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摘　 要:针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳

的问题,提出了一种基于改进生成对抗网络的数据增强方法。 首先,该方法研究了多类别混合估计的方法为生成器提供原始信

号的先验信息,改进生成器的随机噪声输入,同时在生成器网络中引入多头注意力机制以捕获全局关键特征,提高生成样本质

量;然后,研究了基于变分自编码重构误差的样本筛选方法,从生成样本中选取质量更高的样本,用来改善识别模型的训练效

率;最后,将筛选出的生成样本及原始样本组合构成缺陷样本数据集,实现了数据增强。 为验证数据增强效果,实验中采用常用

的分类方法对扩充后的漏磁缺陷信号进行分类识别,实验结果表明,改进的方法在样本量较小的情况下平均识别准确率可达

93%,相比其他类似方法具有更好的性能。
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Abstract:
 

In
 

the
 

study
 

of
 

pipeline
 

magnetic
 

leakage
 

detection,
 

intelligent
 

recognition
 

models
 

often
 

struggle
 

due
 

to
 

the
 

limited
 

number
 

and
 

significant
 

variability
 

of
 

defect
 

samples.
 

To
 

address
 

this,
 

a
 

data
 

augmentation
 

method
 

based
 

on
 

an
 

improved
 

Generative
 

Adversarial
 

Network
 

is
 

proposed.
 

A
 

multi-class
 

mixed
 

estimation
 

approach
 

provides
 

prior
 

information
 

to
 

the
 

generator,
 

enhancing
 

its
 

random
 

noise
 

input.
 

A
 

multi-head
 

attention
 

mechanism
 

is
 

integrated
 

into
 

the
 

generator
 

to
 

capture
 

global
 

features,
 

improving
 

the
 

quality
 

of
 

generated
 

samples.
 

Additionally,
 

a
 

sample
 

selection
 

method
 

based
 

on
 

variational
 

autoencoder
 

reconstruction
 

error
 

filters
 

higher-quality
 

generated
 

samples,
 

improving
 

the
 

training
 

efficiency
 

of
 

the
 

recognition
 

model.
 

Finally,
 

selected
 

generated
 

and
 

original
 

samples
 

are
 

combined
 

to
 

form
 

an
 

augmented
 

defect
 

sample
 

dataset.
 

Classification
 

methods
 

are
 

applied
 

to
 

classify
 

the
 

augmented
 

leakage
 

magnetic
 

defect
 

signals.
 

