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摘　 要:为了提升无人飞行器(UAV)在三维环境中对气味源的定位能力,提出了一种改进麻雀搜索算法(CE-SSA)。 该算法通

过引入精英策略、拥挤因子和莱维飞行扰动机制,增强了搜索能力并有效避免了陷入局部最优。 实验中,模拟了三维空间中气

味羽流的扩散,并将 CE-SSA 与经典粒子群算法(PSO)和原始麻雀搜索算法(SSA)进行了对比。 结果表明,在单个无人机的情

况下,CE-SSA 的定位误差比传统算法降低了 98%以上,定位成功率提高了 56%以上;当无人机数量达到 4 架及以上时,定位误

差稳定在 0. 2
 

m 以下,成功率为 100%。 此外,CE-SSA 在不同气味羽流特征下展现了较强的鲁棒性,能够应对复杂的环境变化。
研究表明,CE-SSA 不仅在提升定位精度和成功率方面具有显著优势,而且为无人机在复杂环境中的气味源追踪技术提供了可

靠的解决方案。 该研究不仅为主动嗅觉技术发展做出了贡献,也突显了无人机在复杂场景中进行气味源追踪的潜力。
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Abstract:
 

In
 

order
 

to
 

enhance
 

the
 

odor
 

source
 

localization
 

capability
 

of
 

unmanned
 

aerial
 

vehicles
 

( UAVs)
 

in
 

three-dimensional
 

environments,
 

a
 

crowding
 

factor-elitist
 

strategy
 

improved
 

sparrow
 

search
 

algorithm
 

( CE-SSA)
 

is
 

proposed.
 

This
 

algorithm
 

incorporates
 

elite
 

strategy,
 

crowding
 

factor,
 

and
 

L􀆧vy
 

flight
 

perturbation
 

mechanisms
 

to
 

improve
 

search
 

capability
 

and
 

effectively
 

avoid
 

local
 

optima.
 

In
 

the
 

experiments,
 

the
 

diffusion
 

of
 

the
 

odor
 

plume
 

in
 

a
 

3D
 

space
 

was
 

simulated,
 

and
 

the
 

performance
 

of
 

CE-SSA
 

was
 

compared
 

with
 

that
 

of
 

the
 

classical
 

particle
 

swarm
 

optimization
 

(PSO)
 

and
 

the
 

original
 

sparrow
 

search
 

algorithm
 

(SSA).
 

The
 

results
 

show
 

that,
 

in
 

the
 

case
 

of
 

a
 

single
 

UAV,
 

CE-SSA
 

reduces
 

localization
 

error
 

by
 

over
 

98%
 

compared
 

to
 

traditional
 

algorithms
 

and
 

increases
 

the
 

success
 

rate
 

by
 

more
 

than
 

56%.
 

When
 

the
 

number
 

of
 

UAVs
 

reaches
 

four
 

or
 

more,
 

the
 

localization
 

error
 

stabilizes
 

below
 

0. 2
 

meters,
 

with
 

a
 

success
 

rate
 

of
 

100%.
 

Moreover,
 

CE-SSA
 

demonstrates
 

strong
 

robustness
 

under
 

different
 

odor
 

plume
 

characteristics
 

and
 

can
 

handle
 

complex
 

environmental
 

variations.
 

The
 

study
 

indicates
 

that
 

CE-SSA
 

offers
 

significant
 

advantages
 

in
 

improving
 

localization
 

accuracy
 

and
 

success
 

rate,
 

providing
 

a
 

reliable
 

solution
 

for
 

UAV-based
 

odor
 

source
 

tracking
 

in
 

complex
 

environments.
 

The
 

findings
 

of
 

this
 

research
 

provide
 

theoretical
 

support
 

for
 

the
 

further
 

development
 

of
 

active
 

olfactory
 

technology
 

and
 

expand
 

the
 

potential
 

applications
 

of
 

UAVs
 

in
 

environmental
 

monitoring
 

and
 

disaster
 

response.
Keywords:active

 

olfaction
 

technology;
 

odor
 

source
 

localization;
 

