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基于自启发遗传算法的蒸汽发生器参数在线辨识∗
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摘　 要:针对压水堆核电站蒸汽发生器系统的强非线性特征,多参数耦合等因素导致的在线故障诊断算法稀缺的问题,提出一

种基于自启发遗传算法的蒸汽发生器参数在线辨识方法。 首先,基于参数辨识理论,构建模型驱动的自监督遗传算法框架,将
故障诊断问题转化为系统关键性能参数的辨识问题。 通过结合精细的系统机理模型,利用遗传算法将参数辨识任务重构为函

数优化问题,从而有效克服非线性系统以及系统方程高阶微分项的求解限制。 之后,构建基于动态时间规整适应度设计遗传算

法的参数辨识方法,使用拟牛顿梯度下降思想优化遗传算法种群迭代策略,将全局随机搜索策略替换为沿梯度方向的定向搜索

策略,解决了传统遗传算法收敛速度慢,难以满足在线系统参数辨识需求的问题。 最终,基于模型数据与真实系统仿真机数据

对提出的参数辨识方法进行性能验证,相较传统遗传算法降低了约 5%的参数辨识误差,并平均减少了 47%的算法收敛步数,
证明了基于自启发遗传算法的参数辨识方法的有效性。
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Abstract:
 

To
 

address
 

the
 

scarcity
 

of
 

online
 

fault
 

diagnosis
 

algorithms
 

caused
 

by
 

strong
 

nonlinear
 

characteristics
 

and
 

multi-parameter
 

coupling
 

in
 

pressurized
 

water
 

reactor
 

( PWR)
 

nuclear
 

power
 

plant
 

steam
 

generator
 

systems,
 

this
 

paper
 

proposes
 

an
 

online
 

parameter
 

identification
 

method
 

based
 

on
 

a
 

self-inspired
 

genetic
 

algorithm
 

( GA ).
 

First,
 

a
 

model-driven
 

self-supervised
 

GA
 

framework
 

is
 

constructed
 

based
 

on
 

parameter
 

identification
 

theory,
 

transforming
 

the
 

fault
 

diagnosis
 

problem
 

into
 

the
 

identification
 

of
 

key
 

system
 

performance
 

parameters.
 

By
 

integrating
 

a
 

high-fidelity
 

system
 

mechanism
 

model,
 

the
 

parameter
 

identification
 

task
 

is
 

reformulated
 

as
 

a
 

function
 

optimization
 

problem,
 

effectively
 

overcoming
 

the
 

limitations
 

imposed
 

by
 

nonlinearities
 

and
 

high-order
 

differential
 

terms
 

in
 

the
 

system
 

equations.
 

Subsequently,
 

a
 

parameter
 

identification
 

method
 

is
 

developed
 

by
 

designing
 

a
 

fitness
 

function
 

based
 

on
 

dynamic
 

time
 

warping
 

and
 

optimizing
 

the
 

GA
 

population
 

iteration
 

strategy
 

using
 

a
 

quasi-Newton
 

gradient
 

descent
 

approach.
 

This
 

replaces
 

the
 

global
 

random
 

search
 

strategy
 

with
 

a
 

gradient-directed
 

search
 

strategy,
 

resolving
 

the
 

slow
 

convergence
 

issue
 

of
 

traditional
 

GAs
 

and
 

meeting
 

the
 

requirements
 

for
 

online
 

parameter
 

identification.
 

Finally,
 

the
 

proposed
 

method
 

is
 

validated
 

using
 

both
 

model
 

data
 

and
 

real
 

system
 

simulator
 

data.
 