Results
 

show
 

that
 

under
 

small
 

sample
 

conditions,
 

the
 

proposed
 

method
 

achieves
 

an
 

average
 

recognition
 

accuracy
 

of
 

93%,
 

outperforming
 

similar
 

methods.
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0　 引　 言

　 　 管道是石油天然气等能源介质相对安全、可靠的运

输方式,但由于制造及焊接缺陷、局部损伤、腐蚀等导致

的管道事故极大的威胁到管道安全运行,因此进行管道

缺陷检测研究具有重要意义[1] 。 基于不同的原理,油气

金属管道缺陷检测方式有涡流法[2] 、超声波法[3] 、管道内

漏磁法[4] 、金属磁记忆法[5] 等,涡流法和超声波法依赖于

外部激励源,管道内漏磁法需要在管道内放入漏磁检测

器,若出现停机故障则影响管道的运行,金属磁记忆法与

其他缺陷检测方式相比,无需开挖和外加激励,且不影响

管道正常运行,是实现管道缺陷检测的有效方式。
管道不同缺陷导致的漏磁信号受管道材料、缺陷类

型、环境等多方面因素的影响,会呈现不同的特点,传统

的管道缺陷数据分析方法通常先提取时域、频域或者其

他变换域的特征作为漏磁信号特征,然后利用机器学习

算法实现漏磁缺陷的分类[6] 。 王贵生等[7] 通过提取时

域、形 态、 频 域 3 种 不 同 特 征 量, 建 立 了 支 持 向 量

机(support
 

vector
 

machine,SVM)模型对实验管道的腐蚀

程度进行识别;赵翰学等[8] 提取了漏磁检测信号的 4 种

特征值,采用支持向量机、随机森林( random
 

forest,RF)
以及梯度提升决策树 3 种机器学习算法对缺陷信号特征

量进行分类识别;张勇等[9] 提出一种基于散布熵和峭度

的特征提取法,将提取的特征参数作为支持向量机的输

入,可以有效识别和分类输油管道的工况;Liu 等[10] 提取

了漏磁缺陷的对比度、中心点等 4 种特征,利用支持向量

机、随机森林和 K 近邻(K-nearest
 

neighbor,
 

KNN)方法对

漏磁图像正常区域和缺陷区域进行检测分类。 传统方法

将特征提取及分类分别进行,并且严重依赖专业的信号

处理知识及诊断经验。
近年来,基于深度学习的特征学习及模式分类方法

在很多工程领域得到了广泛研究,相较于传统的机器学

习,深度学习通过多层神经网络直接从原始数据自动提

取高层次特征而无需人工干预,可以取得较好的诊断性

能。 Luo 等[11] 利用一维卷积神经网络,实现了对金属管

道制造工艺中产生的溅射、裂纹和气孔等缺陷的识别。
施佳椰等[12] 提出一种基于卷积胶囊网络的油套管变形

程度评估方法,通过设计多个卷积层对涡流信号进行特

征提取,取得了较好的变形量化精度。 梁海波等[13] 提出

变分自编码结合一维卷积神经网络与随机森林的缺陷识

别方法,对腐蚀缺陷进行特征提取和分类,可以有效识别

天然气钢制管道的健康状况。 深度学习模型的分类效果

依赖于训练样本的数量,如果训练样本有限,则提取的特

征信息有限,训练模型可能出现难以达到拟合状态等问

题,从而影响缺陷识别精度。 油气管道实际运行的大部

分时间都处于健康状态,获取大量的缺陷信号较为困难,
因此研究数据增强方法,对有限的漏磁缺陷样本进行高

质量的扩充,能够改善因训练过程中真实样本不足导致

的模型准确度不高、泛化能力差的状况。
管道缺陷本质上可视为管道的故障状态,因此可以

借鉴故障诊断领域的一些分析方法。 生成对抗网

络(generative
 

adversarial
 

network,GAN) [14] 是近年来基于

深度神经网络发展起来的一类较为有效的数据增强方

法,并广泛应用于故障诊断领域。 Wang 等[15] 利用

WGAN(Wasserstein
 

GAN)对获取困难的机械故障信号进

行扩展,结合真实信号和生成信号训练堆叠自编码器来

检测机械设备的健康状态。 张永宏等[16] 提出了一种变

分自编码生成式对抗网络对故障样本进行数据增强,训
练卷积故障分类器来实现小样本滚动轴承故障分类。
Dixit 等[17] 提出了一种结合元学习的新型条件辅助分类

器(auxiliary
 

classifier
 

GAN,
 

ACGAN)框架,并通过轴承数

据集和空压机数据集对方法进行验证。 Fu 等[18] 提出

Transformer 和辅助分类器结合的生成网络用于轴承故障

诊断。 GAN 能够在随机噪声的基础上,通过深度模型对

真实样本的学习,尽可能的捕获给定真实样本的特征分

布,生成具有和真实数据相似分布的新样本,在一定程度

上缓解数据不足问题。
以上方法均取得了良好的分类效果,但是一方面漏

磁缺陷信号的样本较少,不同类型的缺陷信号差别较大,
GAN 网络难以学习到真实样本的分布,特征网络学习能

力不足进而影响生成样本的质量;另一方面质量不佳的

生成样本用来训练分类模型,会对模型性能产生较大影

响。 如何让 GAN 网络更好的学习到真实缺陷样本的分

布,并挖掘关键的特征信息,在增加生成样本数量的同时

减少低质量数据的产生,具有重要的理论研究和实际

意义。
针对复杂的管道缺陷识别研究中,因漏磁样本量少

导致缺陷识别模型性能不佳的问题,本文提出了优化随

机噪声输入和改进生成器网络结构的方法。 该方法首先

基于多类别高斯混合估计的方法优化生成器的随机输入

噪声,为生成器提供原始信号的先验知识,使生成器输入

更接近原始样本;同时引入多头注意力机制来捕捉全局

关键的特征信息,进一步改善网络学习能力。 另一方面,
为改善生成样本的质量,本文研究了基于重构误差的生

成样本选择方法,通过变分自编码器 ( variational
 

auto-
encoder,VAE)网络学习真实样本和生成样本的潜在分布

并重构输入,获得重构误差,将重构误差作为选择指标,
筛选出高质量的漏磁生成样本。

实验结果及分析表明,相比传统方法,本文所提出的

方法通过学习有限缺陷样本,即可产生高质量的生成样

本,并显著提高管道缺陷的分类识别准确率。
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1　 基于改进生成对抗网络的漏磁样本增强

　 　 传统的生成对抗网络 GAN 输入为随机噪声,对复杂

信号特征的学习能力不足,且存在训练不稳定等问题,为
此本文以特征学习能力和训练稳定性更具优势的

CWGAN-GP ( conditional
 

Wasserstein
 

GAN-gradient
 

penalty)网络为基础,并进一步从输入和网络结构角度来

改善学习能力,提出了基于多分布混合噪声输入及引入

多头注意力机制的改进措施,优化生成网络的性能。
1. 1　 CWGAN-GP 概述

　 　 CWGAN-GP [19] 是 一 种 改 进 的 WGAN-GP 模 型,
WGAN-GP 将传统 GAN 中的 JS 散度 ( Jensen-Shannon

 

divergence)转换为 Wasserstein 距离,并引入梯度惩罚项,
显著缓解了传统 GAN 训练中的模式崩溃、梯度消失和爆

炸问题,使模型训练更为稳定,CWGAN-GP 则是在此基

础上引入条件信息,将类别标签和信号样本一起输入生

成器,使生成器在标签引导下生成符合特定条件的信号,
提升生成信号的准确性和多样性,在图像、文本生成等多

个领域展示了其优越的性能[20-21] 。
CWGAN-GP 网络由生成器和判别器组成,其中生成

器利用随机噪声生成与真实数据分布相同的数据样本,
判别器来评估输入数据是生成数据或真实数据,当判别

器无法识别输入样本是真实的样本还是生成样本时即达

到训练目的。 CWGAN-GP 网络的损失函数如下:
L(G) = - Ex ~ P

x̂
[D(x | y)] (1)

L(G) = - Ex ~ Pr
[D(x | y)] + Ex ~ Px

[D(x | y)] +

λEx ~ P
x̂
[(‖▽xD(x | y)‖P - 1) 2] (2)