sparrow
 

search
 

algorithm;
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0　 引　 言

　 　 气味的搜索定位是在气体泄漏、反恐排爆、火灾报

警、化工安监等高危作业领域的关键技术之一,一般的解

决方案是在关键位置安装固定传感器进行气体动态监

测,但该方式依赖于气体分布模型的精度,难以准确描绘

出目标气体的动态分布情况,无法及时准确定位气体源

位置。 20 世纪 90 年代开始,结合气体传感器与移动机

器人的机器主动嗅觉技术开始蓬勃发展[1] 。
由于湍流环境下的动态烟羽更贴近现实情况,气味

的搜索定位逐步发展为基于群体智能算法的多机器人气

味源定位系统,通过研究对气味源的搜索行为研究,覆盖

了气味源的搜索、跟踪和确定等过程。 其中气味源的搜

索典型方法包括化学趋向性算法[2-3] 、风趋向性算法[3-7] 、
信息趋向性算法[8] 、群体智能算法[9] 。 近年来结合化学

趋向性、风趋向性与群体智能算法相结合成为研究热点,
Hassan 等[10] 在集成了视觉和嗅觉传感器的前提下提出

一种适用于移动机器人的气味源定位 OSL 算法。 鲍高

贵等[11] 在室内弱气流环境下基于粒子群算法提出一种

多机器人溯源算法。 魏顺成[12] 运用爬山溯源算法和网

格监测溯源算法进行无人机气味溯源实验。 张东等[1] 提

出的一种气味源定位算法,这种算法不依赖某一点气味

浓度值,仅依靠气味浓度变化率就可找到气味源。 Jiang
等[13] 提出了一种无人机跟踪大气污染的模糊控制方法,
结合无人机模糊控制规则模仿人脑思维对气体浓度进行

识别、判断和处理。
麻雀搜索算法[14] ( sparrow

 

search
 

algorithm,SSA) 最

早由薛建凯[15] 于 2020 年提出,通过模仿麻雀个体搜索

食物行为和反捕食行为进行迭代寻优。 相较于其他群体

智能优化算法,如粒子群算法( PSO) [16-17] 、仿生飞蛾算

法[18-19] 、人工鱼群算法[20-21] 、蚁群算法[22-23] 、萤火虫算

法[24-25] 、灰狼算法[26-27] 等,SSA 算法具有更好的寻优能

力[28-29] 。 对于气味溯源问题,麻雀搜索食物与机器人气

味源定位具有相似性,将气味源视为最优解,将搜索空间

中的不同位置视为可能的气味源位置。 SSA 算法在整个

麻雀种群觅食过程中,发现者和追随者的相互转换的机

制以及种群搜索食物的机制用于气味溯源技术,逐步接

近气味源位置,最终找到最优的气味源位置。 但 SSA 在

求解复杂优化问题时学习能力不足,当搜索接近全局最

优时种群多样性极大地减少,算法容易陷入局部最优解,
SSA 算法随机初始化种群的方式具有不确定性,难以保

证种群的多样性和遍历性。
目前,大部分多机器人气味源定位研究都是针对二

维空间下不同环境条件的气味源分布情况,但三维空间

环境下气味烟羽分布更贴近现实情况,相应的三维环境

的气味源搜索定位更具有实际应用价值,然而三维环境

下相关的气味源搜索算法搜索效率及定位精度领域的研

究报道较少。 本文针对三维气味烟羽分布环境,提出一

种改进的麻雀搜索算法多无人机搜索定位气味源方

法(crowding
 

factor-elitist
 

strategy
 

improved
 

sparrow
 

search
 

algorithm,CE-SSA),此方法在发现者中引入了拥挤度因

子和精英策略, 跟随者中引入莱维飞行策略。 通过

MATLAB 以及 ANSYS 等软件对大气环境进行三维仿真,
并模拟了相应的三维环境的气味源分布,与此同时,将改

进后的算法运用至无人机中,再将无人机放置于模拟的

三维环境中以验证三维环境中无人机气味源定位实验的

可行性。 该实验在保证算法本身的优越性能前提下,解
决了现有麻雀搜索算法容易陷入局部最优和缺乏遍历全

局的问题。

1　 提出的方法

1. 1　 麻雀搜索算法

　 　 麻雀搜索算法将种群分为 3 个种类,每个种类都有

自己的任务,即发现者、跟随者、预警者。 其中发现者引

领种群确定觅食方向,发现者位置更新公式如下:

X t +1
i,j,d =

X t
i,j·exp - i

μ·N( ) , R < ST

X t
i. j + Q·L, R ≥ ST

ì

î

í
ïï

ïï
(1)

式中:
 

t 为当前迭代数;N 为最大迭代次数; X t
i,j 为第 i 只

麻雀在第 j 维中的位置信息;μ∈(0,1];R∈[0,1]
 

为预

警值;ST
 ∈[0.

