression,
 

LR)、岭回归(ridge
 

returns,
 

RR)、拉索(Lasso)回归、决策

树(decision
 

tree,
 

DT)回归、随机森林(random
 

forest,
 

RF)
回归、 ET ( Extra

 

Trees ) 回 归、 k 近 邻
 

( KNN ) 回 归、
XGB(XGBoost)回归和 LGBM( LightGBM) 回归。 通过上

述 Pearson 相关性的分析,与固体粒子含量相关性最强的

特征是能量和熵,故选取 4 个方向维度的能量和熵共 8
维特征作为特征向量。 共选取了 140 个工况点,70%作

为训练集,30%作为测试集,使用各算法建立模型得到粒

子含量的训练集和测试集的预测效果如图 14 所示。

图 14　 不同算法预测模型效果对比

Fig. 14　 Comparison
 

of
 

the
 

prediction
 

model
 

performance
 

of
 

different
 

algorithms

　 　 平均绝对百分比误差( MAPE) 是一种相对度量,是
相对误差度量值,可以用来衡量模型预测的准确性,其公

式如下:

MAPE =
∑

n

i = 1
 

ŷ i - y i

y i

n
× 100% (14)

式中:
 

ŷ i 为预测值; y i 为实际值;n 为样本数。 图 15 所示

为各算法模型的拟合结果。
由图 14、15 可知,LR 的 MAPE 为 23. 27%,其中相对

误差小于 10%的数据占比为 10. 7%,相对误差小于 20%
的数据占比为 42. 9%;RR 的 MAPE 为 33. 79%,其中相

对误差小于 10% 的数据占比为 17. 9%,相对误差小于



　 第 11 期 基于超声相控阵液固两相流固相含率测量 · 51　　　 ·

图 15　 不同算法预测模型相对误差对比

Fig. 15　 Comparison
 

of
 

the
 

relative
 

error
 

of
different

 

algorithms
 

to
 

predict
 

the
 

model

20%的数据占比为 32. 1%;Lasso 的 MAPE 为 31. 43%,其
中相对误差小于 10%的数据占比为 14. 3%,相对误差小

于 20%的数据占比为 35. 7%;DT 的 MAPE 为 25. 47%,
其中相对误差小于 10%的数据占比为 10. 7%,相对误差

小于 20% 的 数 据 占 比 为 32. 1%; RF 的 MAPE 为

19. 99%,其中相对误差小于 10%的数据占比为 46. 4%,
相对误差小于 20% 的数据占比为 67. 9%、 ET 回归的

MAPE 为 23. 07%,其中相对误差小于 10%的数据占比为

41. 3%,相对误差小于 20%的数据占比为 67. 9%;KNN
的 MAPE 为 36. 01%,其中相对误差小于 10%的数据占

比为 17. 9%,相对误差小于 20%的数据占比为 35. 7%、
XGB 的 MAPE 为 22. 82%,其中相对误差小于 10%的数

据占比为 47. 4%, 相对误差小于 20% 的数据占比为

64. 3%;LGBM 的 MAPE 为 17. 07%,其中相对误差小于

10%的数据占比为 50%,相对误差小于 20%的数据占比

为 80%。
无论是从 MAPE 值还是从相对误差小于 10% 和

20%的占比来看,LGBM 算法的拟合效果均是最好的。
LGBM 是一种基于梯度提升树的机器学习算法,是对

GBDT 的优化,可提升训练速度、减少内存消耗并提高计

算效率、降低过拟合风险,降低误差、提高精度,且通过设

定最大树深度防过拟合。 因此,LGBM 在悬浮液固体颗

粒含量预测中优势显著,处理高维、非线性工业数据时优

于传统回归模型和同类集成算法。 图 16 所示为 LGBM
算法的预测值与实际值的拟合情况。

从图 16 可知,虽然大部分点的相对误差都在±20%
以内,表明该模型具备一定的预测能力,但仍有部分点的

相对误差较大,拟合效果还有优化空间。
3. 5　 预测模型的优化

　 　 选用了鹈鹕优化算法(pelican
 

optimization
 

algorithm,
POA)和正弦余弦算法

 