Compared
 

to
 

conventional
 

GAs,
 

it
 

reduces
 

parameter
 

identification
 

error
 

by
 

approximately
 

5%
 

and
 

decreases
 

the
 

average
 

number
 

of
 

convergence
 

steps
 

by
 

47%,
 

demonstrating
 

the
 

effectiveness
 

of
 

the
 

self-inspired
 

GA-based
 

parameter
 

identification
 

method.
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0　 引　 言

　 　 随着核能领域工业技术的不断发展,我国的压水堆

核电厂建设水平得到巨大的提升,其中的各项系统也表

现出复杂化和高度专业化的特征[1-3] 。 作为核电站的核

心功能设备之一,蒸汽发生器是一次侧回路与二次侧回

路热交换的连接枢纽,决定着核电站的发电效率[4] 。 鉴

于蒸汽发生器特殊的工作环境,任何故障都可能会对人

员安全与生态环境产生重大影响,因此为蒸汽发生器建

立快速反应的故障诊断机制具有重要意义。
在蒸汽发生器故障诊断领域,传统的故障诊断算法

存在显著局限。 模型驱动的故障诊断方法高度依赖于精

确的系统机理模型[5-6] 。 然而,蒸汽发生器作为同时涉及

热力学、流体力学、传热学等多物理场耦合的复杂系统,
建立精确的系统模型势必导致算法计算复杂度快速增

长,难以满足在线诊断需求。 数据驱动的故障诊断方法

依赖充足的标记故障数据[7-9] 。 但是蒸汽发生器在正常

生产过程中被严格管控,可获取的故障样本种类与数量

都极其有限,使得算法可用的训练数据集存在严重的类

别不平衡问题,进而影响诊断模型的泛化性能和可靠性。
近年来,随着对此类复杂系统认识的不断加深,通过

数字孪生[10] 等方法获取复杂系统工况数据变得更加便

捷。 以机理保真模型为基础、估计设备核心性能参数的

系统识别方法,也逐渐成为复杂设备数字孪生赋能的重

要研究内容,为故障诊断任务的技术升级给出新的方向。
参数辨识是通过对真实系统或仿真模型的输入和输出数

据进行分析和处理,以确定系统或模型中的参数值的过

程,与故障诊断任务和核心目标具有高度的相似,因此使

用参数辨识方法实现蒸汽发生器的故障诊断吸引了众多

研究者的关注。 梁倩云等[11] 针对蒸汽发生器二次侧回

路部分展开关键参数辨识工作,通过提取蒸汽发生器二

相流流速的多项式特征并对运转机制进行建模分析,结
合人工神经网络实现对阀门开度、参考水位和阀门 CV
值的辨识,平均误差率小于 0. 3%。 在类似系统的故障诊

断任务中也存在参数辨识方法的应用。 唐圣学等[12] 提

出的基于融合时域与时频域的故障特征和灰狼优化算

法(grey
 

wolf
 

optimizer,
 

GWO ) 的极限学习机 ( extreme
 

learning
 

machine,
 

ELM)辨识方法,针对核电棒控系统电

