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动态场景中的多传感器融合 SLAM 算法研究∗

吴永豪　 李　 胜　 邹文成

(南京理工大学自动化学院　 南京　 210094)

摘　 要:针对机器人在动态复杂环境下轨迹漂移以及无法建立静态地图问题,设计了一种动态点云去除的多传感器融合同步定

位与建图(SLAM)算法。 算法前端利用惯性测量单元( IMU) 预积分实现点云畸变补偿,并采用迭代误差状态卡尔曼滤

波(IESKF)算法在前端获得初始位姿估计。 针对动态物体干扰,提出了一种结合地面分割和时空法向量分析的动态点云去除

策略,有效剔除了动态目标的影响,保证了静态地图的全局一致性。 后端基于因子图优化,融合激光惯导里程计、IMU 与编码器

预积分,并引入地平面因子,通过多重约束有效抑制了累积误差和 Z 轴漂移问题。 在校园实测的复杂动态环境中,该算法相较

于 LeGO-LOAM、FAST-LIO 和 LIO-SAM 主流 SLAM 方案,定位均方根误差(RMSE)分别降低了 46. 2%、49. 4%和 35. 9%,同时有

效地去除了地图中的动态点云,验证了算法的优越性,为复杂动态环境下机器人的自主导航与精确建图提供了可靠的技术

支撑。
关键词:

 

多传感器融合;动态场景;激光 SLAM;地面分割;因子图

中图分类号:
 

TP242. 6;TN958. 98　 　 　 文献标识码:
 

A　 　 国家标准学科分类代码:
 

510. 70

Research
 

on
 

multi-sensor
 

fusion
 

SLAM
 

algorithm
 

in
 

dynamic
 

scenes

Wu
 

Yonghao　 Li
 

Sheng　 Zou
 

Wencheng
(School

 

of
 

Automation,
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology,
 

Nanjing
 

210094,
 

China)

Abstract:
 

To
 

address
 

the
 

challenges
 

of
 

robot
 

trajectory
 

drift
 

in
 

dynamic
 

and
 

complex
 

environments,
 

and
 

overcome
 

the
 

limitations
 

of
 

conventional
 

static
 

map
 

construction,
 

we
 

propose
 

a
 

robust
 

multi-sensor
 

fusion
 

SLAM
 

algorithm
 

integrated
 

with
 

dynamic
 

point
 

cloud
 

removal.
 

Our
 

front-end
 

processing
 

employs
 

IMU
 

pre-integration
 

to
 

compensate
 

for
 

point
 

cloud
 

distortion
 

and
 

utilizes
 

an
 

iterative
 

error
 

state
 

Kalman
 

filter
 

(IESKF)
 

for
 

refined
 

initial
 

pose
 

estimation.
 

Furthermore,
 

we
 

introduce
 

a
 

novel
 

dynamic
 

point
 

cloud
 

removal
 

strategy
 

that
 

combines
 

ground
 

segmentation
 

with
 

spatio-temporal
 

normal
 

vector
 

analysis.
 

It
 

effectively
 

eliminates
 

moving
 

objects
 

and
 

preserves
 

static
 

structures
 

to
 

ensure
 

global
 

map
 

consistency.
 

On
 

the
 

back
 

end,
 

our
 

method
 

leverages
 

factor
 

graph
 

optimization,
 

fusing
 

laser-inertial
 

odometry,
 

IMU
 

pre-integration,
 

and
 

wheel
 

encoder
 

data
 

to
 

enhance
 

trajectory
 

estimation.
 

In
 

addition,
 

we
 

incorporate
 

ground
 

plane
 

constraints
 

to
 

suppress
 

cumulative
 

errors
 

and
 

mitigate
 

z-axis
 

drift.
 

Experimental
 

validation
 

in
 

a
 

complex
 

campus
 

environment
 

demonstrates
 

that
 

our
 

method
 

significantly
 

reduces
 

positioning
 

root
 

mean
 

square
 

error
 

(RMSE)
 

by
 

46. 2%,
 

49. 4%,
 

and
 

35. 9%
 

compared
 

to
 

LeGO-
LOAM,

 

FAST-LIO,
 

and
 

LIO-SAM,
 

respectively.
 

Moreover,
 

our
 

method
 

successfully
 

removes
 

dynamic
 

point
 

clouds
 

from
 

the
 

constructed
 

maps,
 

showcasing
 

superior
 

robustness
 

in
 

dynamic
 

scenarios.
 