式中: x 表示真实的数据;条件变量 y 即为数据的标签;
▽xD(x | y) 表示判别器梯度。 将标签数据和漏磁缺陷数

据一起输入生成器,生成器在标签引导下生成新的漏磁

样本。
CWGAN-GP 性能较传统 GAN 有了较大改善,但是

其输入仍然是先验分布较为单一的噪声,因此在生成信

号的多样性方面存在不足;此外对不同类型复杂漏磁信

号的特征学习能力也需要提高,因此,为提高生成样本的

多样性,增强网络模型捕捉复杂信号特征的能力,本文考

虑从网络输入和网络结构两个角度改进 CWGAN-GP 生

成器。
1. 2　 基于多类别混合分布估计的噪声输入

　 　 生成器网络的输入通常是满足正态分布或均匀分布

的随机噪声,不考虑任何原始数据的先验知识、通过生成

器和鉴别器的相互作用以及对大量样本的学习,产生尽

可能接近真实分布的新数据,但是在不同类型的缺陷样

本量较小、且有一定差异性的情况下,生成样本的质量会

受到较大影响,因此如能在输入阶段获取一定的分布信

息,就能够使生成器即使在小样本情况下也能够产生更

接近真实样本的数据。
高斯混合模型( Gaussian

 

mixture
 

model,
 

GMM)由多

个高斯分布函数的线性组合构成,理论上能够拟合任意

类型的分布。 每一种漏磁缺陷类别(凹坑、凹坑+裂纹、
裂纹)均表现出多特征融合特性,其幅值、波形和空间分

布等信息相互关联并共同反映缺陷特性,GMM 通过调整

多个高斯分布的均值和方差,可以拟合复杂的分布特性。
本文引入多类别高斯混合模型拟合漏磁信号的分

布,随后将拟合结果作为生成模型的噪声输入。 改进后

的输入噪声不仅具有随机性,还嵌入了漏磁信号的粗略

特征,将其作为生成器的噪声输入,能够为生成器提供一

定的先验知识,有助于训练时生成样本逼近原始分布,并
改善生成样本的多样性。 假设采集到某类缺陷信号数据

集,该类型漏磁信号分布可用 K 个高斯分布来拟合,各分

布用 P1,P2,…,PK 表示,则输入信号分布的拟合过程如

图 1 所示。

图 1　 缺陷集 P 中由 k 类分布拟合噪声输入

Fig. 1　 Improved
 

noise
 

input
 

fitted
 

by
k-class

 

in
 

defect
 

set
 

P

类别数量 K 对拟合结果有重要影响,其本质上表明

同类型样本中存在 K 类分布有一定差异的数据,具体表

现为样本中会呈现不同的聚类。 本文采用了 K 均值[22]

算法进行缺陷故障信号的内部聚类分析,并进一步基于

戴维森堡丁指数( Davies-Bouldin
 

index,
 

DBI) [23] 指数确

定 K 的取值。 DBI 是一种评估聚类算法效果的指标,它
通过衡量簇内紧密度和簇间分离度综合评估聚类结果的

质量。 DBI 值越小,表示聚类效果越好,簇内紧密且簇间

分离明显。 通过 DBI 评估不同聚类数 K 的效果,并选择

DBI 最小的 K 值作为某类缺陷集的聚类数。
DBI 先计算每个簇内散度 SK 和簇间分离度 DK1,K2

,
然后通过相似性度量获得每对簇之间的相似性。 对于每

个簇,找到与其最相似的簇并记录相似性,最后将所有簇

最大相似性的平均值作为 DBI 的值。 公式如下:
Pk = {xK,i | xK,i ∈ Rn,i = 1,2,…, | PK | } (3)

SK = 1
| PK | ∑ x∈PK

‖xK,i - aK‖ (4)
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DK1,K2
= ‖aK1

- aK2
‖ (5)

RK1,K2
=
SK1

+ SK2

DK1,K2

(6)

DBI = 1
K ∑ K

i = 1
max
K1≠K2

(RK1,K2
) (7)

式中: K 是聚类总数; PK 是第 K 个簇的样本集合;xK,i 是

簇 PK 的样本; | PK | 是簇 PK 中样本的数量; SK 表示簇内

散度; aK 表示聚类中心; DK1,K2
表示簇间分离度; RK1,K2

表示簇的相似性。
通过对缺陷集进行聚类,缺陷集的样本被划分到了

K 个簇 P1,P2,…,PK 中。 在特征空间中每一个簇都符合

高斯分布,用高斯概率密度函数来拟合每个簇 PK ,其中

高斯分布的均值向量 uK 为簇中所有样本的均值,协方差

矩阵 Σ K 用于描述簇内数据的相关性, uK 和 Σ K 的计算公

式如式(8)和(9)所示,簇 PK 的高斯分布概率密度函数

如式(10)所示。 最后利用 K 个高斯概率密度函数,构建

多分布混合 GMM,如式(11)所示。

uK = 1
| PK |

∑ | PK|

i = 1
xK, i (8)

Σ k = 1
| PK |

∑ | PK|

i = 1
(xK, i - uK)(xK, i - uK) T (9)

N(x | uK,Σ K) = 1
(2π) n / 2 | Σ K | 1 / 2 e

- 1
2 (x-uK) TΣK

-1(x-uK)

(10)

N(x | u,Σ) = ∑ K

k = 1

| PK |
| P |

N(x | uK,Σ K) (11)

式中: Σ K 是 PK 的协方差矩阵; n 表示数据的维度; u =
(u1,u2,…,uK); | P | 表示所有簇中总样本的个数; Σ =
(Σ 1,Σ 2,…,Σ K)。

通过将原始漏磁信号的先验知识融入到输入噪声 z
中,为数据生成提供先验分布,使得新样本能在产生之初

就更加贴近真实样本,后续仅通过少量真实样本的校正

即可产生质量较好的生成样本。
1. 3　 多头注意力机制改进的生成网络

 

