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基于多尺度特征融合的轻量化道路损伤检测算法∗

武　 兵　 田　 莹

(辽宁科技大学计算机与软件工程学院　 鞍山　 114000)

摘　 要:为了提高现阶段道路损伤检测方法在复杂环境下检测困难、细节纹理丢失严重、效率低等问题,提出了多尺度特征融合

的轻量化 YOLO 算法(MSL-YOLO)。 首先,在 YOLO11n 的基础上进行改进,针对损伤目标特征表达能力弱,设计特征融合通道

注意力(feature
 

fusion
 

channel
 

attention,FFCA)模块提高损伤信息的权重,加强特征信息的提取,减少冗余信息;为了在复杂环境

下更好地捕捉不同尺寸的损伤目标,设计了一种多尺度特征增强( multi-scale
 

feature
 

enhancement,MSFE)模块提升模型的多尺

度特征融合能力,进一步提高检测性能;为实现模型轻量化和检测实时化,在 Neck 部分引入了轻量级网络( lightweight
 

network,
LNet)来减轻模型的计算复杂度,方便模型的部署和应用。 实验结果表明,在 RDD2022 道路裂缝数据集上,所提方法检测平均

精度为 52. 5%,模型参数量为 2. 3×106 ,相较于 YOLO11n 算法平均精度提升了 1. 8%,参数量下降了 11. 5%。 不仅能满足对道

路损伤检测的高精度、高速度、轻量化的要求,且具有较强的鲁棒性和实时性。
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Abstract:
 

In
 

order
 

to
 

improve
 

the
 

current
 

road
 

damage
 

detection
 

methods
 

in
 

complex
 

environment
 

detection
 

difficulties,
 

serious
 

detail
 

texture
 

loss,
 

low
 

efficiency,
 

a
 

multi-scale
 

feature
 

fusion
 

lightweight
 

YOLO
 

( MSL-YOLO)
 

method
 

is
 

proposed.
 

Firstly,
 

based
 

on
 

the
 

improvement
 

of
 

YOLO11n,
 

the
 

Feature
 

fusion
 

channel
 

attention
 

( FFCA )
 

module
 

is
 

designed
 

to
 

improve
 

the
 

weight
 

of
 

damage
 

information,
 

strengthen
 

the
 

extraction
 

of
 

feature
 

information,
 

and
 

reduce
 

redundant
 

information.
 

In
 

order
 

to
 

better
 

capture
 

damage
 

targets
 

of
 

different
 

sizes
 

in
 

complex
 

environments,
 

a
 

multi-scale
 

feature
 

enhancement
 

( MSFE)
 

module
 

is
 

designed
 

to
 

enhance
 

the
 

multi-scale
 

feature
 

fusion
 

capability
 

of
 

the
 

model
 

and
 

further
 

improve
 

the
 

detection
 

performance.
 

In
 

order
 

to
 

realize
 

the
 

Lightweight
 

model
 

and
 

real-
time

 

detection,
 

lightweight
 

network
 

(LNet)
 

is
 

introduced
 

in
 

Neck
 

to
 

reduce
 

the
 

computational
 

complexity
 

of
 

the
 

model
 

and
 

facilitate
 

the
 

deployment
 

and
 

application
 

of
 

the
 

model.
 

The
 

experimental
 

results
 

show
 

that
 

on
 

the
 

RDD2022
 

road
 

crack
 

dataset,
 

the
 

proposed
 

method
 

has
 

an
 

average
 

detection
 

accuracy
 

of
 

52. 5%,
 

and
 

the
 

number
 

of
 

model
 

parameters
 

is
 

2. 3 × 106 ,
 

which
 

is
 

1. 8%
 

higher
 

than
 

that
 

of
 

YOLO11n
 

algorithm,
 

and
 

the
 

number
 

of
 

parameters
 

is
 

11. 5%
 

lower.
 