These
 

advancements
 

provide
 

reliable
 

support
 

for
 

autonomous
 

robot
 

navigation
 

and
 

high-precision
 

mapping
 

in
 

complex
 

dynamic
 

environments.
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0　 引　 言

　 　 同 步 定 位 与 建 图 ( simultaneous
 

localization
 

and
 

mapping,SLAM)是自主移动机器人实现自主导航和环境

感知的核心技术,它使机器人能够在未知环境中通过传

感器数据同时进行自身定位和地图构建[1] 。 SLAM 系统

广泛应用于自动驾驶、室内服务机器人等领域,精确的地

图和实时的定位信息是保证系统正常运行和高效决策的

基础。 与视觉 SLAM 相比,激光雷达在光照变化较大的

环境中表现更为稳定,且能够直接提供三维空间信息,更
适合用于室外复杂环境中的移动机器人定位与建图[2] 。

近年来,研究人员提出了许多基于 3D 激光雷达的

SLAM 算法。 LOAM( lidar
 

odometry
 

and
 

mapping) 算法[3]

作为经典的激光 SLAM 方法,其主要由 3 个模块组成,分
别为点云特征提取、激光里程计以及地图构建。 基于曲

率特征分析筛选边缘与平面几何特征点,结合迭代最近

点(ICP)配准算法完成特征匹配,构建高精度定位建图

系统,然而系统在长期运行中仍面临位姿估计漂移问

题[4] 。 LeGO-LOAM[5] 算法对特征提取进行了轻量化处

理,用地平面分割技术优化计算效率,并引入回环检测模

块来减少长期累计漂移。 为提高机器人定位系统鲁棒

性,基于多传感器数据融合的 SLAM 技术逐渐成为发展

趋势。 LIO-SAM[6] 算法前端延续
 

LOAM
 

提取特征点的思

想,通过引入惯性测量单元( IMU)数据实现点云畸变校

正,同时为激光里程计提供位姿初始化参数;后端构建因

子图优化框架,融合激光-惯导里程计约束、闭环检测约

束以及可选融合 GPS 观测数据,通过全局位姿优化有效

抑制里程计漂移误差。 FAST-LIO[7] 是针对固态激光雷

达和
 

IMU
 

进行紧耦合的算法,基于 IESKF
 

迭代误差状态

卡尔曼滤波融合激光和 IMU 数据,并提出了新的卡尔曼

增益计算方法,不再考虑观测维度而是使用状态维度,大
大降低了计算量。 FAST-LIO2[8] 在 FAST-LIO 的基础上

进行了改进,引入了动态 KD-Tree 存储点云数据,提高了

算法的运行效率,适用于更多应用场景。 LIW-OAM[9] 是

一种紧耦合算法,基于光束平差( BA)的优化框架,融合

LiDAR、IMU 和轮速编码器数据,从而产生准确的里程计

信息。
激光雷达 SLAM 的研究大多基于静态场景假设[10] ,

然而现实场景中普遍存在动态干扰因素,尤其在城市道

路等开放环境中,移动车辆和行人等动态物体会在激光

雷达建图中留下“鬼影”,导致生成的地图无法准确反映

静态环境[11] 。 此外,大量的动态物体的干扰可能导致点

云匹配失败影响机器人定位的稳定性和可靠性。 针对动

态点云的识别与去除,常用的方法有基于分割的方法、基
于光线追踪的方法、基于可见性的方法和基于学习的方

法[12] 。 基于分割的方法受限于标注数据质量和训练结

果,容 易 受 标 注 误 差 或 未 识 别 动 态 目 标 的 干 扰。
OctoMap[13]和 Peopleremover[14] 等基于体素的光线追踪方