　 　 为了更好的增强生成网络模型对复杂漏磁信号特征

的捕捉能力,聚焦重要的特征信息,本文在生成器中引入

多头注意力机制[24-25] ,通过并行执行多个独立的注意力

机制,从不同的子空间提取信息,提高生成模型捕捉全局

关键漏磁特征的能力,从而增强模型对复杂信号的理解

和生成能力,改善样本生成质量。
假设输入的漏磁信号数据为 X ,经过线性变换生成

查询集 Q ,键 K 和值 V ,将漏磁信号的输入映射到不同

的特征子空间, 以捕捉多尺度的信号特征。 公式如

式(12)所示。
Q = XWQ,K = XWK,V = XWV (12)

式中: WQ、WK、WV 表示不同的权重矩阵。
对于单个注意力头,利用缩放点积注意力机制计算

漏磁特征之间的相关性,并通过权重调整特征的重要性,
使模型聚焦于信号中有代表性的特征区域,忽略不必要

的背景噪声,如式(13)所示。

Attention(Q,K,V) = Softmax(QK
T

dK

)V (13)

式中: QKT 为查询和键的点积,用来衡量不同漏磁信号

特征之间的相似度; dK 为缩放因子。
为更全面提取漏磁信号的复杂特征,引入 h 个独立

的注意力头,每个头关注不同的特征子空间,如式(14)
所示。

head i = Attention(QWQ
i ,KWK

i ,VWV
i ) (14)

式中:其中 WQ
i 、WK

i 、WV
i ,i

 

=
 

1,
 

2,…,h,表示第 i 个头的

独立权重矩阵。 通过并行的多个注意力头,模型能够从

不同视角提取漏磁信号的局部与全局特征,提升对复杂

信号的理解能力。
最后将 h 个注意力头的输出拼接,通过线性变换 WO

还原维度,使其与原始输入保持一致,公式如式 ( 15)
所示。

MultiHead(Q, K, V) = Concat(head1, head2, …,
headh)WO (15)

将多个注意力头提取的信息进行融合,实现对漏磁

信号特征的全局捕捉能力,使生成网络可以整合多角度

的特征信息,改善样本的生成质量。

2　 基于 VAE 重构误差的生成样本筛选

　 　 改进的生成模型可以生成大量的漏磁缺陷样本,但
生成的样本质量有差异,质量不高的生成样本会给分类

识别过程带来负面影响,因此筛选质量更高的样本有助

于改善分类识别性能,为此,本文研究了基于 VAE 重构

误差的方法[26-27] ,对生成的新样本进行质量评估。 经过

训练的 VAE 模型对数据进行解码和编码,得到重构误

差,若重构误差大于阈值,则可认为生成数据与原样本差

异较大,生成质量不佳,通过此方法可以选择生成数据的

高质量子集,采用筛选得到的样本训练缺陷分类模型,可
以进一步提高分类识别准确率。
2. 1　 样本筛选网络

　 　 图 2 所示为生成样本的筛选网络。 筛选网络由编码

器和解码器组成,编码器和解码器的网络结构都是由两

个全连接层组成,使用 Leaky
 

Relu 作为激活函数。 编码

器将输入数据转换到潜在空间,并输出潜在变量的均值

向量 μ 和标准差向量 σ ,基于 μ 和 σ ,编码器使用重参

数化方法生成潜在变量 Z ,如式(16)所示。 解码器将潜
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图 2　 生成样本筛选网络

Fig. 2　 Selecting
 

network
 

for
 

generated
 

sample

在变量 Z 重新映射回原始数据空间,并重构出与原始输

入数据形状近似的输出数据。
Z = μ + σ∗ε (16)

式中:ε 表示标准正态分布的随机噪音; σ∗ε 表示对标

准正态噪声按标准差进行调整。
在训练阶段,VAE 筛选网络通过 Adam 优化器对总

损失函数进行优化来更新模型参数, 总损失函数为

KL(Kullback-Leibler) 散度和均方根误差( mean
 

squared
 

error,
 

MSE)之和。 其中 KL 散度表示先验分布和编码器

输出分布之间的差异,约束了潜在空间的分布,但单独使

用 KL 散度,模型不会关注数据的重构相似度。 MSE 直

接衡量输入数据和重构数据的相似度,确保解码器能够

重建出尽可能接近于真实数据的输出,但单独使用 MSE,
潜在空间 Z 的分布可能是无序的,影响重构效果。 将 KL
和 MSE 相结合,可以平衡数据重构和潜在空间的分布约

束,共同优化 VAE 对输入数据的重构过程。 重构误差的

损失函数如下:
LVAE = LMSE + LKL (17)

LMSE = 1
d

‖X i -
 

X̂ i‖
2 = 1

d ∑ d

j = 1
(x ij -

 

x̂ ij)
2 (18)

LKL = - 1
2 ∑ d

j = 1
(1 + log(σ j

2) - μ2
j - σ2

j ) (19)

式中: X i 是输入数据样本;
 

X̂ i 是解码器重构数据样本;

x ij 和
 

x̂ ij 分别是样本第 j 个特征的输入值和重构值;μ 和

σ 是编码器输出的均值向量和方差向量;d 表示样本

维度。
在训练完成且模型稳定后,编码器和解码器已经学

习到了输入数据的潜在表示和重构能力。 将训练样本重

新输入到训练后的 VAE 网络中,可以得到输入样本的重

构误差。
2. 2　 基于重构误差的样本筛选过程

　 　 图 3 所示为生成样本的筛选方法。
1)从某类别的生成样本数据集中随机选择 m 个样

本作为训练集来训练 VAE 网络,网络经过不断地迭代优

图 3　 生成样本筛选过程

Fig. 3　 Selection
 

process
 

of
 

the
 

generated
 

samples

化趋于稳定;然后将训练集重新输入,得到训练集中所有

样本的重构误差集合,如式(20)所示。
L = { l1, l2, …, lm} (20)
使用 MSE 作为指标评估生成样本的重建质量,计算

公式如式(21)所示。

l i =
1
d

‖X i -X̂ i‖ = 1
d ∑ d

i = 1
(x ij -

 

x̂ ij)
2 (21)