It
 

can
 

not
 

only
 

meet
 

the
 

requirements
 

of
 

high
 

precision,
 

high
 

speed
 

and
 

lightweight
 

for
 

road
 

damage
 

detection,
 

but
 

also
 

has
 

strong
 

robustness
 

and
 

real-time.
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0　 引　 言

　 　 道路是交通基础设施的重要组成部分,承载着社会

进步与经济建设的重要使命。 随着车流量和使用年限的

增加,以及受到雨雪天气和昼夜温差变化等多种因素的

影响,许多道路面临着不同程度的损伤问题,如变形、裂
缝、沉陷等。 这些损伤不仅增加了交通事故的风险,还对
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交通效率和经济发展造成了不利影响。 因此,及时且有

效的道路损伤检测与维护已成为交通管理部门面临的重

要挑战。
传统的道路损伤检测长期以人工巡检为主,通过人

工对路面进行视觉检查和记录道路损伤。 光学成像设备

的优化后,图像采集加人工标注成为主流,通过车载摄像

头连续拍摄高清路面图像,后期再由人工在图像中标记

损坏位置和类型。 以上方式耗时耗力且检测结果往往受

主观因素的影响,缺乏一致性,已无法满足当下日益增长

的检测需求。 近年来,计算机视觉快速发展,基于深度学

习的自动化检测技术使损伤目标识别的准确性和效率得

到了显著提升。
基于深度学习的目标检测技术[1] 分为 two-stage 检测

算法和 one-stage 检测算法。 two-stage 检测算法是基于候

选区域进行目标的分类与回归,代表算法有 R-CNN[2] 、
Fast

 

R-CNN[3] 、Faster
 

R-CNN[4] ,U-net[5] 等。 于海洋等[6]

提出了一种基于卷积块注意力模块(CBAM)机制和残差

网络的 U-net 改进模型,高效提取了更多道路裂缝的细

节信息,提高了检测能力。 Sekar 等[7] 在 Faster
 

R-CNN 网

络上面结合了全局平均池化和感兴趣区域对齐的方式,
减少了关键裂缝信息丢失的问题。 然而这类检测方法过

于依赖候选区域的生成,如果生成的候选区域不准确或

不全面,后续的分类和回归结果会受到影响。 在复杂场

景中,背景噪声、遮挡、部分目标的缺失等因素会降低候

选区域质量导致检测性能下降。 one-stage 检测算法是直

接在图像中同时进行目标检测和分类, 代表算法有

SSD[8] ( single
 

shot
 

multibox
 

detector ) 算 法 和

YOLO[9-12](you
 

only
 

look
 

once) 算法。 在目标检测任务

中,YOLO 系列模型具有较快的检测速度,较高检测精度

和广泛的应用场景,能够快速且精准的识别图像中的物

体。 任安虎等[13] 提出了改进 YOLOv5s 的裂缝检测算法,
将深度可分离卷积结合到全局注意力( global

 