( sine
 

cosine
 

algorithm,
 

SCA)智能

图 16　 LGBM 算法拟合效果

Fig. 16　 LGBM
 

algorithm
 

fitting
 

effect

优化算法对模型进行优化。 POA 算法模拟鹈鹕协作狩

猎行为,群体通过俯冲驱赶猎物至狭小区域以完成捕

获[22] 。 其基于适应度函数迭代更新最优解,若新解更优

则替换当前解[23] ,通过个体交互与环境适应机制快速收

敛,适用于实时性要求高的场景[24] ,相比于其他种群优

化算法,POA 具有更强的全局搜索能力,它引入探索阶

段和开发阶段的概念,这种分工合作的策略使得算法能

够在全局和局部之间进行平衡,更容易找到全局最优

解[25] 。 SCA 利用正弦 / 余弦函数的周期性调整解向量方

向,结构简单、参数少且全局搜索能力强,可有效逼近最

优[26] 。 SCA 和 POA 算法的种群规模在 100 ~ 200 区间内

能够有效平衡全局搜索能力与计算效率[27] ,分别实验计

算种群规模为 100、120、140 时模型的 MAPE 和计算耗

时,结果如表 5 所示。

表 5　 种群规模实验参数对照

Table
 

5　 Comparison
 

of
 

experimental
parameters

 

of
 

population
 

size

种群规模 SCA
 

MAPE / % SCA+POA
 

MAPE / % 计算时间 / h

100 7. 42 7. 15 2. 5

120 7. 67 7. 21 3. 8

140 7. 72 7. 28 4. 8

　 　 经过对比,种群规模设为 100 时模型的 MAPE 最小。
首先使用 SCA 粗调,快速扫描参数空间,确定潜力区域,
在 SCA 结果的基础上,再利用 POA 的强全局搜索能力,
精细调整正则化参数。 将 SCA 的初始步长 а 设为 2,该
值能有效覆盖大部分搜索空间[28] ,将 SCA 的最大迭代次

数 Tmax 设为 300,POA 的最大迭代次数设为 500,最大诱

导速度 Nmax 设为 0. 5,觅食速度 V f 设为 0. 4。 表 6 为迭

代次数与 MAPE 与计算耗时的对照。
　 　 由表 6 可知,当单独运行 SCA 算法迭代次数从 300
增加到 400 时,MAPE 仅下降了 0. 01%,计算耗时却增加
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了;单独运行 POA 算法迭代次数从 500 增加到 600 时,
MAPE 仅下降了 0. 01%,同样增大了计算耗时。

表 6　 控制变量法测试不同迭代次数下的 MAPE
Table

 

6　 The
 

control
 

variable
 

method
 

was
 

used
 

to
test

 

MAPE
 

at
 

different
 

iterations
算法 迭代次数 MAPE+S / % 计算耗时 / min
SCA 200 8. 12±0. 21 45
SCA 300 7. 42±0. 18 62
SCA 400 7. 41±0. 17 78
POA 400 8. 08±0. 19 105
POA 500 7. 36±0. 16 148
POA 600 7. 35±0. 15 170

　 　 优化后模型的拟合效果和优化前后的对比如图 17
所示。

图 17　 优化前后拟合效果对比

Fig. 17　 Comparison
 

of
 

fitting
 

effects
before

 

and
 

after
 

optimization

使用 POA 和 SCA 智能优化算法优化后,MAPE 达到

了 7. 15%,优化后,97%的点相对误差都在 10%以内,但
仍需验证模型是否具备较好的泛化能力,本文采用了学

习曲线与交叉验证相结合的方式来验证模型的泛化性

能。 首先采用 k 折交叉验证法验证模型的泛化能力及鲁

棒性,将总样本分为 5 折,每折的 MAPE 结果如图 18
所示。

表 7 为每折的训练集与验证集的 MAPE 数值。

表 7　 交叉验证每折 MAPE 结果
Table

 

7　 Cross-validate
 

the
 

MAPE
 

results
 

for
 

each
 

fold
Fold 训练集 MAPE / % 验证集 MAPE / %

Fold
 

1 5. 12 6. 98
Fold

 

2 5. 34 7. 12
Fold

 

3 5. 08 7. 31
Fold

 

4 4. 95 6. 85
Fold

 

5 5. 21 7. 24
Mean

 