 

5,1]
 

为安全值;Q 为服从正态分布的随机

数;L 为一行多维的单位矩阵。
跟随者跟随发现者进行觅食,跟随者的位置更新公

式如下:

X t +1
i,j,f =

Q·exp
X t

worst - X t
i. j

i2( ) , i > n
2

X t +1
P +| X t

i,j - X t +1
P |·A +·L, i ≤ n

2

ì

î

í

ï
ï

ï
ï

(2)

式中: X t +1
P 为当前发现者的最佳位置;Xworst 为当前全局最

差的位置;A 为每个元素随机赋值为 1 或- 1
 

的 1 ×d 矩

阵,A+
 

=
 

AT
 

(AAT) -1;n 为跟随者数量。
预警者是麻雀种群中随机选择的个体,用于预警被

捕食的危险。 预警者位置更新公式如下:

X t +1
i,j. w =

X t
best + β·| X t

i,j - X t
best | , f i > fg

X t +1
i,j + k·

| X t
i,j - X t

worst |
f i - fw + ε( ) , f i = fg

ì

î

í

ï
ï

ï
ï

(3)

式中:Xbest
 为种群中最好的位置;β 为服从标准正态分布

的随机数;k∈[ -1,1];f i  为当前麻雀个体的适应度值;fg、
fw 分别为当前全局最佳和最差的适应度值;ε 为一个极
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小的常数,用于防止分母为 0。
1. 2　 改进的麻雀搜索算法

　 　 1)发现者引入精英策略

SSA 的初始化过程中,一般采用随机初始化种群个

体的方式,此种方法难以保证种群的多样性和遍历性,影
响算法的收敛速度与计算性能。 为解决这一问题,本文

引入精英策略,主要内容为每次迭代中根据个体的适应

度值来确定最优个体,这些最优个体将被直接复制到下

一代种群中,而不需要经过交叉和变异等操作。 通过引

入精英策略,可以保证最优解的遗传和延续,同时也能避

免算法陷入局部最优解,有效提高了算法的求解精度。
精英策略的性能作用可以显著提高解的稳定性和全局收

敛精度,防止最优解在迭代中被误差或随机扰动替代。
其公式如下:

X t +1
i,j =

X t
best·exp - i

μ·N( ) , R < ST

X t
best + Q·L, R ≥ ST

ì

î

í
ïï

ïï
(4)

2)发现者引入动态学习因子

为了更好地平衡算法的全局搜索和局部求解能力,
在早期探索阶段应保持更强的全局搜索能力,后期需强

化局部细致搜索,故引入动态调整学习因子。 动态学习

因子的性能作用可以有助于实现搜索行为的阶段性调

整,提高算法前期探索速度与后期收敛精度。 便于根据

算法的当前状态动态调整算法的搜索行为,发现者引入

动态学习因子 ω,其公式如下:

ω = exp - i
α·iter( ) (5)

lim
iter→ +∞

ω = lim
iter→ +∞

exp - i
α·iter( ) = e0 = 1 (6)

式中:iter 为迭代次数。
迭代前期,个体对于学习对象的参考较小,SSA 处于

全局搜索阶段;迭代后期,学习因子 ω 逐渐逼近于 1,个
体对于学习对象的参考较大,SSA 转入局部求解阶段。
动态学习因子可有效动态平衡算法全局搜索和局部求解

的能力,改进后发现者位置如下:

X t +1
i,j =

X t
best·ω, R < ST

X t
best + Q·L, R ≥ ST

{ (7)

3)发现者引入拥挤度因子

SSA 算法可以使种群在短时间内快速收敛,但也会

导致种群的多样性降低,容易使算法陷入局部最优解,本
文引入拥挤度因子( congestion

 

factor),用于控制搜索空

间中个体分布的参数,避免算法过早收敛到局部最优解,
以及保持种群的多样性。 拥挤度因子的作用是在搜索过

程中引入一定的随机性或探索性,使得算法能够在更广

泛的区域进行搜索。 通过增加拥挤度因子的值,可以增

加个体在搜索空间中的分散程度,从而减少个体之间的

竞争,鼓励探索新的区域。 拥挤度因子的性能作用可以

调节搜索空间中个体的密集程度,抑制个体聚集,延缓早

熟收敛,保持种群活性。 此时发现者位置更新如下:

X t +1
i,j =

X t
best·ω·z, R < ST

X t
best + Q·L·z, R ≥ ST

{ (8)

式中:z∈(0,
 

1],为常数,代表拥挤度因子。
4)跟随者位置融合莱维飞行策略

SSA 中同一角色相同的位置更新公式导致相同角色

个体处于同一最优位置,产生过多的重复最优解,极大的

降低算法效率,这可能使算法陷入局部最优状态,因此本

文的跟随者位置更新融合莱维飞行策略。
莱维飞行策略是生物在未知环境中寻找食物的理想

方式,很多启发式算法都基于这个随机搜寻策略进行改

进并取得了很好的效果。 莱维飞行策略是一种非高斯的

随机过程,其具有遍历性和随机性,在大范围内生成随机

步长,包括非常小的步长和偶尔非常大的步长。 跟随者

位置融合莱维飞行策略,可以对当前局部最优解讲行扰

动,加强局部逃逸能力,降低了个体陷入局部最优的风

险,而且依旧可以充分发挥局部求解的能力。 莱维飞行

策略的性能作用可以增强个体跳出局部极值的能力,提
高搜索多样性,同时保持一定的局部开发效率。

莱维飞行的步长公式为:

Levy(β) = 0. 01
μ·σμ

| υ |
1
β

(9)

本文中 β= 1. 5,μ 和 υ 服从随即正态分布,表示为:
μ ~ N(0,σ2

μ),υ ~ N(0,σ2
μ),συ = 1

συ =
Γ(1 + β)·sin π· β

2( )
Γ

1 + β
2( )·β·2

β- 1
2

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1
β

ì

î

í

ï
ï
ï

ï
ï
ï

(10)

改进后跟随者位置公式为:

X t +1
i. j. f =

Q·exp
X t

worst - X t
i. j

i2( ) , i > n
2

X t +1
P +| X t

i,j - X t +1
P | 􀱋 Levy(β), i ≤ n

2

ì

î

í

ï
ï

ï
ï

(11)
1. 3　 CE-SSA 算法流程

　 　 综合上述方法,本文所提 CE-SSA 算法执行步骤

如下:
步骤 1)初始化种群,设定种群数量,最大迭代次数,

拥挤度因子等参数;
步骤 2)初始化麻雀初始位置,适应度值等参数;
步骤 3)将麻雀分为发现者,追随者等以及对不同的

分工进行根据式(4)、(6)、(7)、(10)定义位置更新;
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步骤 4) 进行迭代,迭代期间记录每只麻雀的适应

度值;
步骤 5)根据适应度值判断是否执行精英策略;
步骤 6)判断算法是否达到最大迭代次数,若达到则

输出全局最优解,否则返回步骤 4) 继续选代,直到满足

选代终止条件。
上述的 CE-SSA 流程如图 1 所示。

图 1　 CE-SSA 流程

Fig. 1　 Flowchart
 

of
 

CE-SSA

2　 仿真实验与分析

2. 1　 气体扩散模型建立以及算法参数设定

　 　 本文的实验环境为 MATLAB
 

2019,64 位 Windows
 

7
操作系统,主频为 2. 5

 

Hz,运行内存为 8
 

G。 本文的模拟

环境基于高斯烟羽模型,构建较为稳定的气体扩散模型,
模拟不同条件下的三维气味源仿真环境,高斯烟羽模型

是一种用于描述大气污染物扩散的数学模型,是一种较

为稳定、理想的经验性的气体浓度扩散模型。 并且考虑

了源强,大气稳定因素,风速等等条件,可以快速预测大

气扩散程度,比较直观。 本文采用的高斯污染物扩散模

型如下:

C(x,y,z) = Q
2π·U·σy·σz

·exp - y2

2σ2
y

( )·

exp - ( z - H) 2

2σ2
z

( ) + exp - ( z + H) 2

2σ2
z

( )é

ë
êê

ù

û
úú (12)

式中:C(x,
 

y,
 

z)是坐标(x,
 

y,
 

z)处的气味浓度值;Q 是

气味源的浓度强度;U 是平均风速;σy 和 σz 分别是水平

和垂直方向上的扩散参数;H 是气味源的高度,本文设定

高斯烟羽模型参数如下:仿真环境为 200
 

m×100
 

m×2
 

m,
Q= 0. 09

 

kg / s,H = 2
 

m;U = 0. 5
 

m / s,σy = 0. 11X0. 9、σz =
0. 08X0. 85。 模型如图 2 所示,模拟气味源分布沿 Y 轴左

右对称,随着 X 轴距离增加,气体逐渐扩散,颜色越红则

表示气体浓度越高。 由图 2 可知,模拟的气味浓度环境

大气流动较稳定且具有主导方向。

图 2　 单个气味的浓度分布

Fig. 2　 Concentration
 

distribution
 

map
 

of
 

single
 

odor

为了验证各项改进策略对 CE-SSA 算法性能的影

响,本文基于如上所述的高斯烟羽模型开展 CE-SSA 算

法的消融实验。 在相同实验条件下,对完整的 CE-SSA
算法与分别去除某一关键机制(如莱维飞行、拥挤度因

子、精英保留策略、动态学习因子)后的若干变体进行性

能对比。 每组实验均独立运行 30
 

次,统计其平均定位误

差与平均收敛时间,以此量化评估各策略模块对算法整

体性能的贡献。 实验结果如表 1 所示。
表 1　 消融实验结果

Table
 

1　 Results
 

of
 

ablation
 

experiments
搜索策略 平均定位误差 / m 平均收敛时间 / s

SSA 0. 207
 

050 0. 014
 

059
CE-SSA 0. 170

 

