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Small samples defect recognition for pipeline magnetic flux leakage
based on improved GAN data augmentation
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Abstract ; In the study of pipeline magnetic leakage detection, intelligent recognition models often struggle due to the limited number and
significant variability of defect samples. To address this, a data augmentation method based on an improved Generative Adversarial
Network is proposed. A multi-class mixed estimation approach provides prior information to the generator, enhancing its random noise
input. A multi-head attention mechanism is integrated into the generator to capture global features, improving the quality of generated
samples. Additionally, a sample selection method based on variational autoencoder reconstruction error filters higher-quality generated
samples, improving the training efficiency of the recognition model. Finally, selected generated and original samples are combined to
form an augmented defect sample dataset. Classification methods are applied to classify the augmented leakage magnetic defect signals.
Results show that under small sample conditions, the proposed method achieves an average recognition accuracy of 93% , outperforming
similar methods.
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Fig.4 Procedure of the proposed method
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EH 0 60 50
Mg 1 60 50
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L+ ML 3 60 50
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Table 2 Identification results under different sample sizes

FEA R STk HEW /% P2/ %

RF 60. 72 2.20

SVM 58.29 1.34
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0 SVM 74.74 0.78
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RF 86. 38 0.74

SVM 87.63 1.34

20 MLP 86. 50 0.88
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RF 93.03 0.94

SVM 92.78 1.01

30 MLP 92. 68 0.73
KNN 93.33 0.65
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Fig.5 Accuracy of ablation experiments with sample size 30
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Table 3 Classification accuracy of different screening methods across various classifiers and sample sizes

, , ANTRIRE A B B TR 2 %
ik IR
5 10 20 30
RF 45. 66+0. 18 65. 11+0. 87 80.75+1. 09 88.29+0.97
PR SVM 43.28+1.23 64.63+0.27 81.47+1.38 86. 63+0. 59
Tohiiik

MLP 43.95+0.72 64.28+1. 68 78.52+0. 83 87.340. 96

KNN 44.71+0.33 63.18+0. 12 81.93+0. 59 88.61+1.06

RF 56.57+1. 81 71.90+0. 44 84.25+0. 88 89.55+1.34

e SVM 53.24+1. 14 71. 66+0. 35 86.16+1.51 90. 02+2. 64

4L B

MLP 53.91+0. 63 72.131. 41 83.40+2. 46 88. 74+0. 93

KNN 54.710.33 72.39+2.42 84.52+1. 66 90.92+2.27

RF 59.66+1.26 75.99+0. 13 86.37+2.72 93.00+2. 75

K SVM 57.28+1.50 74.74+0.72 88.75+1.31 92.78+0.77

MLP 56.44+1.42 76.02+£2. 81 86.50+2. 74 92.68+1.31

KNN 59.24+1.24 74. 84£0. 43 87.50+2. 25 93.33+0. 20
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Table 4 Defect classification performance under varying JOr éf:% ] ;
generated sample quantities and screening ratios @Eﬁw N . 34% i
" _ 25% _ 50% _ 75% N &a%;@
AT 0y T e T e 4
R/ % R/ % R/ %

RF(500)  85.83 1.15 88.35 0.60 8.5  0.18 (a) VAE-GAN (b) DCGAN
SVM(500) 85.27 0.32 89.44 0.85 88.65 0.65 ;%%% o W j\ z
MLP (500) 87.84 0.54 89.46 0.45 89.52 1.2 %*X@:;E * * 3
KNN(500) 86.33 0.12 90.23 0.58 88.47 0.11 %@ X e
RF(1000) 88.33 0.12 93.03 0.4 91. 66 0.13 *g”

SVM(1000) 89.16 0.15 92.78 0.18 91.40 0.18 =0 &
MLP(1000) 89.45 0.10 92.68 0.21 90. 30 0.27 5 é g?égﬂ Sﬁr
KNN(1000) 88.50 0.25 93.33 0.34 89.56 0.23 &

RF(1500) 86.52 0.57 87.47 0.53 87.5 0. 69 (¢) ACGAN-DC (d) A3CH
SVM(1 500) 85 0.23 88.64 0.31 86. 96 0.48 (d) Proposed method
MLP(1500) 84.19 0.59 87.9 0.39 85.23 0.57 I 8 Z:[ﬁ]igijﬂf E@Qzﬁi#ﬂ‘ﬂ‘] t-SNE 5|%?E|7§[
KNN(1500) 86.54 0.34 89.23 0.55 87.19 1.09
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Fig. 8 T-SNE visualization of generated samples

from different augmentation methods
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Table 5 Performance (accuracy/F1) of different data augmentation methods versus sample sizes

. \ . . 5 10 20 30
HIRMBIE AR Acc F1-score Acc F1-score Ace F1-score Ace F1-score
RF 0.275 7 0.233 6 0.490 5 0.486 6 0.729 8 0.729 6 0.795 17 0.795 1
VAE-GAN SVM 0.288 6 0.226 8 0.442 2 0.397 1 0.736 6 0.734 4 0.8252 0.826 1
MLP 0.261 1 0.171 1 0.409 6 0.390 8 0.748 9 0.747 0 0.782 6 0.783 7
KNN 0.294 0.226 8 0.394 3 0.337 4 0.736 6 0.7347 0.8235 0.824 3
RF 0. 255 0.194 6 0.4228 0.420 6 0.7190 0.709 2 0.816 1 0.8153
SVM 0.278 7 0.199 8 0.410 6 0.3519 0.730 7 0.723 2 0.810 2 0.805 7
DEGAN MLP 0.247 7 0.154 3 0.396 9 0.350 0 0.7417 0.730 8 0.794 9 0.817 6
KNN 0.280 1 0.196 2 0.405 6 0.3875 0.723 9 0.712 0 0.814 2 0. 808 9
RF 0.310 1 0.2921 0.609 0 0.598 1 0.813 7 0.8129 0.869 5 0. 866 2
SVM 0.287 4 0.254 0.584 9 0.573 1 0.791 5 0.790 5 0.857 0 0.8527
ACGAN-DC MLP 0.283 4 0.2436 0.5570 0.572 0 0.8155 0. 808 4 0.841 0 0.8323
KNN 0.310 6 0.275 1 0.604 7 0.591 0 0.8220 0.8200 0.859 0 0.855 1
RF 0.607 2 0.596 6 0.759 9 0.749 1 0.863 8 0.860 6 0.930 3 0.929 6
. SVM 0.5829 0.572 8 0.747 4 0.736 1 0.876 3 0.872'1 0.927 8 0.9233
X MLP 0.581 8 0.564 4 0.760 2 0.753 8 0.865 0 0.859 9 0.926 8 0.923 7
KNN 0.604 6 0.592 4 0.748 4 0.748 5 0.8750 0.870 9 0.9333 0.930 2
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