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Research on multi-sensor fusion SLAM algorithm in dynamic scenes

Wu Yonghao Li Sheng Zou Wencheng

(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: To address the challenges of robot trajectory drift in dynamic and complex environments, and overcome the limitations of
conventional static map construction, we propose a robust multi-sensor fusion SLAM algorithm integrated with dynamic point cloud
removal. Our front-end processing employs IMU pre-integration to compensate for point cloud distortion and utilizes an iterative error
state Kalman filter (TESKF) for refined initial pose estimation. Furthermore, we introduce a novel dynamic point cloud removal strategy
that combines ground segmentation with spatio-temporal normal vector analysis. It effectively eliminates moving objects and preserves
static structures to ensure global map consistency. On the back end, our method leverages factor graph optimization, fusing laser-inertial
odometry, IMU pre-integration, and wheel encoder data to enhance trajectory estimation. In addition, we incorporate ground plane
constraints to suppress cumulative errors and mitigate z-axis drift. Experimental validation in a complex campus environment demonstrates
that our method significantly reduces positioning root mean square error (RMSE) by 46. 2%, 49.4% , and 35.9% compared to LeGO-
LOAM, FAST-LIO, and LIO-SAM, respectively. Moreover, our method successfully removes dynamic point clouds from the constructed
maps, showcasing superior robustness in dynamic scenarios. These advancements provide reliable support for autonomous robot
navigation and high-precision mapping in complex dynamic environments.
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