attention
 

mechanism,
 

GAM)后引入主干网络,在降低注意力复杂

度的同时获得更丰富的特征信息,增强了模型对裂缝的

识别能力,然而该模型参数量和计算量增加较多,推理速

度下降,难于满足当下道路检测的实时性需求。 李松

等[14] 在 YOLOv8 的基础上使用 Ghost 模块重构 C2f 模

块,结合注意力机制和全局特征信息提取模块来适应裂

缝目标的大跨度和细长特征,该算法具有较小的模型体

积和较低的计算成本,但对细小曲折的裂缝检测精度

较低。
与传统道路损伤检测方法相比,上述道路损伤检测

算法在检测性能上有了较大的提升,但是上述算法模型

架构相对复杂,较大的计算量和参数量增加了计算成本

以及内存消耗,推理速度较慢,不利于模型的部署和应

用。 并且忽略了深层特征与浅层特征的内部联系。 针对

道路损伤的形状、大小、方向和深度具有高度多样性,损
伤裂缝与道路边界模糊以及光照条件和天气变化等复杂

环境下对损伤目标产生的影响导致检测精度较低和计算

资源消耗高的问题。 以 YOLO11n 算法作为基础进行改

进,提出了一种多尺度特征融合的轻量化 YOLO 算

法(multi-scale
 

lightweight
 

you
 

only
 

look
 

once,
 

MSL-
YOLO)。

针对损伤目标的在背景干扰下导致部分细节信息丢

失和特征表达能力不足的问题,本文设计了一种特征融

合通道注意力( feature
 

fusion
 

channel
 

attention,FFCA) 模

块提取重要特征信息,提高检测精度。 为能够更精确地

在复杂环境下捕捉不同大小和形状的裂缝,设计了一种

多尺度特征增强( multi-scale
 

feature
 

enhancement,MSFE)
模块提供更为丰富和细致的多尺度特征信息。 为实现模

型轻量化和实时化,在保持检测精度的前提下 Neck 部分

引入了轻量级网络( lightweight
 

network,LNet) 以减轻模

型的复杂度。
在 YOLO11n 算法基础上改进的新模型,能显著的降

低检测过程中的计算复杂度,实现更加轻量化的设计。
同时,建立了各个尺度特征的内部联系,增强对多尺度目

标特征的聚焦,提高检测性能和效率。

1　 YOLO11 模型

　 　 YOLO11[15] 是 Ultralytics 团队[16] 在 2024 年提出的实

时目标检测算法,相较于其他主流算法,YOLO11 算法检

测精度更高,速度更快。 该算法按规格大小分为 n、s、m、
l、x

 

5 种模型,YOLO11 模型的网络结构主要分为 4 部分,
Input、Backbone、Neck 和 Head 部分。 其中 Input 为图像

输入层, 对图像进行数据增强等数据预处理操作;
Backbone 为特征提取层,负责提取输入图像的特征。 主

要由卷积模块(Conv)、特征提取模块( C3k2)、空间金字

塔池化模块(spatial
 

pyramid
 

pooling-faster,
 

SPPF)和具有

并行空间注意的卷积块(C2PSA)组成;Neck 为特征融合

层,通过特征金字塔或上采样操作对来自 Backbone 的特

征进一步提炼与整合;Head 为输出层,由 3 个不同尺度

的检测头组成,分别用于大、中、小目标的最终预测和分

类标签。

2　 MSL-YOLO 检测模型

　 　 MSL-YOLO 模型网络结构如图 1 所示,在 Neck 部分

通过 FFCA 模块动态调整通道权重,丰富特征详细信息,
增强对目标特征的聚焦;使用 MSFE 模块实现 P2、P3 和

P4 特征层的特征融合,将网络传输中的浅层细节特征和

深层抽象特征相融合,增强模型的多尺度特征融合能力,
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进一步提升模型检测精度;在 YOLO11n 的 Neck 基础上

设计了 LNet,其中 GSconv[17] 通过常规卷积和深度卷积组

合的方式,实现轻量化网络结构,提高网络检测速度。

图 1　 MSL-YOLO 模型结构

Fig. 1　 MSL-YOLO
 

model
 

structure
 

diagram

2. 1　 FFCA 模块

　 　 卷积神经网络在提取特征的过程中随着网络层次的

增加常常伴随着目标的细节丢失,缺乏对细节的敏感性,
常规的特征融合机制[18] 仅通过小尺寸特征图线性上采

样后拼接到上一层特征上进行特征融合,忽略了浅层大

尺寸特征图具有的详细信息,设计了多层特征信息融合

后在通道编码的 FFCA,将多层特征融合后的特征图通过

增加通道注意力机制能够帮助模型更好地从数据中提取

有价值的特征。 FFCA 模块结构如图 2 所示。
为了帮助模型更好的理解上下文信息和细节,将多

层特征进行融合,首先调整特征通道的大小,对 P3 层特

征图 F3 进行全局平均池化和最大池化操作相结合的方

式进行下采样,调整特征图尺寸为 1S,可以提取全局上

下文信息,以保留高分辨率特征的多样性;将 P5 层特征

图 F5 进行的最近临插值方法调整尺寸为 1S,保证特征图

在上采样的过程中局部特征的丰富性;然后将 P3 和 P5
得到的特征图在通道上与 P4 层特征拼 F4 接生成尺寸为

1S 通道为 3C 的新特征图 F′ 。 然后对新特征图通过通

道级全局平均池化操作减少空间维度,保留重要特征信

图 2　 FFCA 模型结构

Fig. 2　 FFCA
 

model
 

structure
 

diagram

息,使用 1D 卷积可以在较大通道数的特征层中更好地捕

获局部跨通道交互,有效捕捉输入序列中的局部特征。
考虑到模型能够突出显著特征,避免重要信息的损失,最
后将 sigmoid 函数生成的通道重要性权重应用于经过最

大池化后的拼接特征图。 FFCA 可以通过式(1) ~ (4)将

损伤表面的细节信息进行有效的提取和整合。
F3′ = MaxPool(F3) + AvgPool(F3) (1)
F5′ = Nearest(F5) (2)
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F′ = Concat(F3′,F4,F5′) (3)
F = Sigmoid(Conv1d(AvgPool(F′))) × MaxPool(F′)