源的早期故障开展辨识工作。
但是现有的参数辨识方法仍然存在一定的应用局

限。 蒸汽发生器具有显著的非线性系统特征[13-14] ,并且

从现有的蒸汽发生器系统建模研究可以发现,系统功能

方程包含大量的高阶求导项,对数值求解带来困难[15] 。
这些因素会导致传统的参数辨识方法,如依赖线性化假

设的卡尔曼滤波[16] 等方法,难以发挥最佳的算法性能。

而其他基于梯度优化的参数辨识方法[17] 会更加容易陷

入局部最优困境,难以满足准确高效的参数辨识需求。
为解决此类问题,当前领域内的研究者选择使用智能优

化算法来摆脱非线性特征和梯度计算,将参数辨识任务

转化为函数优化任务。 Li 等[18] 针对以蒸汽发生器为代

表的非线性系统提出了线性变化粒子群算法,将非线性

系统参数辨识问题转化为参数空间的函数优化问题,利
用粒子群算法的并行搜索能力和迭代辨识技术实现系统

参数的估计。 同类方法还有张帅[19] 提出的基于遗传算

法(GA)的模型参数辨识方法辨识风扇叶片应变响应函

数,进而获取发动机叶片健康情况。 但是此类优化算法

仍然存在一定优化空间,粒子群算法更加依赖研究者对

粒子群权重的调参工作,而遗传算法则因随机搜索的策

略计算复杂度高难以满足在线诊断需求。
针对传统优化算法的局限,本文提出了一种基于自

启发遗传算法的蒸汽发生器系统参数在线辨识方法。 为

满足蒸汽发生器故障诊断任务需求,建立模型驱动的自

监督遗传算法框架,并建立基于动态时间规整( dynamic
 

time
 

warping,
 

DTW)适应度设计遗传算法的参数辨识方

法。 在压水堆核电站蒸汽发生器一次侧回路运行数据上

进行检验,结果表明相较于同类遗传算法而言,该参数辨

识方法在算法收敛速度以及参数辨识准确性上实现了较

大提升,为从工况数据中快速挖掘系统健康信息,实现流

程行业复杂系统的参数辨识提供一条新的路径。

1　 系统分析与研究方法

1. 1　 蒸汽发生器系统

　 　 压水堆核电站的蒸汽发生器是整个核动力系统中最

重要的部分,连接着核电站第一和第二回路,负责这两个

回路的热量交换以实现生产足量蒸汽推动汽轮机发电。
作为连接枢纽,蒸汽发生器中同时包含了两条回路的部

分模块。 以立式自然循环 U 型管蒸汽发生器为例(简称

蒸汽发生器),蒸汽发生器在结构功能上可以简化为数个

功能模块,其结构简图如图 1 所示。 其中属于一次侧回

路的功能模块较为单一,仅包括 U 型管内的工质,因此将

该模块统称为一次侧回路。 在二次侧回路中,根据工质

状态以及功能可以划分为下降段、过冷段、沸腾段、汽水

分离器以及蒸汽腔室共 5 个子模块。 整个蒸汽发生器系

统拥有一次侧工质入口,下降段给水共两个入口,一次侧

工质出口和蒸汽出口共两个出口。
在蒸汽发生器内部,一次侧管道的工质携带着反应

堆生产的热经由 U 型管与二次侧回路内部的工质进行换

热,将二次侧回路的工质由不饱和态转变为饱和液体和

饱和气体的混合物。 由于系统长时间处于高温高压的工

作环境,发生故障的风险和危害非常大,因此在蒸汽发生
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图 1　 蒸汽发生器结构简图