法能有效构建场景信息,但基于体素的方法需要消耗大

量的 内 存 和 计 算 资 源, 导 致 难 以 实 时 在 线 运 行。
Removert[15] 方法作为常见的可见性方法,其首先将原始

点云转换为深度图的投影,再通过对比局部地图与当期

扫描数据间的可见性来去除动态物体。 基于可见性的方

法存在近地面反射噪点的问题,导致静态地面点误判为

是动态点云。 基于深度学习的方法需要高昂的物体标注

与训练成本,只对特定场景适用,缺乏泛化能力[16] 。
针对室外大规模动态场景下 SLAM 定位精度与建图

质量问题。 开展了多传感器融合的激光雷达 SLAM 算法

以及实时动态点云去除算法的研究。 首先在前端利用

IMU 预积分进行点云畸变补偿,利用 IESKF 算法融合激

光雷达与 IMU 信息,获得机器人位姿初值。 然后在动态

物体去除算法中分割地面点与非地面点,使用改进的在

线动态点云去除方法去除非地面点中的动态点。 最后,
为实现 SLAM 系统定位精度与地图全局一致性的协同优

化,后端优化模块采用基于因子图的联合优化框架[17] 。
将前端里程计因子、IMU 与编码器预积分因子、地平面因

子作为约束因子,有效地限制了高度方向的漂移[18] ,在
线获得优化后的位姿信息与全局一致的静态地图。

1　 前端里程计

　 　 动态环境多传感器融合 SLAM 算法流程如图 1 所

示,主要分为 3 个模块。 1) 前端里程计模块,首先对

IMU、LiDAR 及轮速计进行数据同步与校准,通过 IMU 反

向传播推算相邻雷达帧间相对位姿,并完成点云去运动

畸变处理,确保数据时空对齐;分别对 IMU 和轮速编码

器进行预积分计算。 利用迭代误差扩展卡尔曼滤波

(IESKF)算法,融合去畸变后的雷达点云数据与 IMU 预

积分数据,为后面动态点云去除模块输出里程计预测的

位姿初值。 2)动态点云去除模块,首先采用同心圆模型

的方法对地面进行分割;接着根据前端提供的里程计的

初始位姿,对时空法向量进行分析,识别并去除动态点

云,进而消除其对建图的影响。 3)后端因子图优化模块,
利用因子图融合地平面因子、前端里程计因子、IMU 和轮

速编码器因子,最终获得高质量的静态地图。
多传感器融合算法使用多个坐标系,包括相对传感

器坐标和全局坐标。 定义世界坐标系为 {W} ,将机器人

机体坐标系表示为 {B} ,并假设 IMU 传感器坐标与机体

坐标系一致。 机器人系统状态 X 定义为:
X = [x0,x1,…,xn]
xk = [ WRk,

Wpk,
Wvk,bk]

T,　 k ∈ [0,n] (1)
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图 1　 算法流程

Fig. 1　 Diagram
 

of
 

the
 

algorithm

式中: xk 表 示 第 k 个 关 键 帧 机 器 人 的 运 动 状 态;
WRk ∈ SO(3) 代 表 世 界 坐 标 系 下 机 体 旋 转 矩 阵;
Wpk ∈ R3 表示世界坐标系下机器人位置; Wvk ∈ R3 表示

世界坐标系下机器人速度; bk 表示 IMU 六轴参数的

零偏。
1. 1　 IMU 和编码器预积分

　 　 在时刻,IMU 的原始加速度计和陀螺仪测量值在

IMU 坐标系中测量值定义为:

â t =
BRW

t (a t - g) + ba
t + na

t

ω̂ t = ω t + bω
t + nω

t

(2)

式中: a t 和 ω t 分别表示加速度和角速度的真实值; bω
t 和

ba
t 分别表示 IMU 加速度计和陀螺仪的零偏; na

t 和 nω
t 则

则对应二者白噪声; BRW
t 为世界坐标系至 IMU 坐标系的

旋转变换。
根据上述 IMU 测量数据可以推导出机器人的动态

运动状态。 机器人在时间 t + Δt 时的速度、位置和旋转

计算公式如下:
WR t +Δt =

WRB
t+Δte

( ω̂ t -b
ω
t -nωt )Δt

(3)
Wvt +Δt =

Wvt + ( Wg +WRB
t ( â t - ba

t - na
t ))Δt2 (4)

Wp t +Δt =
Wp t +

WvtΔt + 1
2

( Wg +WRB
t ( â t - ba

t - na
t ))Δt2

(5)
　 　 假设 IMU 角速度和加速度积分过程中保持不变,其
中 WRB

t = ( BRW
t ) T ,表示 IMU 坐标系到世界坐标系的旋转

矩阵。
车辆控制单元( VCU) 通过采集编码器输出的脉冲

信号确定车轮的转速,通过如下公式可计算出 t 时刻左

后轮线速度 v̂lt 和右后轮的线速度 v̂rt 为:

v̂lt
v̂rt

é

ë

ê
êê

ù

û

ú
úú

=
^ l
t·rl 0 0

^ r
t·rr 0 0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(6)

^ l
t = l

t + n l
t
, ^ r

t = r
t + n r

t
(7)

式中: ^ l
t 和

^ r
t 分别为测得的左右车轴转速; l

t 和 r
t 分别

为左右车轴转速真实值; rl 和 rr 分别为左、右车轮半径。
假设 n r

t
和 n r

t
都是零均值的高斯白噪声,则车轮编码器

坐标系 {E} 下的测量模型可以表示为:

v̂Et =
v̂lt +v̂

r
t

2
+ nvt

(8)

ω̂ E
t =

v̂lt -v̂
r
t

b
+ nω t

(9)