455 0. 016
 

858
CE-SSA-无莱维飞行策略 0. 184

 

418 0. 018
 

144
CE-SSA-无拥挤度因子 0. 183

 

987 0. 016
 

318
CE-SSA-无精英策略 0. 201

 

005 0. 013
 

973
CE-SSA-无动态学习因子 0. 176

 

134 0. 021
 

057

　 　 由表 1 可以看到,在 CE-SSA 算法中,去除莱维飞行

策略后,平均定位误差增加了约 8. 2%,收敛时间增加了

约 7. 6%,这表明该策略能有效增强局部跳出能力,提升

全局搜索性能;去除拥挤度因子后,平均定位误差增加了

约 7. 9%,平均收敛时间略有下降,这表明拥挤度因子能

够防止个体过早聚集,提升算法的搜索空间利用率;去除

精英策略后,其平均定位误差显著增加了约 17. 9%,缺少
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精英策略导致本文算法缺乏优秀解的保留与传承的功

能,且算法整体性能接近原始 SSA,说明精英策略对结果

稳定性至关重要;去除动态学习因子后,平均定位误差增

加了约 3. 3%,收敛时间增加了约 24. 0%,说明动态学习

因子对 CE-SSA 算法在搜索初期探索能力,及搜索后期

定位精度的影响都比较大。 同时,由表 1 还可以看出,本
文所提出的改进算法在收敛时间上略长于原始算法,这
主要由于引入了更复杂的局部搜索机制和动态调整策

略,增强了全局探索能力与收敛稳定性。 尽管运行时间

有所增加,但在定位精度和鲁棒性方面表现更优,体现了

时间成本与解质量之间的合理平衡。
此外,为进一步探究拥挤度因子参数对

 

CE-SSA
 

算

法性能的影响,本文设计了参数敏感性实验,设定拥挤度

因子取值范围为 0 ~ 1。 每组参数设定下,均进行 30 次独

立实验,记录其平均定位误差及其标准差,从而评估该参

数变化对算法精度与稳定性的影响。 实验结果如图 3
所示。

图 3　 拥挤度因子敏感度分析

Fig. 3　 Sensitivity
 

analysis
 

of
 

crowding
 

factor

从图 3 可以看出,当拥挤度因子设为
 

0. 95
 

时,算法

达到最小的平均定位误差,表明此时的搜索精度与收敛

稳定性最优。 在算法性能评估中,平均定位误差反映了

解的精确程度,而误差的标准差体现了解的稳定性与鲁

棒性。 为此,本文在多个参数组合下开展实验,从精度与

稳定性两个维度综合考量,最终选择平均误差最小、且标

准差相对较小的参数设置,作为算法的最优配置。
此外,若拥挤度因子设置过小,个体搜索范围分散,

易导致收敛速度下降;反之,若设置过大,则种群容易聚

集于局部区域,陷入局部最优。 因而,取值为
 

0. 95
 

在探

索性与利用性之间取得了良好平衡,验证了该参数设定

的合理性和算法的鲁棒性。
2. 2　 算法性能分析

　 　 首先在模拟环境中放置一个气味源,其中心坐标是

(28. 46
 

m,-0. 10
 

m,0
 

m),分别比较 CE-SSA 与 SSA、PSO
算法的寻优性能,进行 9 组实验,每组实验的无人机数目

不同,每组实验进行 200 次迭代。 为了避免优化结果的

随机差异性,
 

每个算法在均独立运行 30 次,实验结果取

30 次的平均值。
3 种算法对单个气味源定位的计算结果如图 4 ~ 6

所示。

图 4　 单气味源下不同无人机数量的定位误差

Fig. 4　 Localization
 

errors
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

the
 

single
 

odor
 

source

图 5　 单气味源下不同无人机数量的成功率

Fig. 5　 Success
 

rate
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

the
 

single
 

odor
 

source

图 6　 单气味源下不同无人机数量的搜索时间

Fig. 6　 Search
 

time
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

the
 

single
 

odor
 

source
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对比定位误差、成功率和搜素时间 3 个指标来评价