Fig. 1　 Steam
 

generator
 

structure
 

schematic

器工作的过程中对于系统内各项关键工作参数如腔体内

水位的检测非常重要。 但是系统极端的工作条件限制了

各项参数传感器的部署,这导致面向蒸汽发生器的系统

参数辨识任务相比其他系统更加复杂。 为描述蒸汽发生

器的系统工作特性,需要用到流体力学,传热学等多学科

知识,其中涉及了众多非线性微分方程,使蒸汽发生器系

统具有显著的非线性系统特征。 在此类复杂系统上应用

传统系统参数辨识方法如梯度法或牛顿法进行参数辨识

时,其局限性尤为突出。 这些方法往往会面临局部最优,
收敛速度过慢,以及人工调参过程复杂等问题,因此需要

针对蒸汽发生器的系统特征设计一种新的系统参数辨识

方法来解决问题。
1. 2　 遗传算法

　 　 遗传算法[20] 是一种受自然选择启发的随机全局搜

索优化算法,通过生成大量的可行解并根据适应度进行

种群迭代以逼近最优解。 遗传算法主要包括种群生成与

迭代、交叉、变异与选择共 4 部分核心操作。 遗传算法首

先根据问题背景,在一定范围内随机生成大量初始解,这
些解又被称为染色体,构成了一个种群,而染色体上承载

不同信息的片段被称为基因。 在不同的研究领域内,染
色体的具体形式存在一定差别,最主要的两种形式分别

为编码型(染色体的基因完全由二进制码构成)以及数

值定量型(染色体基因)。 每个染色体与问题最优解的

差距通过适应度函数进行选择,拥有高适应度的染色体

与问题最优解越相似,因此在筛选过程中被保留下来,成
为生成下一代种群的亲本个体,将包含最优解信息的染

色体传递到下一代,不断进化,而这个过程被称为遗传。
在遗传的过程中,下一代种群个体是通过上一代染色体

之间交叉或个体变异得来的,以保证可行解个体能覆盖

到更大的解空间。 生成的子代个体将继续通过适应度函

数进行筛选,并在后续种群的生成中遵循高适应度个体

拥有更多的交配机会这一准则。 在不断的种群迭代中,
低适应度个体将被淘汰,剩余的高适应度个体将愈发逼

近问题最优解。
遗传算法是一类算法的核心思想,不同的遗传算法

在适应度函数的定义以及染色体交叉变异的具体形式上

存在较大差别。 其中交叉变异的基本操作步骤如图 2
所示。

图 2　 遗传算法交叉与变异操作

Fig. 2　 Crossover
 

and
 

mutation
 

operations
 

of
 

genetic
 

algorithms

从图 2 可以看出,通过交叉操作,每个后代个体保留

了两个亲本的信息,通过结合高适应度个体的信息来寻

找拥有更高适应度的个体,是遗传算法中非常关键的环

节。 而变异环节是针对小部分个体随机改变其局部信

息,保证种群遗传信息多样性不在迭代过程中过度损失。
1. 3　 拟牛顿法

　 　 拟牛顿法是一种弥补牛顿法在求解搜索方向上的缺

陷而提出一种无约束目标最优化方法。 为了不断逼近问

题的最优解,拟牛顿法的搜索方向由式(1)决定。
xk+1 = xk - Bk▽f(xk) (1)

式中: Bk 为函数 f(xk) 的海森矩阵的逆矩阵的近似矩阵,
拟牛顿法通过不断寻找根据 Bk 求得 Bk+1 的函数关系来

使搜索方向不断更新,以此寻找优化问题的全局最优解。
因此拟牛顿法步骤如下:首先给出初始的 B0 作为出

发矩阵,同时确定初始迭代值 x0 和迭代停止阈值 ε > 0,
然后重复计算梯度 ▽f(xk) ,如果 ( | ▽f(xk) | ) < ε ,则
认为当前节点 xk 足够优秀,可以作为解并停止循环,否
则,更新搜索方向 dk =- Bk▽f(xk), 然后更新迭代点

xk+1 = xk + dk,根据更新后的迭代点更新Bk 为Bk+1。 如何

更新 Bk 是确定是何种拟牛顿法的依据。
本文 选 择 的 拟 牛 顿 法 是 DFP ( Davidon-Fletcher-

Powell)法,该种拟牛顿法的更新思路是使用 ΔBk 来更新

Bk,其中 ΔBk 为对称矩阵,定义如下:
ΔBk = βuuT + γvvT (2)

式中:
u = xk+1 - xk (3)
v = Bk(▽f(xk+1) - ▽f(xk)) (4)

β = 1
uT(▽f(xk+1) - ▽f(xk))

(5)

γ =- 1
vT(▽f(xk+1) - ▽f(xk))

(6)

在本文中, f(xk) 对应着个体的适应度,而 xk 对应着

由系统参数构成的向量。 ▽f(xk) 则利用了差分的方式

代替真梯度计算。

2　 基于优化遗传算法的参数辨识算法

2. 1　 优化遗传算法概述

　 　 传统遗传算法在蒸汽发生器的参数辨识任务中仅以
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系统参数作为染色体携带的信息,以全局搜索的策略进

行优化问题求解,计算复杂度高。 与传统遗传算法不同,
优化遗传算法将系统参数及其相关的近似海森矩阵绑定

为迭代对象,在种群迭代过程中根据近似海森矩阵指导

染色体完成交叉变异操作,根据交叉结果基于拟牛顿法

更新伴生的近似海森矩阵。 这样,在解空间中定向搜索

将代替随机搜索,从而节省计算时间,能够准确快速返回

参数辨识结果,实现在保证准确性的前提下提高算法效

率这一目标。 在面对复杂系统的参数辨识任务中的具体

实现流程如图 3 所示。

图 3　 优化遗传算法实现流程

Fig. 3　 Flowchart
 

of
 

the
 

implementation
 

of
 

the
optimized

 