式中: v̂Et 和 ω̂E
t 分别表示机器人在 t 时刻的线速度和角速

度;b 表示车轮间距;nvt
和 ωvt

都是零均值的高斯白噪声。
采用上述编码器模型,假设机器人当前位姿为 (x t,

y t,θ t),vt 和
 

ω t 分别表示机器人在 t 时刻的线速度和角速

度真值,对机器人在 t + Δt 时间内的编码器数据进行预

积分计算:
x t +Δt

y t +Δt

θ t +Δt

é

ë

ê
ê
êê

ù

û

ú
ú
úú

=
x t

y t

θ t

é

ë

ê
ê
êê

ù

û

ú
ú
úú

+
cosθ t 0
sinθ t 0

0 1

é

ë

ê
ê
êê

ù

û

ú
ú
úú

vtΔt
ω tΔt

é

ë

ê
ê

ù

û

ú
ú

(10)

1. 2　 点云去畸变

　 　 当车载移动时,机械式激光雷达测量结果会受到运

动畸变的影响,获得的点云信息与真实位置存在差异,前
端里程计中采用 IMU 提供的短时间积分获得位姿估计

信息,结合该帧点云数据中每个点的采集时间,将当前帧

所有点映射至同一坐标系下,以消除雷达运动失真。
利用 IMU 的积分信息进行反向传播,推算出每个点
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云被采集时的位姿,并利用其将点云去畸变。 若 IMU 在

激光雷达末尾扫描时刻为末尾时刻为 tk ,计算此时的

IMU 位姿变换矩阵为 Tk ,在该段时间内点云为 pk ,则时

间戳为 t i 的激光矫正后的点云为:

p~ k
i = Tk(T ti

) -1pk
i (11)

将每个点投影到扫描末尾时刻坐标系,利用去畸变

的点云进行后续的点云匹配、位姿预测与更新。
1. 3　 激光惯导里程计

　 　 该前端里程计融合 IMU 数据与去除畸变后的激光

雷达数据,前端里程计参考 FAST-LIO2 算法,采用 IESKF
进行紧耦合优化,主要步骤如下:

1)前向传播

设系统上一次关键帧最优位姿为 xk-1 及其协方差矩

阵为 Pk-1,IMU 的测量值 uk = ( âk,ω̂ k) 包含加速度与角

速度测量值,两个 IMU 测量采样间隔时间为 Δt。 状态转

移方程为 f(xk,uk),可以得到 tk 时刻前向传播更新的预

测位姿 x̂k 及其预测协方差矩阵 P̂k:

x̂k = xk-1 􀱇 ( f(xk,uk)·Δt) (12)

P̂k = F x~ Pk-1F
T
x~
+ FwQF

T
x~ (13)

式中:􀱇表示李群上的广义加法; F x~ 为系统预测状态矩

阵; Fw 为噪声雅可比矩阵; Q 为 IMU 噪声协方差矩阵。
2)构建观测模型

点面量测模型如图 2 所示,当前帧点云 p j 去畸变后

通过外参 WpL 矩阵转换至世界坐标系下,其中任意一点
 

在地图中搜索最近邻平面,构建点面残差:
0 = h j(xk) = uT

j (
WTLp j - q j) (14)

式中: q j 表示世界坐标系下该平面上的一个坐标点; u j

为法向量法向量。 残差反映点到平面的距离,理想情况

下应趋近于 0。

图 2　 点面量测模型

Fig. 2　 Point-to-plane
 

measurement
 

model

3)迭代状态更新

迭代更新以不断更新状态误差,对式(14)进行一阶

泰勒展开可得:

0 = h j(xk,n j) ≈ h j( x̂
α
k ,0) + Hα

j x
~ α

k + v j = zαj + Hα
j x
~ α

k + v j
(15)

式中: x~ α
k = xk 􀱉x̂α

k ,α 为迭代次数,􀱉表示李群上的广义

减法; Hα
j 为 h j(xk,n j) 的 Jacobin 矩阵; v j ∈ N(0,R j) 为

高斯白噪声。
迭代更新状态估计和卡尔曼增益分别为:

x~ α +1
k = x~ α

k + K(0 - h( x~ α
k )) - (I - KH)( x~ α

k - x~ 0
k)

(16)
K = (HTR -1H + P -1) -1HTR -1 (17)
4)收敛输出最优估计

判断 α + 1 次的状态估计与 α 次迭代得到的状态估

计的绝对差值是否小于阈值 ε :

‖x̂α +1
k 􀱉x̂α

k ‖ ≤ ε (18)
若达到指定的阈值 ε ,则迭代完成,最优位姿估计与

更新后的协方差估计分别为:

xk =x̂
α +1
k (19)

Pk = (I - KH) P̂k (20)