(4)
式中: F3、F4 和 F5 分别代表 P3、P4 和 P5 层的特征图;
Concat() 表示拼接; F′ 由 F3、F4 和 F5 拼接得到; F′ 和
F4 具有相同的尺寸,但通道数是 F4 的 3 倍; Sigmoid( )
表示激活函数; Conv1d() 表示一维卷积; MaxPool( ) 和

AvgPool() 分别表示全局最大池化和全局平均池化;
Nearest() 表示最近临插值; F 表示最终的输出特征。
2. 2　 MSFE 模块

　 　 特征提取过程中浅层网络更关注局部低级特征,比
如损伤目标的边缘和纹理信息等,但在复杂环境下特征

的表达能力较弱,在深层网络中更倾向于提取抽象的全

局语义特征,无法捕捉到细致的浅层目标局部特征,在最

终的检测中容易导致细小裂缝的漏检或误检。 受 3D 卷

积操作在视频数据连续帧中可以通过更少的层数提取更

复杂特征的启发,为了提高复杂环境下多尺度目标的检

测精度,将不同尺度的特征图在 P3 层融合,通过 3D 卷

积提取特征。 设计的 MSFE 模块如图 3 所示。
首先使用轻量级的卷积模块 GSConv 调整特征通道

数,对浅层特征图 P2 进行池化组合调整尺寸为 H×W,对
深层特征图 P4 使用最近邻插值法调整尺寸为 H×W,使
用 unsqueeze 方法增加每个特征图的维度为 1×H×W,然
后在深度维度上将 P2、P3、P4 水平堆叠形成一个新的

3D 特征图,使用 3D 卷积,批量归一化和 ReLU 激活函数

完成多尺度特征信息的融合和提取,最后通过最大池化

操作进一步提炼这些特征,再使用 squeeze 方法降维后生

成输出特征图 P3′。

图 3　 MSFE 模型结构

Fig. 3　 MSFE
 

model
 

structure
 

diagram

　 　 该模块通过独特的三维卷积策略,有效的将浅层目

标的细致特征与深层目标的抽象特征相融合,增强对全

局上下文的理解,捕捉更多的重要特征,提高了模型在处

理多尺度问题时的性能,尤其是在复杂环境下的检测场

景,能够更精确地捕捉不同大小和形状的裂缝损伤。
2. 3　 轻量级网络

　 　 1)GSConv
尽管 YOLO11n 模型的计算量与参数量相较之前版

本的模型已有了明显的减少,为实现更快的推理速度,达
到检测实时化的目标,方便下一步在移动设备和嵌入式

系统中运行, 因此在 Neck 部分引入了轻量级卷积

GSConv 来减轻模型复杂度并保持检测准确性。
GSConv 结构如图 4 所示,首先对输入特征图使用常

规卷积进行下采样,然后使用 DWConv[19] 深度卷积生成

另一个特征图,最后将两个不同卷积生成的特征拼接后

使用 shuffle 混洗这种均匀混合策略,将常规卷积生成的

信息渗透到 DWConv 生成的所有信息中,生成最终特征

图。 GSConv 卷积特征提取能力与传统卷积相仿,但是计

算量仅为传统卷积的 1 / 2 左右, 更符合轻量化设计

理念[20] 。

图 4　 GSConv 模型结构

Fig. 4　 GSConv
 

model
 

structure
 

diagram

在常规卷积中,假设使用的卷积核为 K × K 卷积生

成的计算量为 S1;常见的轻量化 DWConv 深度卷积针对

每个输入通道使用单独的卷积核进行卷积操作,其计算

量为 S2;将常规卷积核与深度卷积结合的 GSConv 的计

算量为 S3;GSConv 产生的计算量远小于常规卷积产生的

计算量,其计算公式如下:
S1 = H × W × K × K × C1 × C2 (5)
S2 = H × W × K × K × C1 (6)
S3 = H × W × K × K × C2 × (C1 + 1) / 2 (7)

式中: H 和 W 为输入特征图的高度和宽度; C1 为输入特
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征图的通道数; C2 为输出特征图的通道数。
2)C3k2-GS
特征提取模块 C3k2 在浅层网络中 C3k 参数为