genetic
 

algorithm

蒸汽发生器在设计时会给出详细的设计参数以及工

作性能指标的正常工作阈值,基于此类信息可以作为参

考辅助确定遗传算法的基础种群大小,最大迭代次数等

遗传算法超参数并为遗传算法制定合适的适应度函数。
根据适应度函数,对所有种群内个体进行评分,并将所有

个体根据适应度进行排序。 根据拟牛顿法提供的迭代

思路,以当前种群最优个体为标准,计算其他次优个体

向最优个体迭代的方向。 将迭代方向代替遗传算法中

变异方向,生成下一代个体,以此进行种群迭代,直到

达到迭代次数限制或最优个体满足需求。 此时最优个

体对应的参数序列即为当前蒸汽发生器的性能参数辨

识结果。
2. 2　 遗传算法构建方法

　 　 遗传算法的种群迭代主要策略是依据适应度的排

序,以对高适应度的个体处理为主,对低适应度个体保留

部分信息进行重置为辅。 针对遗传算法在参数辨识任务

中的应用存在适应度函数定义困难,算法收敛速度慢等

问题,本文提出包含 3 个方面的优化解决方案,保证改进

后的遗传算法能够高效准确的完成参数辨识任务。

1)基于保真模型的适应度定义

蒸汽发生器的主要性能参数涉及多个领域,例如传

热学涉及的传热系数以及有效传热面积,流体力学涉及

的工质流动阻力系数,管道工质流动截面积等。 为避免

不同参数之间因量级区别导致对适应度取值贡献出现显

著差别的问题,对系统涉及的所有参数进行归一化处理。
在生成初始种群时以 1 为基准值,在浮动范围内均匀随

机生成染色体。
在遗传算法中,适应度函数设计与研究对象高度关

联。 选择合适的适应度函数能够保证遗传算法的结果更

加贴合真实最优解。 蒸汽发生器系统的传感器主要布设

于循环回路的出入口,可以提供出入口工质的压强,温度

以及流量信息,但无法提供系统内部工质的相关数据。
基于现有的数据种类,结合系统仿真模型,本文提出将染

色体中蒸汽发生器的性能参数信息代入系统仿真模型,
获取当前染色体的仿真数据,以仿真信号与真实数据之

间的残差为基础设计适应度函数。 针对系统输出信号中

的一项,适应度的计算方式如下:

∑
n

i = 1
W i(

(X i - Y i)

max(eps, mean(X i,diff
2) )

) 2 (7)

D i = DTW(Y i,
 

Ŷ i) (8)

W i =
e

-λDi

∑
n

j = 1
e

-λD j

(9)

式中: X i 代表 i 时刻下实际信号值;Y i 代表 i 时刻下仿真

信号值;Ŷ i 代表 i时刻下真实信号值;λ 为权重调整参数;
D i 为仿真信号与真实信号的 DTW 距离; W i 为不同信号

之间用以评估关联度的适应度分配权重; X i,diff 代表实际

信号值的差分。
根据式(7) ~ (9)计算,总适应度为各个信号的适应

度加权求和而得。 根据适应度函数的定义,适应度数值

越低代表该染色体越贴近真实最优解。
2)基于梯度更新的染色体进化方法

遗传算法中的染色体进化过程实质上是种群根据一

定优胜劣汰策略进行自我迭代的过程。 种群的全部个体

会依据适应度计算结果进行排序,适应度数值越低,则代

表该个体对应参数更靠近真实系统参数,适应度越高。
传统遗传算法的种群迭代策略是针对初始种群通过

轮盘赌选择等方式完成筛选,并根据设定的概率完成父

代个体的交叉变异操作以生成下一代种群。 而蒸汽发生

器系统性能参数种类繁多且各参数均拥有不同的演化特

征,使用随机全局搜索的策略难以解决在线诊断任务对

于算法处理速度的要求。
为解决这样的问题,本文提出的种群迭代策略是根

据排序结果,将适应度前 30%的优秀个体选为亲本种群
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用于生成下一代种群;同时将适应度最低的 10%个体以

