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Lightweight road damage detection algorithm based
on multi-scale feature fusion

Wu Bing Tian Ying

(School of Computer and Software Engineering, University of Science and Technology Liaoning, Anshan 114000, China)

Abstract: In order to improve the current road damage detection methods in complex environment detection difficulties, serious detail
texture loss, low efficiency, a multi-scale feature fusion lightweight YOLO ( MSL-YOLO) method is proposed. Firstly, based on the
improvement of YOLO11ln, the Feature fusion channel attention ( FFCA) module is designed to improve the weight of damage
information, strengthen the extraction of feature information, and reduce redundant information. In order to better capture damage targets
of different sizes in complex environments, a multi-scale feature enhancement ( MSFE) module is designed to enhance the multi-scale
feature fusion capability of the model and further improve the detection performance. In order to realize the Lightweight model and real-
time detection, lightweight network (LNet) is introduced in Neck to reduce the computational complexity of the model and facilitate the
deployment and application of the model. The experimental results show that on the RDD2022 road crack dataset, the proposed method
has an average detection accuracy of 52.5%, and the number of model parameters is 2.3x 10, which is 1. 8% higher than that of
YOLOI11n algorithm, and the number of parameters is 11. 5% lower. It can not only meet the requirements of high precision, high speed
and lightweight for road damage detection, but also has strong robustness and real-time.
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Table 1 Feature fusion channel attention comparison test (%)
Bk D00 D10 D20 D40 mAP@ 0. 5 mAP@ 0. 5.0. 95
YOLO11 46.6 45.5 63.6 52.4 50.7 21.9
P4 46.8 45.6 64.0 52.9 51.0 21.9
P4+P5 47.0 45.9 64.0 53.5 51.2 22.0
P3+P4+P5 47.5 46.2 64. 6 53.6 51.6 22.2
2) ZF GRS TS *3 BEZMEAREMCEILLER

#E Neck #4477 R BB BT LIRS, 525030
KR RS R AT DW Conv VR4 Bl 3 GSCony [F]
FERAL B AT HE, SERR A R 3% 2 TR,

®2 SWHEMXLLE

Table 2 Multiple convolution contrast experiments

. mAP@0.5/ mAP@O0.5; Params/ T
Sk % 0.95/% (x10%) GFLOPs
Convy 50.7 21.9 2.6 6.5

DWConv 50. 4 21.8 2.3 6.0
GSConv 50.8 21.9 2.4 6.2
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Table 3 Lightweight network different

position comparison experiment

. mAP@0.5/ mAP@O.5; Params/ AR

Sk % 0.95/% (x10%) GFLOPs
YOLO11n 50.7 21.9 2.6 6.5
Backbone 50.3 21.5 2.0 4.8
Neck 50.7 21.8 2.1 5.3
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Table 4 Result of ablation experiment

YOLO11n FFCA MSFE LNet mAP@ 0. 5/% mAP@0.5.0.95/% Params/ ( x10%) 115/ GFLOPs
Vv 50.7 21.9 2.6 6.5
vV vV 51.6 22.2 2.6 6.6
Vv 51.5 22.1 2.7 6.7
2 vV 50.7 22.0 2.1 5.3
vV VvV VvV 52.4 22.7 2.8 6.8
vV VvV VvV 52.1 22.3 2.2 5.5
vV 2 vV 52.5 22.8 2.3 5.7
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Table 5 Result of comparative experiment

‘ mAP@O0.5;  Params/ [P/
=ReS mAP@0.5/% T (x10%) Jff(is
Faster-RCNN 47.7 19.7 137.5 370.3
YOLOv5s 47.6 19.9 7.0 16.0
YOLOv7tiny 48.4 20.4 6.0 13.2
YOLOv8n 50.1 21.0 3.0 8.2
YOLOv9s 50.2 21.0 7.9 28.1
YOLOv10n 50.4 21.6 2.8 8.4
YOLOI1n 50.7 21.9 2.6 6.5
RT-DETR 50.7 22.0 20.1 58.3
Swin Transformer 50.8 22.1 96. 8 17.1
MSL-YOLO 52.5 22.8 2.3 5.7
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Table 6 Result of generalization ability experiment

RS D00/ % D10/ % D20/ % D40/%  mAP@0.5/% mAP@0.5:0.95/%  Params/(x10°)  11%5i/GFLOPs
YOLOI11 47.9 46.3 63.8 52.9 52.2 22.5 2.6 6.5
MSL-YOLO 48.5 46.9 64.8 54.2 53.6 24.1 2.3 5.6
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