式中: l i 为生成样本 X i 的重构误差; d 是样本维度; L 为

输入样本的重构误差集合。
本文采用重构误差排序的方法来动态确定重构误差

阈值 β ,使该阈值可以根据数据特性自适应的调整。 将

误差集合按照从小到大的顺序排列,设定异常比例 r 表
示生成样本中低质量样本的占比,所有样本中的后 r 占
比的数据对应的重构误差值作为阈值 β ,通过此方式,阈
值 β 会根据数据的重构误差分布和异常比例自动调整。
本文选择 r 为 0. 1。

2)使用上述经过生成样本训练的 VAE 网络对原始

样本测试集进行编码和解码,得到原始样本重构误差集

合 A。
A = {a1,a2, …,am} (22)

式中: a i,
 

i
 

=
 

1,
 

2,…,m, 表示原始样本的重构误差。
每个原始样本通过训练后的 VAE 网络得到的 a i 应

小于重构误差阈值 β ,但由于训练集中存在部分低质

量的数据,影响了 VAE 网络的重构能力,进而导致部分

原始样本的重构误差大于阈值 β ,故当 a i > β 时表示

该原始样本被误判为异常。 因此可以通过计算测试集

中原始样本被误判的异常数量,来量化训练集中生成

样本的质量。 被误判的异常数量越大,说明训练数据

中低质量的生成样本比例越高,对 VAE 网络的重构能

力产生了较大的负面影响,反之则表明训练集的质量

越高。
3)重复上述 1)和 2)过程 n 次,可以得到 n 个异常数

量。 选择 n 个异常数量中的最小值所对应的训练集作为

高质量生成样本集。



　 第 6 期 改进 GAN 数据增强的小样本管道漏磁缺陷识 别 ·147　　 ·

3　 本文方法的处理过程

　 　 针对由于管道漏磁信号复杂、真实样本较少导致的

深度神经网络类管道缺陷识别方法效果差的问题,本文

提出了基于改进生成网络的数据生成及误差重构筛选的

小样本管道漏磁分类识别方法。 首先引入高斯混合模型

从不同缺陷类别的分布中得到包含不同类别原始信号的

先验知识,实现生成器有针对性的学习特征;生成网络中

引入多头注意力机制,增强对关键特征的捕捉能力;生成

样本进一步通过筛选网络,改善样本的质量,最后用 4 种

机器学习算法对缺陷进行分类识别,比较增强效果。 本

文方法的整体流程如图 4 所示。

图 4　 本文方法处理过程

Fig. 4　 Procedure
 

of
 

the
 

proposed
 

method

　 　 步骤 1)噪声优化,将漏磁缺陷数据集按不同缺陷类

别分别进行聚类,来获得各类别的高斯混合分布。 然后

根据类别标签,可以得到服从对应高斯混合分布的噪声。
步骤 2)漏磁新样本生成,训练生成对抗网络模型直

至生成器和判别器达到平衡且网络收敛。 最终生成每个

类别的新漏磁样本集。
步骤 3)生成样本的筛选,从每种缺陷类型的生成样

本集中随机选择 m 个生成样本训练筛选网络。 重复随

机选择过程,选择最小的异常数量所对应的生成样本集

作为高质量生成样本集。
步骤 4)分类模型训练与缺陷识别,将生成样本与真

实样本合并,作为训练集来训练识别模型,实现管道缺陷

的识别。
本文研究了基于改进生成对抗网络及样本筛选的数

据增强类缺陷识别方法,为验证本文方法的样本生成质

量,选用 RF、 SVM、 多层感知机 ( multilayer
 

perceptron,
 

MLP)、KNN
 

4 种常用分类方法,实现小样本漏磁缺陷信

号的分类识别,并分析识别效果。
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4　 实验及结果分析

4. 1　 实验数据来源

　 　 为验证所提方法的有效性,进行实验数据处理及结

果分析。 缺陷数据来自直径 8
 

mm、壁厚 2
 

mm、总长 2
 

m
的小口径无缝钢管,通过机械加工,在管道上模拟产生凹

坑、凹坑+裂纹、裂纹 3 种缺陷,检测设备分别采集此 3 类

缺陷及正常管道漏磁共 4 种类型信号。 以连续 5 个信号

为窗口提取原始数据和梯度数据的最小值、最大值、平均

值等特征向量,漏磁缺陷特征样本数据集共 440 个样本,
其中各类训练样本 60 个,测试样本 50 个,如表 1 所示。

表 1　 缺陷状态标签及数量

Table
 

1　 Tags
 

and
 

quantity
 

of
 

defects
缺陷状态 标签 训练集 测试集

正常 0 60 50
凹坑 1 60 50
裂纹 2 60 50

裂纹+凹坑 3 60 50

4. 2　 本文方法在不同小样本下的缺陷识别结果

　 　 按照本文方法构建小样本漏磁缺陷分类识别网络,
每种缺陷类型的样本量分别为 5、10、20、30,并进行 10 次

重复实验,统计实验结果如表 2 所示。
表 2　 不同样本量下的缺陷识别结果

Table
 

2　 Identification
 

results
 

under
 

different
 

sample
 

sizes
样本量 分类方法 准确率 / % 标准差 / %

5

RF 60. 72 2. 20
SVM 58. 29 1. 34
MLP 58. 18 2. 78
KNN 60. 46 0. 95

10

RF 75. 99 0. 86
SVM 74. 74 0. 78