False,该模块将直接调用常规的瓶颈结构 Bottleneck 提

取特征,使用了适应性较强的轻量级卷积 GSConv 设计了

Bottleneck-GS 模块代替 C3k2 的 Bottleneck,Bottleneck-GS
模块由 2 层 GSConv 顺序连接,如图 5 所示。

图 5　 Bottleneck-GS 模型结构

Fig. 5　 Bottleneck-GS
 

model
 

structure
 

diagram

由卷积层 Conv、分离层 Split 和 Bottleneck-GS 组成的

全新 C3k2-GS
 

C3k = False 模块如图 6 所示。

图 6　 C3k2-GS
 

C3k = False 模型结构

Fig. 6　 C3k2-GS
 

C3k = False
 

model
 

structure
 

diagram

特征提取模块 C3k2 在深层网络中 C3k 参数为

True,模块调用多尺度可调整大小的 C3k 模块,其中 C3k
模块在使用 Bottleneck 的同时结合了更大的卷积核,扩展

了模型的感受野,能够捕捉到更广泛的上下文信息,尤其

适合大目标检测和复杂多变的场景。 使用 Bottleneck-GS
模块构建了 C3k-GS 模块以及 C3k2-GS

 

C3k = True 模块

如图 7 所示。

图 7　 C3k2-GS
 

C3k = True 模型结构

Fig. 7　 C3k2-GS
 

C3k = True
 

model
 

structure
 

diagram

模型在 Neck 部分使用 GSConv 和 C3k2-GS 组合而成

的轻量化网络 LNet 能够在不同尺度上对输入特征图进

行高效率采样,既能实现了更加轻量化的设计,又能有效

的提取特征信息。

3　 实验结果与分析

3. 1　 实验环境及参数

　 　 实 验 使 用 Windows
 

10 版 本 的 服 务 器, 搭 载 着

NVIDIA
 

GeForce
 

RTX
 

4070ti 显存大小为 32
 

GB 的显卡。
编程语言为 Python3. 9. 18, Pytorch 版本为 1. 13, 采用

CUDA
 

11. 7 对训练进行加速,输入图像尺寸设置为 640×
640,训练周期 epoch 为 150 轮,批量大小 batchsize 为 16,
在 140 轮后关闭数据 mosaic 增强。
3. 2　 实验数据集

　 　 实验数据集采用了多国道路损伤图像数据集

RDD2022[21] ,由印度理工学院罗凯里分校交通系统中

心等机构创建,被使用于基于 Crowdsensing 的道路损坏

检测挑战赛。 该数据集包含来自 6 个国家的 47
 

420 张

道路图像,标注了超过 55
 

000 个道路损伤实例,数据集

中捕获了 4 种类型的道路损伤,纵向裂纹( D00) 、横向

裂纹( D10) 、交叉裂缝( D20) 和坑洞( D40) ,旨在通过

深度学习方法自动检测和分类道路损伤。 由于计算资

源有限,部分国家图像尺寸较大,难以用于训练,在该

数据集中清洗出了 Japan 所有带标签的图像共 8
 

900
张,并按照 7 ∶ 1 ∶ 2 的比例随机划分为训练集( 5

 

530
张图像) 、验证集 ( 800 张图像) 和测试集 ( 1

 

570 张

图像) 。
3. 3　 实验评估指标

　 　 评估目标检测实验有效性的主要指标包括精准率

(precision,P)、召回率( recall,R)、平均精度均值( mean
 

average
 

precision,
 

mAP )、 参数量 ( Params ) 和计 算 量

(GFLOPs)。 计算公式如下:
P = TP / (TP + FP) (8)
R = TP / (TP + FN) (9)

mAP = 1
n ∑

n

i = 1
∫1

0
P(R)dR (10)

式中:TP 为检测结果中正确目标的数量;FP 为检测结果

中错误目标的数量;FN 分别为检测结果中缺失目标的

数量。
3. 4　 实验结果与分析

　 　 1)特征融合通道注意力对比试验

在实验过程中,将提出的通道注意力对特征融合前

后的特征图进行对比试验,分别为单独的 P4 层特征图,
常规 FPN 特征融合操作中的 P5 层上采样拼接到 P4 层

的特征图和本文提出的 P3、P4、P5 相融合的特征图。 实

验结果如表 1 所示(加粗表示此项评价指标中的最优值,
下同),仅对 P4 层进行通道注意力操作后,各个标签的

检测精度都有轻微的上涨,mAP @ 0. 5 上涨了 0. 3%;P4
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和 P5 层融合的通道注意力操作后,其中 D40 标签有了