算法在仿真环境中的性能。 定位误差表示算法溯源的最

终结果与实际气味源头的误差值;成功率表示算法找到

气味源头的成功比率;搜索时间表示算法找到源头所需

要的溯源任务时间,其中本文设定定位误差在 0. 5
 

m 之

内为找到气味源。
由实验数据可知,随着无人机数量的增加,SSA 与

PSO 算法的定位误差逐渐减小,成功率也逐渐增加,但是

搜索时间也在逐渐增加,说明虽然无人机数量增加,溯源

成功率和准确率提高,但是任务时间也在逐渐延长。
从图 4 ~ 6 可以看到,SSA 算法在无人机数量达到 4

个及以上时,成功率达到了 100%,同时随着无人机数量

的增加,定位误差也趋于稳定,稳定在 0. 18
 

m 左右;而
PSO 算法虽然随着无人机数量增加,定位误差和成功率

都在提高,但是当无人机数量达到 9 时,成功率仅为

89. 5%,无法达到 100%,且定位误差相比另外二者也明

显偏大。 同时随着无人机数量增加,PSO 方法所需要的

搜索定位时间也相对较大;CE-SSA 方法在无人机数量为

1~ 9 时,都可以很好的完成搜索定位任务,且定位误差一

直趋于一个稳定值,平均定位误差小于 0. 2
 

m;说明本文

改进的 SSA 算法提升了鲁棒性及寻优性能,CE-SSA 的稳

定性和准确性明显优于 SSA 和 PSO。
其次,本文在模拟环境中增加 3 个扩散强度较弱的

气味源作为干扰源,中心坐标分别为(14. 03
 

m,29. 96
 

m,
 

0
 

m)、(104. 61
 

m,-19. 94
 

m,
 

0
 

m)、(14. 03
 

m,-29. 96
 

m,
 

0
 

m),气味浓度分布如图 7 所示,比较在存在干扰项的条

件下 CE-SSA 与 SSA、经典 PSO 算法的寻优性能。

图 7　 多气味源的浓度分布

Fig. 7　 Concentration
 

distribution
 

map
 

of
 

multiple
 

odor
 

sources

同时将 CE-SSA、SSA 以及 PSO 在多气味源的模拟环

境中进行 9 组实验,每组实验进行 200 次迭代,实验结果

取运行 30 次的平均值。 对比定位误差,成功率及搜素时

间评估算法在仿真环境中的性能,分析对比如图 8 ~ 10
所示。

由图 8 ~ 10 可知,CE-SSA 在多气味源的模拟环境

图 8　 多气味源下不同无人机数量的定位误差

Fig. 8　 Localization
 

errors
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

multiple
 

odor
 

sources

图 9　 多气味源下不同无人机数量的成功率

Fig. 9　 Success
 

rate
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

multiple
 

odor
 

sources

图 10　 多气味源下不同无人机数量的搜索时间

Fig. 10　 Search
 

time
 

of
 

different
 

numbers
 

of
UAVs

 

under
 

multiple
 

odor
 

sources

中,依然具有较高的搜索效率,当无人机数量为 4 时,成
功率达到 100%,并且 CE-SSA 的总体定位误差稳定在

0. 2
 

m 之内,表明 CE-SSA 算法的稳定性和高效率性;而
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SSA 在无人机数量达到 4 时,成功率才达到 80%以上且