MLP 76. 02 1. 08
KNN 74. 84 1. 21

20

RF 86. 38 0. 74
SVM 87. 63 1. 34
MLP 86. 50 0. 88
KNN 87. 50 1. 47

30

RF 93. 03 0. 94
SVM 92. 78 1. 01
MLP 92. 68 0. 73
KNN 93. 33 0. 65

　 　 由表 2 可以看出,本文方法在样本相对较多的情况

下实现的缺陷分类识别准确率保持在 92%以上,样本极

少的情况下准确率仍可达到 60%,且具有较低的标准偏

差,表明了本文所提的方法在处理不同数量小样本下的

缺陷识别问题时总体效果较好,而且可以适用不同的分

类器。
4. 3　 改进 CWGAN-GP 的消融实验

　 　 为探究对生成模型改进噪声和引入多头注意力时,
生成的漏磁信号对缺陷分类识别效果的影响,重复 10 次

实验比较原始 CWGAN-GP、改进噪声、引入多头注意力、
同时改进噪声和引入多头注意力这 4 种生成模型在同一

小样本数量下的缺陷识别结果,并分析结果。 如图 5 和 6
均是在小样本量 30 的情况下引入不同方法的生成模型

准确率和 F1 得分的识别结果,其中 F1 指标可以衡量模

型整体的分类性能,是精确率和召回率的调和平均数。
图 5 中的分类器选用了 SVM。

图 5　 样本数量 30 情况下的消融实验准确率

Fig. 5　 Accuracy
 

of
 

ablation
 

experiments
 

with
 

sample
 

size
 

30

图 6　 样本数量 30 情况下的消融实验 F1 得分

Fig. 6　 F1
 

score
 

of
 

ablation
 

experiments
 

with
 

sample
 

size
 

30

从图 5 和 6 可以看出, 分别引入两种方法对于

CWGAN-GP 生成模型的准确率和 F1 均有不同程度的提

升,其中引入多头注意力机制相比于改进噪声方法效果

稍好,两种方法叠加对于原始模型的准确率提升了 5%
左右。

图 7 所示为原始生成模型和本文生成模型的损失函

数在不同迭代训练的变化对比。
由图 7(b)可以看到,本文模型在训练 500 次时,生

成器和判别器已经达到了平衡,且生成器学习速度较快,
在后续的训练中持续保持平稳;而原始模型在迭代 2

 

700
次时,生成器和判别器才达到平衡,训练过程中生成器
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图 7　 CWGAN-GP 改进前后的损失函数变化对比

Fig. 7　 Comparison
 

of
 

loss
 

variations
 

before
 

and
after

 

CWGAN-GP
 

improvement

　 　 　

的波动较为剧烈。
以上结果表明改进的生成模型可以更好的捕捉漏磁

信号样本的特征,从而提升生成器学习漏磁缺陷信号特

征的能力,提高有限样本下管道缺陷分类识别的准确度。
4. 4　 生成样本筛选的有效性验证

　 　 本文通过改进生成模型扩充缺陷信号样本数量,从
而提升管道分类识别的准确率,但生成质量不佳的样本

也会影响最终的缺陷分类准确度,为此对比了 3 种筛选

机制的处理结果,来验证本文所提筛选方法的有效性。
统计了在不同小样本训练下,生成样本数量同为 1

 

000
时,本文生成的漏磁信号经过无筛选、采用集成筛选方

法[28] 以及本文筛选方法 3 种筛选处理后的分类准确率

对比,识别部分选用了 RF、SVM、MLP、KNN
 

4 种分类器,
统计准确率结果如表 3 所示。

从统计结果可以看出,本文的筛选机制在不同数量

的小样本下,准确率均高于无筛选机制和集成筛选机制。
在真实样本为 5 的情况下,本文筛选机制准确率接近于

60%,明显高于无筛选方法。 在真实样本为 30 的情况

下,3 种方式的准确率较为接近,均可以达到 85%以上。
实验结果表明本文生成模型的性能较好,在样本数量较

多的情况下,筛选方法可以在一定程度上提升模型性能。
但在样本数量较少的情况下,生成的漏磁信号容易出现

质量不稳定的情况,采用本文的筛选方法可以选出生成

　 　 　
表 3　 不同筛选方法在不同分类器下及样本量的准确率

Table
 

3　 Classification
 

accuracy
 

of
 

different
 

screening
 

methods
 

across
 

various
 

classifiers
 

and
 

sample
 

sizes

方法 分类器
不同样本数量的准确率 / %

5 10 20 30

无筛选

RF 45. 66±0. 18 65. 11±0. 87 80. 75±1. 09 88. 29±0. 97
SVM 43. 28±1. 23 64. 63±0. 27 81. 47±1. 38 86. 63±0. 59
MLP 43. 95±0. 72 64. 28±1. 68 78. 52±0. 83 87. 34±0. 96
KNN 44. 71±0. 33 63. 18±0. 12 81. 93±0. 59 88. 61±1. 06