及参数组合超出蒸汽发生器正常工作阈值的个体进行重

新随机生成,这些重新生成的个体会直接加入下一代种

群。 在亲本种群内,对所有个体进行随机交叉操作,交换

系统参数信息,生成等量的第 1 代子代个体并计算子代

的适应度。 在子代生成后,为子代以及亲本个体更新其

对应的海森矩阵和梯度信息。 以生成的每个第 1 代子代

个体为基础,使用拟牛顿法获得向更优适应度前进的优

化方向与具体前进长度,以此获得第二代子代个体。
将亲本种群,第 1 代子代种群,第 2 代子代种群与再

生成种群结合,即可获得与初始种群等量的第 2 代种群,
完成一次种群迭代。 每次种群迭代记录种群的最优个

体,与上一次迭代的最优个体记录进行比对,如果最优个

体在一定迭代轮次内不再改变或者达到最大迭代次数限

制,则停止遗传算法迭代并将此时的最优解作为结果

返回。
3)基于拟牛顿法的启发式交叉变异方法

为解决传统遗传算法收敛速度慢的问题,本文提出

基于拟牛顿法的启发式交叉变异方法代替原随机交叉变

异的过程。 基于梯度下降的思路,结合上一代种群内染

色体和矩阵信息,拟牛顿法可以确定向更优适应度的搜

索方向和前进距离,将随机搜索替换为定向搜索,加快子

代种群向最优解收敛的速度。
每个第 1 代子代种群中的染色体均依靠亲本种群中

随机选择的两个不同染色体随机交换部分基因得来。 生

成的染色体会基于其亲本染色体确定其对应的近似逆海

森矩阵以及梯度信息。
第 2 代子代种群的染色体是基于第 1 代染色体进行

变异得来的。 变异是指使用拟牛顿法,利用第 1 代子代

染色体的近似逆海森矩阵和梯度信息计算得出该染色体

向更优适应度前进的方向以及距离,将计算结果与第 1
代染色体结合得到第 2 代染色体的操作。 与传统遗传算

法的单点变异或片段变异不同,在本文提出的变异过程

中,原染色体的每个基因根据计算结果均可能进行变动。
本文采用 DFP 法指导染色体进行交叉变异,在染色

体种群迭代的同时加入其近似逆海森矩阵和梯度矩阵的

迭代。 在初始化遗传算法种群时,为每个个体同时初始

化其近似逆海森矩阵为单位矩阵并计算初始梯度。 在初

始化过程中确定染色体中第 i 个基因梯度的计算公式

如下:

▽f(u) i =
( f(u) + deps·e i) - ( f(u) - deps·e i)

2·deps

(10)
式中: deps 为小量用于拟合微分; e i 代表染色体中第 i 个
基因对应的单位向量。 为完成初始化,选择以当前适应

度最优的染色体为参照个体,结合式(3) ~ (6)为所有染

色体确定近似逆海森矩阵的更新矩阵。 为了保证生成的

子代不会过度拟合,需要设置合适的平滑率加以限制,依
照式(11)完成更新。

Bk
new = σΔBk + (1 - σ)Bk (11)

式中: ΔBk 为基于 DFP 法得出的更新矩阵; σ 为平滑率,
至此完成全部染色体信息初始化。 第 1 代染色体在完成

交叉操作后,将以其亲本为参照个体,通过式(3) ~ (6)
完成矩阵信息的更新。 第 2 代染色体则基于线搜索的思

想结合式(12) ~ (14)确定具体前进方向与距离,并完成

染色体信息的确定。
u + = u + γ∗d (12)
γ∗ = argminγ f(u + γ▽f) (13)
d =- B▽f(u) (14)

式中: u 为当前染色体对应参数序列; u + 为更新后的位

置; γ∗ 为最佳搜索步长; ▽f 为适应度函数的梯度,指向

适应度提升的方向; d 为染色体参数前进方向的单位向

量。 为了确定最佳搜索步长,需要在一定范围内尝试多

个 γ 值使得 f(u + γ▽f) 取值最小, γ 的取值范围如下:
γ ∈ { sn lr | n ∈ {0,1,2,3,4,5}} (15)