2　 动态物体去除算法

2. 1　 地面分割

　 　 地面分割对于减少动态点云识别计算速度和减少雷

达垂直方向误差至关重要。 传统的地面平面拟合计算要

求较低,但分割精度不足,对于陡坡、颠簸的道路和路缘

等是无效的。 本文提出一种针对实时任务的分阶段地面

点分 割 算 法, 该 算 法 基 于 地 面 平 面 拟 合, 并 对

Patchwork++[19] 进行改进,以解决细节处的粗糙分割问

题,并实现更详细的点云分割。
该算法基于同心区域模型( CZM) 以实现点云的地

面提取,同心区域模型如图 3 所示。 假设点云的集合 P ,
其中每个点 P i 都包含三维坐标 (x,y,z) 与反射强度 I 。
将地面点的集合定义为 G ,将非地面点的集合定义为

N ,则集合 P 表示为:
P =∪

i
p i = G ∪ N (21)

图 3　 同心区域模型

Fig. 3　 Concentric
 

zone
 

model
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首先去除干扰点,提高拟合地平面的有效性。 干扰

点去除包括删除反射的噪点和垂直的非地面干扰点。 如

图 4 所示,位于地平面以下的噪点会因为镜面反射成为

障碍点。 每个扇形环状区域指定高度以下且反射强度低

于阈值的点将会被识别和去除。

图 4　 雷达反射噪点理论模型

Fig. 4　 Lidar
 

reflection
 

noise
 

theoretical
 

model

此外,某些扇形环状区域内的垂直点数量会远超过

地面点数量,拟合的地平面受垂直干扰点影响,导致拟合

结果与实际地面存在显著偏差,如图 5 所示。

图 5　 垂直点对地平面拟合的影响

Fig. 5　 Effect
 

of
 

vertical
 

points
 

on
 

ground
 

plane
 

fitting

为了解决上述问题,提出了一种地面分割算法,该算

法旨在从每个扇区环区域集合中有效地删除大规模的垂

直干扰点。 扇区内 z 值大于阈值 zth 的点提取为点集 Pz 。
从 Pz 中选取 n th 个最小 z 值的点作为候选点。 使用主成

分分析(PCA)方法拟合平面,获得单位矢量 (A,B,C) 和

平面方程 Ax + By + Cz + D = 0。 如果单位矢量和 z 轴之

间的角度 θ z 小于阈值 θ th ,则拟合平面为垂直平面。 计

算 Pz 中的每个点到拟合平面的距离 d :

d = | Ax + By + Cz + D |

A2 + B2 + C2
(22)

如果 d 小于阈值 d th ,则该点被视为垂直干扰点,将
其从 Pz 中去除。 重新拟合平面,重复上述过程,直到 θ z

≤ θ th 或 Pz 中的点数小于 n th ,得到移除垂直干扰点后的

扇区点集 P′z 。
去除干扰点后的点集 P′ 重新进行地面平面拟合,计

算每个点到平面的距离 d i ,则:

p i ∈
G i ≤ d th

N i > d th
{ (23)

最后,基于所有上述处理,将点集 P 分为地面点 G 和

非地点 N 。
2. 2　 动态物体去除

　 　 得到去除地面点后的点云集合 N i ( i ∈ 1,…,n) 后,
在后端之前设计一种改进的非地面点动态点云去除算

法,其不依赖于物体的具体类型,而是仅关注物体是否具

有运动特征[20] 。
该方法的核心是通过计算时空法向量来估计每个点

的动态得分。 时空法线是一个包含空间和时间分量的向

量,能够反映点的运动信息。 在一维情况下,时空法线直

接与物体的速度相关,而在更高维的场景中,时空法线的

时间分量表示物体速度在空间法线上的投影。 通过这种

方式,时空法向量能够提供关于物体运动的有效信息。
图 6 所示为存在动态对象的几何数据时空视图,其

中图 6(a)为一维空间图与二维时空图,图 6( b)为二维

空间图,图 6( c)为三维时空图。 红点是动态点,蓝点是

静态点,箭头为法向量。 说明了时空法向量与动态点的

速度之间的关系。 动态点时空法向量的时间分量不为

零,这表明它们随着时间发生了运动;静态点的时间分量

为 0,即法向量不会随时间变化。

图 6　 存在动态对象的几何数据时空视图

Fig. 6　 Spatiotemporal
 

view
 

of
 

geometric
data

 

with
 

dynamic
 

objects

N j
i 表示每一帧非地面点集合中的第 j 个点; t ji 为该

点的时间戳; T j
i 表示该点的近邻点集合; d 为离差,表示

观测与均值的差异。 则 j 点局部协方差为:

Cov ji = 1
‖T j

i‖
∑
pvu∈Tji

DDT (24)

D =
pv
u

tvu

é

ë

ê
ê

ù

û

ú
ú

- 1
‖T j

i‖
∑
pvu∈Tji

pv
u

tvu

é

ë

ê
ê

ù

û

ú
ú

(25)

若 ( f j
i ) min 和 (λ j

i) min ,分别代表 Cov ji 的最小特征向

量和最小特征值,则:
Cov ji·( f j

i ) min = (λ j
i) min·( f j

i ) min (26)
动态得分 s j 定义为与 Cov j 的最小特征值相关的特征

向量的时间分量的绝对值。
对于一个点,低动态分数表示它在三维空间中处于

静止状态或具有非常低的速度,因此根据点的动态分数

将其分类为静态点或动态点。 动态点去除算法如算法伪

代码如下:
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动态点去除算法
1.