±
 

S 5. 14
 

±
 

0. 15 7. 10
 

±
 

0. 18

图 18　 交叉验证每折 MAPE 结果

Fig. 18　 Cross-validate
 

the
 

MAPE
 

results
 

for
 

each
 

fold

　 　 验证集 MAPE 略高于训练集,差异约为+1. 96%,表
明模型无显著过拟合,且验证集 MAPE 的均值( Mean)为

7. 10%,略低于 7. 15%,验证集的标准差( S) 为 0. 18,表
明模型在不同数据子集上表现高度一致,各折验证集

MAPE 在 6. 85% ~ 7. 31%,最大差异仅 0. 46%,证明优化

后模型具有较强鲁棒性。
样本量学习曲线反映了随着训练数据量增加模型在

训练集和验证集上的表现趋势,直观反映模型是否过拟

合或欠拟合,将学习曲线与交叉验证结合,生成交叉验证

学习曲线,反应模型的平均性能及标准差。 图 19 为交叉

验证学习曲线的训练集数据量占比从 10%增加到 90%时

训练集和验证集的 MAPE 和标准差变化情况。

图 19　 交叉验证学习曲线

Fig. 19　 Cross-validation
 

learning
 

curve

红线和蓝线分别表示训练集和验证集的 MAPE,周
围颜色区域表示标准差。 当训练集占比低

 

(10%)
 

时,模
型欠拟合,训练集和验证集误差均较高,随着训练数据量

从 10% 增加到 90%, 验 证 集 MAPE 从 12. 30% 降 至

7. 10%,与训练集 MAPE(从 8. 50%降至 6. 60%) 的差距

从+3. 80%缩小至+0. 80%,模型具备较好的泛化能力,且
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随着训练集数据量的增多,训练集与验证集的标准差范

围逐渐减小,模型误差的波动范围逐渐减小,稳定性

增强。
经过交叉验证学习曲线验证了模型具有较强的鲁棒

性和泛化能力,但观察到优化后模型仍存在少量高误差

点(图 17),分别分布在粒子克重为 150、200、250
 

kg 时,
可能是由于此时浓度较大,粒子间碰撞概率增大,形成团

聚体,导致实际分散浓度与理论值偏离,导致在信号分析

和特征提取时出现误差,对于这种情况后续可以结合超

声波原始信号进行分析改进,对原始超声信号进行小波

去噪,并结合回波信号的衰减进行分析。

4　 结　 论

　 　 本文的核心思路为将超声阵列传感器的高空间分辨

率与 GLCM 的图像特征提取相结合,设计不同固相含率、
流量工况的实验方案,进行多工况实验设计与特征-机理

的关联分析,结合流体力学中液固两相流的流固耦合理

论对特征值表现出的变化趋势规律进行机理解释,并直

接对采集得到的数据进行可视化图像处理,进而利用

GLCM 提取不同工况下得到的图像特征,寻找相关规律

并进行分析,并将规律和相关性强的特征作为特征向量,
采用多种不同机器学习算法建立测量模型和进行优化,
并验证模型是否能够泛化使用

在信号的采集与提取方面,采用了多阵元的超声阵

列传感器,显著提升了空间分辨率和抗干扰能力,能够精

准捕捉复杂流场中颗粒的分布细节,并降低气泡或非均

匀分布的干扰。
在信号处理方面,直接对超声相控阵采集得到的矩

阵信息进行了可视化图像转化,并采用 GLCM 方法图像

进行了特征提取,从而保留了颗粒分布的空间信息,能够

直观监测到颗粒在液体中的局部分布情况,避免了由颗

粒分布不均带来的误差,同时由于 GLCM 原理为计算相

邻像素灰度共生概率,提取的图像纹理特征通过统计像

素间的空间关系生成,对局部噪声具有天然的平滑作用,
可抑制随机噪声的影响,鲁棒性更强,同时降低了计算

负担。
在测量模型的建立方面,采用了 9 种不同算法建立

预测模型,并引入新的优化算法继续优化,将模型精度提

升近 10%,优化后模型的测量精度达到 92. 85%。
综合以上实验分析,本文的测量方法具备一定的合

理性和泛化性,可为后续工业场景提供技术和量化指标。
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