式中: lr 为设定的学习率; s 为用于确定基础步长的

常数。
依据 DFP 法计算得出的平滑率,最佳搜索步长等经

验性参数会在种群迭代过程中被记录并作为一下轮种群

迭代时的初始参数参与计算以节省计算时间,提高算法

效率。
本文使用此种确定新一代子代的方法以代替传统遗

传算法中的变异操作,大大减少了计算量并保证子代具

有高适应度,从而实现针对传统遗传算法的优化。

3　 实验测试

　 　 本文采用实际工程中的真实复杂系统数据作为算法

验证基础,研究对象为某压水堆核电站蒸汽发生器的一

次侧回路部分,包括一次侧回路出入口工质的压强,温
度,质量流以及比焓。
3. 1　 仿真模型

　 　 通过实验测试使用的系统模型,对比基准为某核电

厂经历史运行数据校准后全工况模拟机,经完整模型简

化得来。 模型的输入输出为工质压强,温度,质量流以及

能量流。 模型建模方法使用了键合图理论作为主要建模

方法,记一次侧入口参数下标为 p1,一次侧出口下标为

p2,金属壁的参数下标为 m,模型如图 4 所示。
本文提出假设以简化系统模型,1)管内工质的流动

是一元的,建立方程只考虑工质的流速和压力流动方向

(轴向)的变化,不考虑其径向变化。 2)工质为不可压缩

流体。 3)在一定范围内假设沿管长热负荷均匀,即工质
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图 4　 一次侧回路键合图模型

Fig. 4　 Bond
 

graph
 

model
 

of
 

primary
 

side
 

loop

的传热量与管长成正比。 基于上述假设,一次侧回路系

统模型方程构建结果如下:

Qm =
2k1H1Wp1C l

k1H1 + 2Wp1C l
ΔT1 (16)

式中: k1 为一次侧传热系数; H1 为一次侧传热面积; C l

为一次侧工质比热容。

ΔP =
Wp1

2

C
(17)

Ep1 - E1 = Wp1C lΔTp1 (18)
式中: C 为导纳系数。

Qm = CmMmTm

.
(19)

式中: Cm 为金属壁比热容; Mm 为金属壁质量; Tm 为金属

壁温度。

ΔWp1 = Vρ·= V( ∂ρ
∂Pp2

P·p2 + ∂ρ
∂Tp2

T·p2) (20)

ΔE1 = Vh
·

p2 = V(
∂hp2

∂Pp2
P·p2 +

∂hp2

∂Tp2
T·p2) (21)

式中: V 为一次侧传热面积; hp2 为一次侧出口工质比焓;
ρ 为一次侧出口工质平均密度。
3. 2　 算法性能评价指标

　 　 本文提出的参数辨识算法是基于遗传算法改进而

来,采用的评价指标可以参考遗传算法的相关指标进行

设定,同时本文调研其他参数辨识算法的评价指标,综合

决定本节给出的评估指标。
本文提出的评价指标主要针对算法的两方面的性

能,分别是算法收敛速度以及参数辨识结果准确性。
由于遗传算法属于随机搜索算法的一种,算法收敛

速度是限制其性能的重要因素之一,也是许多改进型遗

传算法的优化目标。 在遗传算法中,设定同一循环终止

条件的情况下,耗费越少的计算步数完成搜索,则算法收

敛速度越快,算法性能越优秀。 因此,算法平均收敛步数

是评价基于遗传算法改进的参数辨识方法的评价指标

之一。
算法的参数辨识结果准确性会从两个方面进行评

估。 1)算法的参数辨识结果与标准值之间存在的偏移。
通过计算参数辨识结果与标准值之间的平均偏移比例,
平均偏移比例越低则代表参数辨识结果越接近标准值,
参数辨识效果越好。 2)根据参数辨识结果在实验模型上