 

输入:前端点云集合 P,前端里程计获得的位姿变换 Todo

2.
 

输出:去除动态点后的静态点云集合 Prd

3.
 

初始化:点云数量 n,体素大小 dv ,近邻搜索半径 dr ,动态点阈

值 thr
4.

 

主循环:
5. 　

 

提取地面点 G,提取非地面点 N
6. 　

 

对非地面点体素滤波 Pv
rd

7.
 

　 建立哈希地图 M(2n + 1)
8.

 

　 if
 

size(M) >2n+1
 

then
9. 　 　

 

去除旧的点云数据

10. 　 end
11.

  

建立滑动窗口 M(2n + 1)
12.

  

建立 kd-tree (M)
13.

  

选择最新点云 p = M[n + 1]
14.

  

for　 i = 1:‖p‖
 

do
15.

 

　
 

在 kd-tree 中搜索 pi 近邻点(半径 dr ),时间戳为 ti
16.

 

　
 

计算 scorei(pi,ti,ni )
17.

 

　
 

if
 

scorei < thr
 

then
18.

 

　 　
 

pi → Prd

19.
 

　
 

end
 

if
20.

 

　
 

Prd = G ∪ Prd

21.
 

　
 

return
 

Prd

22.
  

end
 

for

　 　 动态点去除算法首先使用地面分割方法,获得地面

点云集合 G 与非地面点云集合 N 。 然后利用哈希映射

进行体素滤波下采样,体素大小为 dv 。 通过前端的里程

计位姿变换 Todo 将 G 与 N聚合到地图M中。 M为一个滑

动窗口,包含 2n + 1 个点云。 当一个新的点云添加到 M
时,最旧的点云会被移除。 使用M构建一个 kd-tree,通过

查询每个点在第 n + 1 个最新点云中的近邻点(半径为

dr)来计算时空法线。 最后,通过阈值 thr 对时空法线的

时间分量进行处理,从而检测并去除动态点,获得不含有

动态点的静态点云 Prd 。

3　 后端因子图优化

　 　 后端因子图优化的核心是通过最小化所有约束的误

差来优化 SLAM 位姿和地图。 因子图将系统中待优化变

量节点和因子表示为节点,将系统中的约束关系表示为

边。 求解因子图的过程旨在根据各因子的观测数据 Z 来

确定系统状态量 X 的最优值,这等价于求解一个最大后

验概率估计问题:

XMAP =argmax
X

p(X | Z) =argmax
X

∏
i
p i(x i,zi) (27)

将其转化为求解最小二乘问题:

XMAP =argmin
X

∑
i

‖ei(x)‖2
Σ i

(28)

ei(x) = zi - h i(x) (29)
式中: zi 表示观测值; h i(x) 表示预测值; Σ i 为各个因子

的协方差矩阵。
后端因子图优化融合了激光惯导里程计因子、

 

地平

面因子、IMU 以及编码器预积分因子,如图 7 所示。

图 7　 后端基于因子图优化的框架

Fig. 7　 Backend
 

framework
 

based
 

on
 

factor
 

graph
 

optimization

3. 1　 前端里程计因子

　 　 前端历程计通过 IESKF 算法融合激光雷达与 IMU
数据,能够生成高频低精的位姿信息。 然而激光惯导里

程计因子频繁加入因子图进行优化会消耗大量计算资

源,因此采用了关键帧选择策略,从而大大改善了计算效

率并确保算法可以实时运行在较大规模的地图上。 当机

器人当前帧相对于前一个关键帧的位姿变动超出预设的

阈值时,该当前帧即被判定为关键帧 FL
k ,并被纳入滑动

窗口进行处理。
构建的激光惯导里程计因子残差 eL 可表示为:
eL = zk - hL(xk,xk+1) (30)