集成筛选

RF 56. 57±1. 81 71. 90±0. 44 84. 25±0. 88 89. 55±1. 34
SVM 53. 24±1. 14 71. 66±0. 35 86. 16±1. 51 90. 02±2. 64
MLP 53. 91±0. 63 72. 13±1. 41 83. 40±2. 46 88. 74±0. 93
KNN 54. 71±0. 33 72. 39±2. 42 84. 52±1. 66 90. 92±2. 27

本文

RF 59. 66±1. 26 75. 99±0. 13 86. 37±2. 72 93. 00±2. 75
SVM 57. 28±1. 50 74. 74±0. 72 88. 75±1. 31 92. 78±0. 77
MLP 56. 44±1. 42 76. 02±2. 81 86. 50±2. 74 92. 68±1. 31
KNN 59. 24±1. 24 74. 84±0. 43 87. 50±2. 25 93. 33±0. 20

质量更好的漏磁信号,从而较大程度上提升管道缺陷的

分类识别性能。
4. 5　 不同生成数量和筛选比例的比较

　 　 缺陷漏磁信号经生成模型生成的数量及筛选比例会

对缺陷识别模型的分类效果产生重要影响。 为探究不同

的样本生成数量以及筛选比例对识别结果的影响,实验

设置 500、1
 

000、1
 

500 三种不同的生成样本数量,以及

25%、50%、75%
 

3 种不同的筛选比例,用不同的分类器进

行 10 次重复实验,对缺陷分类识别效果进行分析,统计

结果如表 4 所示。
从表 4 可以看出,多组实验中,在相同的筛选比例

下,样本生成数量为 1
 

000 时准确率最高,且具有较好的

鲁棒性。 在相同样本生成数量下,随着筛选比例的增加,
分类识别准确率有一定程度的提高,但达到 75%时,准确
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率没有提升反而有所下降。 以上结果表明,选取合适的

生成数量和筛选比例对于提升样本生成的多样性、使生

成样本与真实样本有更接近的分布,从而提升缺陷识别

的准确率有重要作用。
表 4　 不同生成样本数量及筛选比例下的缺陷分类效果

Table
 

4　 Defect
 

classification
 

performance
 

under
 

varying
generated

 

sample
 

quantities
 

and
 

screening
 

ratios

不同筛选比例

25% 50% 75%
准确

率 / %
标准差

准确

率 / %
标准差

准确

率 / %
标准差

 

RF(500) 85. 83 1. 15 88. 35 0. 60 87. 5 0. 18
SVM(500) 85. 27 0. 32 89. 44 0. 85 88. 65 0. 65
MLP(500) 87. 84 0. 54 89. 46 0. 45 89. 52 1. 2
KNN(500) 86. 33 0. 12 90. 23 0. 58 88. 47 0. 11
RF(1

 

000) 88. 33 0. 12 93. 03 0. 4 91. 66 0. 13
SVM(1

 

000) 89. 16 0. 15 92. 78 0. 18 91. 40 0. 18
MLP(1

 

000) 89. 45 0. 10 92. 68 0. 21 90. 30 0. 27
KNN(1

 

000) 88. 50 0. 25 93. 33 0. 34 89. 56 0. 23
RF(1

 

500) 86. 52 0. 57 87. 47 0. 53 87. 5 0. 69
SVM(1

 

500) 85 0. 23 88. 64 0. 31 86. 96 0. 48
MLP(1

 

500) 84. 19 0. 59 87. 9 0. 39 85. 23 0. 57
KNN(1

 

500) 86. 54 0. 34 89. 23 0. 55 87. 19 1. 09

4. 6　 不同数据增强方法生成信号的比较

　 　 近年来,许多学者采用不同的 GAN 网络研究小样本

情况下的机械故障诊断,用于解决标注样本不足等问题,
其中 VAE-GAN[29] 、DCGAN[30] 、ACGAN-DC[31] 等是常见

的数据增强方法。 管道缺陷本质上是通过分析振动信号

而识别的故障,因此本节选用机械故障诊断领域常见的

3 种小样本数据增强方法与本文方法进行对比。 为对比

　 　 　

生成样本有利于分类判别,将不同增强算法生成的样本

进行特征提取结果用 t 分布随机近邻方法( t-distributed
 

stochastic
 

neighbor,
 

t-SNE)进行可视化如图 8 所示。

图 8　 不同增强方法的生成样本的 t-SNE 特征图

Fig. 8　 T-SNE
 

visualization
 

of
 

generated
 

samples
from

 

different
 

augmentation
 

methods

4. 7　 不同数据增强方法识别效果比较

　 　 由 4. 6 节可以看到,与常用信号生成方法相比,本文

方法生成信号的特征区分度更为明显。 为了比较不同方

法生成样本的故障诊断效果,将 4. 6 节的增强算法与本

文方法进行诊断性能对比。 每种缺陷类型小样本数分别

为 5、10、20、30,进行 10 次实验,4 种模型的分类识别结

果如表 5 所示。
表 5　 各数据增强方法在不同样本数量的准确率和 F1 得分

Table
 

5　 Performance
 

(accuracy / F1)
 

of
 

different
 

data
 

augmentation
 

methods
 

versus
 

sample
 

sizes

数据增强方法 分类器
5 10 20 30

Acc F1-score Acc F1-score Acc F1-score Acc F1-score

VAE-GAN

RF 0. 275
 

7 0. 233
 

6 0. 490
 

5 0. 486
 

6 0. 729
 

8 0. 729
 

6 0. 795
 

7 0. 795
 

1
SVM 0. 288

 

6 0. 226
 

8 0. 442
 

2 0. 397
 

1 0. 736
 

6 0. 734
 

4 0. 825
 

2 0. 826
 

1
MLP 0. 261

 