明显的上涨,为 1. 1%。 mAP@ 0. 5 和 mAP@ 0. 5:0. 95 上

涨幅度较小;提出的方法进一步融合了浅层细节特征信

息,D00、 D10 和 D20 等裂缝的检测精度分别提高了

0. 9%,0. 7%和 1. 0%。 mAP@ 0. 5 和 mAP@ 0. 5:0. 95 提

高了 0. 9%和 0. 3%。
表 1　 特征融合通道注意力对比试验

Table
 

1　 Feature
 

fusion
 

channel
 

attention
 

comparison
 

test (%)
算法 D00 D10 D20 D40 mAP@ 0. 5 mAP@ 0. 5:0. 95

YOLO11 46. 6 45. 5 63. 6 52. 4 50. 7 21. 9
P4 46. 8 45. 6 64. 0 52. 9 51. 0 21. 9

P4+P5 47. 0 45. 9 64. 0 53. 5 51. 2 22. 0
P3+P4+P5 47. 5 46. 2 64. 6 53. 6 51. 6 22. 2

　 　 2)多种卷积对比实验

在 Neck 部分进行了轻量化卷积对比试验,实验过程

中,将常规卷积和 DWConv 深度卷积分别放到 GSConv 同

样的位置进行对比,实验结果如表 2 所示。
表 2　 多种卷积对比实验

Table
 

2　 Multiple
 

convolution
 

contrast
 

experiments

算法
mAP@ 0. 5 /

%
mAP@ 0. 5:

0. 95 / %
Params /

( ×106 )
计算量 /
GFLOPs

Conv 50. 7 21. 9 2. 6 6. 5
DWConv 50. 4 21. 8 2. 3 6. 0
GSConv 50. 8 21. 9 2. 4 6. 2

　 　 从表 2 可以看出,YOLO11 模型网络 Neck 部分的常

规卷积替换为 DWConv 后,参数量与计算量有明显的减

少,但 DWConv 在每个通道使用单独卷积核进行卷积操

作导致精度下降明显;而常规卷积与 DWConv 结合的

GSConv 相较于常规卷积,不但使检测精度有微小的提

升,而且降低了模型的计算成本,更好的平衡了模型的准

确性和检测速度。
3)轻量级网络不同位置对比实验

在不影响检测精度的同时,更好的满足网络模型的

网络轻量化,检测实时化,将 GSConv 和 C3k2-GS 组合的

轻量级网络 LNet 分别替换 Backbone 和 Neck 的 Conv 和

C3k2 模块进行对比实验,实验结果如表 3 所示。

表 3　 轻量级网络不同位置对比实验

Table
 

3　 Lightweight
 

network
 

different
position

 

comparison
 

experiment

算法
mAP@ 0. 5 /

%
mAP@ 0. 5:

0. 95 / %
Params /

( ×106 )
计算量 /
GFLOPs

YOLO11n 50. 7 21. 9 2. 6 6. 5
Backbone 50. 3 21. 5 2. 0 4. 8

Neck 50. 7 21. 8 2. 1 5. 3

　 　 从表 3 可以看出,在 Backbone 中使用轻量级网络

LNet 时,参数量和计算量有明显的下降,但由于输入图

像的空间信息在 Backbone 中正在逐步向通道传输,常规

卷积的密集卷积计算最大限度的保留了每个通道之间的

连接,而 GSConv 的稀疏卷积操作导致空间信息的丢失,
导致最终检测精度下降明显。 在 Neck 中使用 LNet 时,
Neck 部分网络通道维度已经达到最大,稀疏卷积操作对