式中: hL(·) 为机器人状态节点 xk 和 xk+1 之间的相对位

姿变换预测值; zLk 为前端激光惯导里程计量位姿测值。
3. 2　 IMU 和编码器预积分因子

　 　 激光雷达关键帧 FL
k 和 FL

k+1 之间的 IMU 测量方法,根
据 IMU 预积分模型,可得 IMU 里程计残差模型为:

eI =

RIk
W(pW

Ik+1
- pW

Ik
- pW

Ik
Δtk + 1

2
gWΔt2

k) - IpIk
Ik+ 1

RIk
W(vWIk+1

- vWIk + gWΔtk) - IvIkIk+ 1

2[(qW
Ik

) -1 􀱋 qW
Ik+ 1

􀱋 ( IRIk
Ik+ 1

) -1] xyz

bak+!
- bak

bωk+!
- bωk

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
úú

(31)
其中 [pIk

Ik+1
,vIkIk+1

,RIk
Ik+1

] T
xyz

分别为 IMU 预积分获得的

位置、速度、姿态测量值, [·] xyz 为姿态残差的四元数矢

量运算,在实验前离线获得了加速度计和陀螺仪的零偏

以及机器人 IMU-LIDAR 的外部参数标定。
使用轮速里程计增量模型,对运动过程中的关键帧

之间的增量进行预积分,以构成编码器约束因子。 对于

两个连续的雷达关键帧,编码器的预积分残差定义为:

eE =
RIk

W(pW
Ik+1

- pW
Ik

) - EpIk
Ik+ 1

RIk
W(vWIk+1

- vWIk) - EvIkIk+ 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(32)
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其中 [pIk
Ik+1

,vIkIk+1
] T 为轮速编码器预积分的位置与速

度测量值。 这个残差反映了编码器测量得到的增量与

IMU 预积分增量之间的差异。
3. 3　 地平面因子

　 　 利用地面分割方法,对提取到的地平面点集构建地

面约束,优化相邻帧之间的变换以提高位姿估计的准确

性,有效减少 SLAM 高度上的累计误差。 地平面因子残

差定义为:

eG =

RIk
W(pW

z,Ik+1
- pW

z,Ik
) - GpIk

z,Ik+ 1

RIk
W(θW

roll,Ik+1
- θW

roll,Ik
) - Gθ Ik

roll. Ik+ 1

RIk
W(θW

pitch. Ik+1
- θW

pitch,Ik
) - Gθ Ik

pitch. Ik+ 1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(33)

其中 [pIk
z,Ik+1

,θ Ik
roll. Ik+1

,θ Ik
pitch. Ik+1

] T 分别表示根据地平面

点云计算出的帧间 z 轴、横滚和俯仰角增量。
3. 4　 因子图优化

　 　 将式(30) ~ (33)代入式(28)中,得到后端定位问题

因子图优化最小二乘目标函数为:

XMAP =argmin
X

∑
i

‖eL‖
2
Σ
Lk+1
k

+ ‖eI‖
2
Σ
Ik+1
k

+(

‖eE‖2
Σ
Ek+1
k

+ ‖eG‖2
Σ
Gk+1
k

) (34)

式中: Σ (·) 表示每个残差模型的噪声协方差矩阵。 因子

图的优化涉及调整变量值以最大程度地减少因子的残

差,采用 ISAM2 算法[21] 进行求解。 ISAM2 是一种高效的

增量式优化算法,适用于 SLAM 系统中大规模因子图优

化问题,其能够实时更新优化结果而无需重新优化整个

因子图,确保 SLAM 实时性。

4　 实验

　 　 为验证算法有效性,搭载实验车辆在校园环境不同

场景下进行实验分析,评估 SLAM 算法的定位效果以及

动态点云的去除效果。
实验平台如图 8 所示,实验车辆为 Ackerman 底盘的

PIX
 

Moving 无人车,机器人平台配备了两组电动机与轮

速编码器(100
 

Hz),左右车轮间距为 0. 735
 

m。 车辆搭

载 IMU(200
 

Hz)、镭神 C32 激光雷达,采用华测 RTK 传

感器获取的数据作为参考轨迹。
4. 1　 地面点分割与动态物体去除实验

　 　 根据地面点云分割与动态物体去除算法,遥控无人

车在室内和室外环境中分别采集了实验数据,获得了不

同场景下的实验效果。
图 9(a)和(b)所示分别为 LEGO-LOAM 算法和本文

方法在室内外环境下的单帧点云地面分割效果,其中红

色为地面点,绿色为非地面点。 可以看出根据地面分割

图 8　 移动机器人实验平台

Fig. 8　 Mobile
 

robot
 

experiment
 

platform

算法所构建的单帧点云,能清晰的区分出地面点与非地

面点,地面分割效果更好。

图 9　 单帧场景地面分割效果对比图

Fig. 9　 Comparison
 

of
 

single-frame
ground

 