定位误差趋于稳定;PSO 算法在无人机数量达到 6 时,成
功率和定位误差才相对较高且趋于稳定,所需无人机的

数量相对较多。 综上可知,随着无人机的数量增加,搜索

任务无可避免的也会随着增加,SSA 与 CE-SSA 的搜索时

间相对 PSO 算法消耗时间更短。
为进一步评估 CE-SSA 算法在复杂搜索空间中的优

化能力和稳定性,在不同气味源条件下选择无人机数量

为 3 时的本算法适应度变化情况,结果如图 11、12 所示。
该结果能够反映算法在迭代过程中的最优适应度值随时

间(或迭代次数)的变化趋势,能够直观展示算法是否快

速收敛、是否陷入局部最优以及搜索稳定性等性能。

图 11　 单气味源下的迭代收敛曲线

Fig. 11　 Iterative
 

convergence
 

curve
 

under
 

the
 

single
 

odor
 

source

图 12　 多气味源下的迭代收敛曲线

Fig. 12　 Iterative
 

convergence
 

curves
 

under
 

multiple
 

odor
 

sources

由图 11 可见,在单气味源条件下该算法在初始阶段

适应度值迅速提升,前 100 次迭代内已经完成了大部分

优化过程,表明其具备良好的初期全局搜索能力。 在随

后的迭代过程中,适应度曲线趋于平稳,呈现出近似单调

上升的趋势,显示出算法进入了稳定的局部精细搜索阶

段。 这一特性体现了算法较强的收敛能力和鲁棒性,能
够较快跳出初始的劣解区域并持续逼近全局最优解。

由图 12 可知,在多气味源条件下该算法的适应度值

在前 100 次迭代内迅速上升,表明算法在初始阶段具有

较强的全局搜索能力,能够快速跳出劣解区域,逼近浓度

较高的目标区域。 随着迭代次数的增加,曲线逐渐趋于

平稳,进入局部开发阶段,体现出算法良好的稳定性与收

敛性。 值得注意的是,在迭代过程中,曲线中部出现一段

明显的小平台,表现为一段短暂的近似水平线。 这说明

算法在该阶段可能陷入局部最优,此后,适应度值仍略有

上升,说明改进算法通过引入的拥挤度因子与莱维飞行

策略,有效增强了跳出局部最优的能力,保持了种群多样

性,从而提升了整体的搜索效率与精度。
2. 3　 室内气味溯源仿真实验

　 　 仓库、车间厂房等有限空间是气体扩散的常见区域,
其通风环境是一个有限区域的室内通风环境,区域内的

气体扩散受通风气流影响,气体分布情况由湍动气流主

导。 气味浓度波动剧烈由于烟羽形状弯曲或者混合极端

情况下,烟羽分布不连续的波动变化往往伴随着浓度局

部极值以及瞬时梯度突变,
 

且烟羽的分布状况会被真实

环境的边界及障碍物所影响,这些因素将极大地影响气

味源搜索的难度。
本文利用 FLUENT 软件,

 

结合真实环境下的风速风

向、周边环境对气味的吸收率等对气味扩散的不确定性

影响,采用标准 k-ε 湍流模型生成室内气味源环境,
 

图

13 所示为本文构建的室内气味源环境的气味羽流分布,
其中箭头表示风向,实线越密集表明风速越大,“ In”表示

进风口,“Out”表示出风口,环境中颜色越红表明气味浓

度越大。 其中室内空间长宽高分别为 15
 

m×10
 

m×3
 

m,
一个宽 1. 5

 

m、高 2
 

m 的进风口(图 13 中记为 In),一个

宽 1. 5 m、高 2 m 的出风口(图 13 中记为 Out),进风口位

置为(x= [12. 5 m,
 

14 m],y= 0
 

m,
 

z= [0. 5 m,
 

2. 5 m]),
 

进风口处风速为 0. 1 m / s,出风口位置为( x = 0 m,y =
[8 m,

 

9. 5 m],
 

z= [0. 5 m,
 

2. 5 m])。 空间中心位置设置

有一个长宽高为 1、1、3 m 的障碍物(白色方块表示障碍

物),气味源中心位置为(8
 

m,
 

4
 

m,
 

1
 

m)。
模型构建完成后使用 ANSYS

 

Mesh 进行网格划分,
本文采用六面体结构对泄漏场所三维模型进行网格划

分,设置网格最大尺寸为 0. 2
 

m,最小尺寸为 0. 02
 

m。 并

在泄漏源临近区域进行局部加密,最终将泄漏场所三维

模型划分为 25
 

000 个网格单元。 设置仿真环境的压强

为
 

101
 

kPa, 温度为 300
 

K; 进行 300 次迭代计算, 在

ANSYS
 

CFD-Post 中进行后处理。 湍流模型采用标准 k-ε
湍流模型,考虑能量耗散率和湍动能之间的耦合关系,具
有较好收敛性与计算效率。

质量守恒方程为:

∂ρ
∂t

+
∂(ρu

x
)

∂x
+

∂(ρuy)
∂y

+
∂(ρuz)

∂z
= 0 (13)

式中: ρ 为流体密度;t 为时间; ux、uy、uz 为速度在 X、Y、Z
轴方向的分量。
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动量守恒方程为:
∂(ρu

x
)

∂t
+ ▽·(ρuxu

→) = - ∂P
∂x

+ ∂ xx

∂x
+ ∂ yx

∂y
+ ∂ zx

∂z
+ ρfx

(14)
∂(ρuy)

∂t
+ ▽·(ρuyu

→) = - ∂P
∂y

+ ∂ xy

∂x
+ ∂ yy

∂y
+ ∂ zy

∂z
+ ρfy

(15)
∂(ρuz)

∂t
+ ▽·(ρuzu

→) = - ∂P
∂z

+ ∂ xz

∂x
+ ∂ yz

∂y
+ ∂ zz

∂z
+ ρfz

(16)
式中:P 为压强; 为粘性应力; fx、fy、fz 为 3 个方向的单位

质量力。
能量守恒方程为:
∂(ρE)