1 0. 171
 

1 0. 409
 

6 0. 390
 

8 0. 748
 

9 0. 747
 

0 0. 782
 

6 0. 783
 

7
KNN 0. 294 0. 226

 

8 0. 394
 

3 0. 337
 

4 0. 736
 

6 0. 734
 

7 0. 823
 

5 0. 824
 

3

DCGAN

RF 0. 255 0. 194
 

6 0. 422
 

8 0. 420
 

6 0. 719
 

0 0. 709
 

2 0. 816
 

1 0. 815
 

3
SVM 0. 278

 

7 0. 199
 

8 0. 410
 

6 0. 351
 

9 0. 730
 

7 0. 723
 

2 0. 810
 

2 0. 805
 

7
MLP 0. 247

 

7 0. 154
 

3 0. 396
 

9 0. 350
 

0 0. 741
 

7 0. 730
 

8 0. 794
 

9 0. 817
 

6
KNN 0. 280

 

1 0. 196
 

2 0. 405
 

6 0. 387
 

5 0. 723
 

9 0. 712
 

0 0. 814
 

2 0. 808
 

9

ACGAN-DC

RF 0. 310
 

1 0. 2921 0. 609
 

0 0. 598
 

1 0. 813
 

7 0. 812
 

9 0. 869
 

5 0. 866
 

2
SVM 0. 287

 

4 0. 254 0. 584
 

9 0. 573
 

1 0. 791
 

5 0. 790
 

5 0. 857
 

0 0. 852
 

7
MLP 0. 283

 

4 0. 2436 0. 557
 

0 0. 572
 

0 0. 815
 

5 0. 808
 

4 0. 841
 

0 0. 832
 

3
KNN 0. 310

 

6 0. 275
 

1 0. 604
 

7 0. 591
 

0 0. 822
 

0 0. 820
 

0 0. 859
 

0 0. 855
 

1

本文

RF 0. 607
 

2 0. 596
 

6 0. 759
 

9 0. 749
 

1 0. 863
 

8 0. 860
 

6 0. 930
 

3 0. 929
 

6
SVM 0. 582

 

9 0. 572
 

8 0. 747
 

4 0. 736
 

1 0. 876
 

3 0. 872
 

1 0. 927
 

8 0. 923
 

3
MLP 0. 581

 

8 0. 564
 

4 0. 760
 

2 0. 753
 

8 0. 865
 

0 0. 859
 

9 0. 926
 

8 0. 923
 

7
KNN 0. 604

 

6 0. 592
 

4 0. 748
 

4 0. 748
 

5 0. 875
 

0 0. 870
 

9 0. 933
 

3 0. 930
 

2
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　 　 为更直观的展示实验结果,将各类方法在不同样本

下取得的分类器平均准确率和 F1 得分对比如图 9 和 10
所示。

图 9　 不同样本数量下各模型的准确率

Fig. 9　 Accuracy
 

of
 

individual
 

models
with

 

different
 

sample
 

sizes

图 10　 不同样本数量下各模型的 F1 得分

Fig. 10　 F1
 

score
 

of
 

individual
 

models
 

with
 

different
 

sample
 

sizes

从表 5、图 9 和 10 可以看出,在样本量为 5 时本文方

法的识别效果显著优于其他 3 种方法,准确率可以接近

60%,而其他方法的准确率均低于 32%,同时本文方法的

F1 分数也显著高于其他方法。 表明了本方法在漏磁缺

陷信号数量极少的情况下也可以学习到重要的特征,相
较于其他方法生成的样本,具有和原始信号更为接近的

分布,而后续的生成样本筛选处理能够选出质量更好的

生成样本,进一步提高了模型的分类性能。
由表 5 和图 9 可知,随样本量不断增加,各类方法的

准确率均有所提升,当样本量为 30 时,本文方法和其余 3
种生成模型的准确率都能达到 80%以上,特别是本文方

法,平均识别准确率可以达到 93%。 实验结果表明,在样

本量增加的情况下,3 种对比方法均能够在不同程度上

提升漏磁信号关键特征的学习能力,但生成的样本没有

经过评估筛选机制,会导致生成质量不佳的漏磁信号影

响模型训练,从而导致最终的分类识别性能降低。 本文

方法则不仅优化了生成器的结构和噪声,而且建立了生

成信号的质量评估机制,从而提高了分类模型整体的性

能,因此本文方法在不同的有限样本数量下均可达到较

好的分类效果。

5　 结　 论

　 　 针对油气管道缺陷检测面临的原始漏磁信号数据量

有限、生成模型的学习能力和生成样本的质量影响分类

识别性能等问题,本文提出了基于多类别混合分布估计

和多头注意力机制的 CWGAN-GP 生成网络,并结合了基

于 VAE 重构误差的生成样本筛选的方法来扩充有限的

漏磁信号。 生成网络引入多头注意力机制,可以使生成

模型在多个角度关注漏磁缺陷信号的有效信息,从多类

别高斯混合分布中获取随机噪声来获得原始信号的先验

知识,提高了生成模型学习原始信号特征分布的能力;另
外本文对生成的信号建立了筛选方法,进一步改善了生

成信号的质量。 在有限的漏磁样本下,本文方法对管道

缺陷的分类识别准确率达到了 93%,且在数据量极少的

情况下对管道缺陷识别依旧可以取得较好的分类识别效

果。 综上所述,本文所提出的小样本分类识别模型,在漏

磁缺陷样本较少的情况下即可实现较好的缺陷分类识别

效果,为解决管道漏磁缺陷样本量不足提供了一种新

思路。
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