segmentation
 

results

图 10(a)和(b)所示分别为室内外环境中删除动态

点的单帧点云效果。 红色点云代表动态点,而绿色点云

代表静态点。 该方法可以实时检测各种动态物体,包括

行人,运动的电动车等。 针对室内和室外场景,实验结果

表明,所提出的动态物体去除方法能够有效识别并剔除

动态点云。
点云地图能够直观地反映算法建图的整体质量,同

时展示动态物体去除的效果。 图 11 所示分别为 LIO-
SAM、FAST-LIO2、LEGO-LOAM 算法与本文算法在动态

场景中的建图效果,红色区域内存在动态车辆与行人运

动轨迹形成的残影。 这些动态物体的存在会对地图的精

度和一致性产生干扰。
实验结果表明,该动态物体去除方法能够有效识别
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图 10　 单帧动态点云去除效果对比

Fig. 10　 Comparison
 

of
 

single-frame
 

dynamic
point

 

cloud
 

removal
 

results

图 11　 动态点云去除效果对比

Fig. 11　 Comparison
 

of
 

dynamic
 

point
 

cloud
 

removal
 

results

并滤除运动目标,显著减少了点云地图中的行人、车辆等

动态残影,提升了地图的静态性和可靠性,使其更加符合

真实环境的静态结构。
4. 2　 定位结果实验

　 　 为验证本文算法后端因子图优化模块的有效性,在
包含大量动态物体的校园环境中进行了定位与建图实

验,测试场景涵盖室外的上下坡和平地,以及室内的长直

走廊等典型环境。
图 12 所示为 LIO-SAM、FAST-LIO2、LEGO-LOAM 与

本文算法在校园动态场景中的轨迹对比结果。 采用 RTK
数据作为轨迹的真实值,用于评估各 SLAM 算法的定位

精度。 从图 12 中可以观察到,本文算法与轨迹真值的拟

合程度更高,尤其在动态场景和长直路径等退化场景下

表现出更高的定位精度。

图 12　 不同算法轨迹对比

Fig. 12　 Comparison
 

of
 

trajectories
 

from
 

different
 

algorithms

表 1 所示为本文算法的轨迹误差最大值、均值、标准

差和均方根误差方面与 LIO-SAM、 FAST-LIO2、 LEGO-
LOAM 算法的对比,可以看出本文算法定位最大偏差最

小,定位精度更高,误差变动幅度较小。
表 1　 定位误差对比

Table
 

1　 Comparison
 

of
 

localization
 

errors (m)
算法 最大值 平均值 标准差 均方根误差

LEGO-LOAM 8. 168 4. 088 2. 491 4. 451
FAST-LIO2 9. 855 4. 196 2. 437 4. 734
LIO-SAM 6. 245 2. 931 1. 661 3. 737

本文 5. 687 1. 774 1. 205 2. 395

　 　 图 13 所示为本文算法与其他算法在 x、y、z 方向上

的轨迹对比。 可以看出其他激光雷达 SLAM 算法在没有

回环的情况下,z 轴漂移较大。 在后端融入地平面因子约

束优化后,z 轴误差明显小于其他算法,与参考轨迹更接

近。 因此算法中的地面因子可以显着减少环境中的垂直

定位误差。
以上实验结果表明,算法由于进行了前端里程计、动

态点云去除与后端因子图优化,降低了点云匹配产生的

累计误差与 z 轴偏移,累积误差相对于其他算法更低,轨
迹漂移减小,具有较好的轨迹闭合效果。 在动态的室内

外综合场景中,所提算法具有更高的定位精度,能够构建

更精确的静态地图。 图 14 所示为基于所提方法构建的
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点云地图在卫星地图上的映射效果。

图 13　 各轴位移变化曲线

Fig. 13　 Displacement
 

change
 

curve
 

of
 

each
 

axis

图 14　 点云地图在卫星地图的映射

Fig. 14　 Point
 

cloud
 

map
 

mapping
 

to
 

satellite
 

map

5　 结　 论

　 　 本文针对室外大规模动态场景下机器人定位与建图

面临的问题,提出了一种基于多传感器融合的激光雷达

SLAM 算法,并结合实时地面分割与动态点云去除技术,
构建了一个集前端里程计、动态物体识别与去除以及后

端因子图优化的 SLAM 算法。 实验结果表明,所提出的

地平面因子有效地约束了激光雷达 SLAM 中 z 轴定位的

漂移。 动态物体去除方法通过精准识别并剔除运动目

标,显著减少了点云地图中行人、车辆等动态残影,从而

为后续的定位、导航和环境感知提供了更高质量的静态

地图基础。 未来将聚焦于提升动态物体识别的准确性与

实时性,融合语义信息深化环境理解,推动算法在更复杂

多变场景中的适配。
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