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Research on odor source localization of UAVs in 3D environments
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Abstract: In order to enhance the odor source localization capability of unmanned aerial vehicles (UAVs) in three-dimensional
environments, a crowding factor-elitist strategy improved sparrow search algorithm ( CE-SSA) is proposed. This algorithm incorporates
elite strategy, crowding factor, and Lévy flight perturbation mechanisms to improve search capability and effectively avoid local optima.
In the experiments, the diffusion of the odor plume in a 3D space was simulated, and the performance of CE-SSA was compared with that
of the classical particle swarm optimization (PSO) and the original sparrow search algorithm (SSA). The results show that, in the case
of a single UAV, CE-SSA reduces localization error by over 98% compared to traditional algorithms and increases the success rate by
more than 56%. When the number of UAVs reaches four or more, the localization error stabilizes below 0. 2 meters, with a success rate
of 100%. Moreover, CE-SSA demonstrates strong robustness under different odor plume characteristics and can handle complex
environmental variations. The study indicates that CE-SSA offers significant advantages in improving localization accuracy and success
rate, providing a reliable solution for UAV-based odor source tracking in complex environments. The findings of this research provide
theoretical support for the further development of active olfactory technology and expand the potential applications of UAVs in
environmental monitoring and disaster response.
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Fig.2 Concentration distribution map of single odor
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Table 1 Results of ablation experiments
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Fig. 7 Concentration distribution map of multiple odor sources
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Fig. 13 View of odor concentration distribution and

environmental wind direction at 1 m above ground
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Table 2 Results of indoor experiments

TSR NVEMIRE/m RS R/ %
1 0.34 80 96
2 0.26 60 100
3 0.19 55 100
4 0.2 55 100
5 0.19 50 100
6 0.2 45 100
7 0.2 35 100
8 0.2 25 100
9 0.19 25 100
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Fig. 14  Tracking and localization paths of 3 UAVs
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