通道影响最小,模型参数量与计算量下降的同时准确性

非常接近原始模型。 因此在 Neck 部分使用 LNet 能有效

提取特征信息的同时实现更加轻量化的设计。
4)消融实验

为了直观地体现各模块对网络模型性能的影响,验
证提出的模块对算法改进的有效性,即在 YOLO11 n 网

络模型上添加 FFCA 模块和 MSFE 模块以及在 Neck 中

用使用 LNet,进行了 7 组消融实验,其结果如表 4 所示。
表 4　 消融实验结果

Table
 

4　 Result
 

of
 

ablation
 

experiment
YOLO11n FFCA MSFE LNet mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Params / ( ×106 ) 计算量 / GFLOPs

√ 50. 7 21. 9 2. 6 6. 5
√ √ 51. 6 22. 2 2. 6 6. 6
√ √ 51. 5 22. 1 2. 7 6. 7
√ √ 50. 7 22. 0 2. 1 5. 3
√ √ √ 52. 4 22. 7 2. 8 6. 8
√ √ √ 52. 1 22. 3 2. 2 5. 5
√ √ √ √ 52. 5 22. 8 2. 3 5. 7

　 　 由表 4 可以看出,模型添加 FFCA 模块后平均检测

精度 mAP@ 0. 5 从 50. 7%提升至 51. 6%,与此同时,模型

的推理速度几乎没有造成太多的不良影响;添加 MSFE
模块后,多尺度特征融合后使用 3D 卷积提炼特征信息,
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由于 3D 卷积需要处理更多维度的信息,该模块导致模型

计算量的增加,但 mAP@ 0. 5 从 50. 7%提升至 51. 5%;使
用 LNet 后,模型的精度保持不变,参数量和计算量分别

下降 19. 2%和 18. 4%。 综合以上实验,同时使用 FFCA
模块,MSFE 模块和 LNet 模块,经过 150 轮迭代训练,最
后得到的 MSL-YOLO 模型 mAP@ 0. 5 提升了 1. 8%,参数

量和计算量下降了 11. 5%和 12. 3%,在提升精度的同时

满足了模型的轻量化。
5)可视化分析

为了更直观验证 MSL-YOLO 模型的损伤检测效果,
选取 RDD2022 数据集部分图片进行对比实验,结果如图

8、9 所示。 图 8 为环境较为单一下的检测对比实验,图 9
为环境复杂下的检测对比实验,图 8( a)和 9( a)为数据

集原始图,图 8( b)和 9( b)为 YOLO11n 模型检测结果,
图 8(c)和 9(c)为 MSL-YOLO 模型检测结果。

图 8　 单一环境对比

Fig. 8　 Comparison
 

diagram
 

of
 

a
 

single
 

environmental

图 8 中道路环境单一,由于 YOLO11n 模型方法在下

采样时会丢失大量的细节信息,在 D10 和 D20 目标上有

明显的漏检,改进后的模型保留了大量细节信息,检测精

度更高的同时解决了漏检的问题。 图 9 中道路环境相对

复杂,光照,阴影等客观条件对损伤目标特征识别造成了

巨大的困扰,图中明显的看到 YOLO11n 模型的检测精度

低,目标捕捉困难导致漏检率高,经过改进的 MSL-YOLO
模型融合多尺度信息后大幅减少了漏检的问题。

精度-召回率曲线可以直观看出模型对所有标签类

别的平均精度的影响,精度-召回率曲线下方围成的面积

即精度值,通常根据曲线下方面积大小进行实验比较,图
10 所示为 YOLO11n 与 MSL-YOLO 的精度-召回率曲线

对比,图 10(a)为 YOLO11n 模型的精度-召回率曲线,图
10(b) 为 MSL-YOLO 的精度-召回率曲线,明显的看出

MSL-YOLO 的精度-召回率曲线下方面积更大,综合考虑

召回率和准确率的情况下,MSL-YOLO 模型的性能优于

YOLO11n。

图 9　 复杂环境对比

Fig. 9　 Comparison
 

diagram
 

of
 

complex
 

environment

图 10　 PR 曲线对比图

Fig. 10　 PR
 

curve
 

comparison
 

chart

6)对比实验

表 5 为 MSL-YOLO 模型与多种现有方法的比较,包
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括单阶段检测算法中其他经典 YOLO 算法,两阶段检测

算法中的 Faster-FCNN 算法和基于 Transformer[22] 架构的

计算机视觉模型 Swin
 

Transformer 算法等。

表 5　 对比实验结果

Table
 

5　 Result
 

of
 

comparative
 

experiment

算法 mAP@ 0. 5 / % mAP@ 0. 5:
0. 95 / %

Params /
( ×106 )