∂t
+ ▽·[u→(ρE + P)] = ▽·[keff▽T - T∑

j
hjJj +

( eff·u→)] + Sh (17)
式中:E 为流体微团的总能; keff 为热传到系数; Sh 为体积

热源项。
组分运输方程为:
∂(ρm

l
)

∂t
+ div(ρvml - D l radml) = S l (18)

式中:
∂(ρml)

∂t
为单位体积内组分 l 的质量变化率; ρvml

是组分 l 的对流流量密度; D l 为扩散系数; S l
 为单位体积

内组分的 l 生成率。

图 13　 室内离地 1
 

m 高处气味浓度分布与环境风向可视图

Fig. 13　 View
 

of
 

odor
 

concentration
 

distribution
 

and
environmental

 

wind
 

direction
 

at
 

1
 

m
 

above
 

ground

在此环境下,分别选择不同数量的无人机采用 CE-
SSA 策略进行跟踪定位烟羽的过程,设定无人机可以实

时获取对应位置坐标的气体浓度值,CE-SSA 算法对气体

浓度值进行计算处理,决策无人机下一步的运动指令,在
下一个位置无人机获取新的对应位置浓度信息,迭代计

算气味源的定位与追踪指令,结果如表 2 所示。 基于

CE-SSA 算法,无人机至多在 80 次迭代便完成了气味源

定位工作,与气味源的距离误差最小可达 0. 19
 

m。 其

中,3 台无人机的追踪气味源的路径如图 14 所示,从图

14 可以看到,无人机由初始位置顺利达到浓度极值点,
以非常快的速度定位气味源极值点;在拥挤度因子的影

响下部分无人机族群跳出极值点,搜寻发现空间内的其

他气味源极值点;气味源确认阶段,无人机在精英策略的

决策下确定气味源位置。
表 2　 室内实验结果

Table
 

2　 Results
 

of
 

indoor
 

experiments
无人机数量 最小定位误差 / m 最少迭代次数 成功率 / %

1 0. 34
 

80 96
2 0. 26

 

60 100
3 0. 19

 

55 100
4 0. 2

 

55 100
5 0. 19

 

50 100
6 0. 2

 

45 100
7 0. 2

 

35 100
8 0. 2

 

25 100
9 0. 19

 

25 100

　 　 图 15 所示为在无人机数量为 8 的情况下,算法的迭

代收敛曲线。 从图 15 可以看出,适应度值整体呈单调上

升趋势,表明算法具备较强的全局搜索能力。 在拥挤度

因子与莱维飞行策略的协同作用下,算法能够有效跳出

局部最优,进一步提升了搜索精度与效率,体现出良好的

稳定性与鲁棒性。

图 14　 3 台无人机的追踪定位路径

Fig. 14　 Tracking
 

and
 

localization
 

paths
 

of
 

3
 

UAVs

同时由表 2 可知,CE-SSA 策略具有良好的气味源定
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图 15　 室内环境下的迭代收敛曲线

Fig. 15　 Iterative
 

convergence
 

curves
 

in
 

indoor
 

environment

位能力,当无人机数量超过 2 台时,就可以稳定的搜索到

气味源,体现本文算法在定位效率上的优越性,与现有的

无人机溯源算法相比,CE-SSA 算法在搜索过程中,可以

计算自身适应度值,进行精英策略保留最佳适应度值并

且通过拥挤度因子进行跳出局部最优,提升定位的精确

度,体现了算法的鲁棒性。 同时算法所必需的无人机数

量较少,能够大幅降低硬件成本、减轻通信传输压力、易
于工程应用推广。

3　 结　 论

　 　 本文提出的 CE-SSA 算法所必需的无人机数量较

少,能够大幅降低硬件成本、减轻通信传输压力、易于工

程应用推广,为实现无人机气味溯源相关应用提供了新

颖可行的技术方案。
改进后的算法,进一步提高了气味源搜索定位的成

功率,有效降低了定位误差。 仿真结果表明,CE-SSA 的

定位误差比传统算法降低了 98%以上,定位成功率提高

了 56%以上,并且优于其他算法,可以较为准确地进行三

维环境的气味溯源。 同时,从算法的迭代收敛曲线可以

看出,CE-SSA
 

在优化过程中适应度值整体呈稳定上升趋

势,说明算法具备较强的全局搜索能力与稳定性,能够有

效跳出局部最优陷阱,保持良好的收敛速度和搜索质量,
进一步验证了优化效果的可靠性。

然而,该研究仍然存在需要改进的地方,目前,改进

的算法在三维环境的气味溯源搜索时间比传统算法会增

加,因此此下一步将继续研究如何缩短搜索时间,以便更

好的进行三维环境中的气味溯源工作。
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