计算量 /
GFLOPs

Faster-RCNN 47. 7 19. 7 137. 5 370. 3
YOLOv5s 47. 6 19. 9 7. 0 16. 0

YOLOv7tiny 48. 4 20. 4 6. 0 13. 2
YOLOv8n 50. 1 21. 0 3. 0 8. 2
YOLOv9s 50. 2 21. 0 7. 9 28. 1

YOLOv10n 50. 4 21. 6 2. 8 8. 4
YOLO11n 50. 7 21. 9 2. 6 6. 5
RT-DETR 50. 7 22. 0 20. 1 58. 3

Swin
 

Transformer 50. 8 22. 1 96. 8 17. 1
MSL-YOLO 52. 5 22. 8 2. 3 5. 7

　 　 结果表明,相较于 Faster-FCNN 算法,MSL-YOLO 模

型参数量和计算量更少,mAP @ 0. 5 和 mAP @ 0. 5:0. 95
指标上分别提高了 4. 8%和 3. 1%,相较于 one-stage 检测

算 法 中 轻 量 级 YOLOv5s、 YOLOv7tiny、 YOLOv8n、

YOLOv9s、YOLOv10n 和 YOLO11n 算法,MSL-YOLO 模型

在参数量和计算量更少的情况下 mAP@ 0. 5 分别提高了

4. 9%、4. 1%、 2. 4%、 2. 3%、 2. 1% 和 1. 8%, mAP @ 0. 5:
0. 95 分别提高了 2. 9%、 2. 4%、 1. 8%、 1. 8%、 1. 2% 和

0. 9%。 相较于 Swin
 

Transformer 算法和 RT-DETR[23] 算

法,MSL-YOLO 模型精度更高的同时模型体积远远小于

以上两种模型。 综上所述,改进后的算法提高检测精度

的同时具有更少的参数量和实时的检测速度,使用成本

更低,具有高效性和优越性。
7)泛化实验

为了评估提出的 MSL-YOLO 模型在实际应用中的性

能,另选道路损伤数据集 Road
 

Damage 进行泛化实验,实
验结果如表 6 所示。 该数据集是使用手机拍摄的 3

 

321
张道路损伤图像,其标签分类与 RDD2022 数据集一致。
实验环境和配置采用 3. 1 节所用环境,经过 150 轮训练

后, MSL-YOLO 模型与 YOLO11n 相比, mAP @ 0. 5 和

mAP@ 0. 5:0. 95 分别提升了 1. 4%和 1. 6%,参数量和计

算量均有所减少,在提高检测精度的同时依旧达到了轻

量化模型。 综上实验,MSL-YOLO 模型具有一定的泛化

能力。

表 6　 泛化能力实验

Table
 

6　 Result
 

of
 

generalization
 

ability
 

experiment
算法 D00 / % D10 / % D20 / % D40 / % mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Params / ( ×106 ) 计算量 / GFLOPs

YOLO11 47. 9 46. 3 63. 8 52. 9 52. 2 22. 5 2. 6 6. 5
MSL-YOLO 48. 5 46. 9 64. 8 54. 2 53. 6 24. 1 2. 3 5. 6

4　 结　 论

　 　 根据当前道路损伤检测方法精度高、速度快、易部署

的要求,提出了一种多尺度特征融合的轻量化道路损伤

检测方法 MSL-YOLO。 针对道路损伤目标的在背景干扰

下细节信息丢失,特征表达能力不足,提出了特征融合通

道注意力 FFCA 模块提高损伤信息的权重,抑制复杂背

景信息的干扰,增强模型提取损伤特征的能力;通过设计

多尺度特征增强 MSFE 模块使模型能够在复杂环境下更

好的捕捉损伤目标,进一步提高道路损伤检测性能;通过

引入轻量级网络 LNet,使模型提高检测效率,实现轻量化

和实时化。 实验结果表明,在道路损伤数据集 RDD2022
上,mAP@ 0. 5 和 mAP@ 0. 5:0. 95 分别达到了 52. 5%和

22. 8%,相较于 YOLO11n,分别提高了 1. 8%和 0. 9%,参
数量和计算量下降了 11. 5%和 12. 3%。 基本满足了道路

损伤检测的要求。
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