进行信号仿真,比对仿真信号与实际信号之间的平均偏

移比例,平均偏移比例越小,则代表仿真信号越贴近真实

信号,更适合选为系统识别任务中的参数辨识方法。
3. 3　 对比算法

　 　 为对比本文提出的参数辨识方法的参数辨识准确度

与效率,本文选择了以下算法作为对比算法,包括原始遗

传算法,粒子群算法以及多种群-自适应遗传算法(multiple
 

population-adaptive
 

genetic
 

algorithm,MPAGA) [21] 和增强遗

传算法(enhanced
 

genetic
 

algorithm,
 

EGA) [22] 。
MPAGA 主要思想为在相同搜索空间中随机生成多

个子种群,多个子种群按照不同进化策略和遗传算子并

行搜索求解。 当各子种群进化到某代时,总体中最优个

体可传播到其他子种群中实现不同子种群个体之间相互

交流和协同进化。 完成迭代后 MPAGA 以多个种群内最

优秀的个体作为结果返回。
EGA 的主要思想为根据初始种群的适应度为所有

个体进行排序,并将种群均分为高适应度与低适应度两

组。 高适应度组进行交叉变异操作,低适应度组进行改

良变异替换过程,然后将产生的所有子代个体作为下一

代种群进入下一轮迭代。 完成迭代后种群内最优个体将

作为 EGA 算法的最终结果返回。
传统遗传算法以及现有的此类改进遗传算法均采用

的是选择组合式的种群迭代策略。 其本质是针对当前局

部最优解的随机排列重组并以小部分突变进行辅助,以
求更加贴近全局最优解。 此种算法遵循的求解策略缺乏

启发性,在应对复杂系统的参数辨识任务时的求解效率

有待验证。 而本文提出的改进遗传算法选择为种群迭代

策略中引入回归类启发性策略如梯度下降的思路,弥补

了传统算法的不足,因此选择此类算法作为对比进行

验证。
3. 4　 模型测试

　 　 本文根据仿真机提供的真实数据对 3. 1 中给出的一

次侧回路仿真模型进行验证。 以真实输入数据为模型输

入,通过最小二乘法结合蒸汽发生器设计参数对模型涉

及参数进行估计以确定参数浮动范围,将确定的参数代

入模型后求得仿真输出值与真实系统输出数据比对,结
果如图 5 所示。

根据图 5 可以看出,仿真模型和真实系统输出对比

残差小,代表模型拟合性满足后续算法测试需求。
3. 5　 实验设置与结果分析

　 　 验证本文提出的搜索优化遗传算法的实验设置思路
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图 5　 仿真模型输出与真实输出对比

Fig. 5　 The
 

simulation
 

model
 

output
 

is
compared

 

with
 

the
 

real
 

output

为使用同一输入数据,同一仿真模型以及初始参数设置,
使用搜索优化遗传算法与 3. 2 节的其他对比算法对数据

进行参数辨识。 根据算法评价指标小节的介绍,实验的

结果主要分为两部分,算法收敛速度评估与参数辨识效

果评估。
1)算法收敛速度

在算法收敛速度上,本文统计了传统遗传算法,
MPAGA、EGA 和本文提出的改进遗传算法( convergence-
guaranteed

 

genetic
 

algorithm,
 

CGGA) 在同一迭代终止条

件下的平均收敛步数,计算结果取小数点后两位,统计结

果如表 1 所示。
表 1　 算法平均收敛步数

Table
 

1　 Average
 

number
 

of
 

convergence
steps

 

of
 

the
 

algorithm
算法名称 算法平均收敛步数 最大收敛步数 步数收敛方差

CGGA 10. 35 14 3. 01
传统遗传算法 19. 84 26 5. 28

MPAGA 16. 12 19 4. 18
EGA 15. 56 20 4. 57

　 　 在算法收敛速度评估中,各算法在同一设备计算条

件下,对单帧单步数据的计算时间平均在 3 ~ 7
 

ms,无显

著差别,因此采取比对算法收敛步数的方式评估算法收

敛速度。 与传统遗传算法,MPAGA,EGA 对比,尽管后两

者从种群协同的角度辅助种群迭代,但这些算法均采取

全局随机搜索的求解策略使得算法收敛速度不能满足在

线故障诊断需求。 而本研究提出的优化遗传算法从搜索

策略上做出改进,使得算法收敛步数得到显著优化,最终

表现出表 1 的结果。
2)参数辨识效果

在参数辨识效果评估上,实验对比了改进遗传算法

与其他算法在参数辨识结果以及仿真信号结果上的差

异,结果如表 2 所示。

表 2　 算法参数辨识效果

Table
 

2　 Algorithm
 

parameter
 

identification
 

effect
算法名称 参数平均偏移 / % 信号平均偏移 / %

CGGA 2. 61 3. 78
传统遗传算法 7. 84 11. 21

MPAGA 5. 37 8. 24
EGA 4. 59 5. 17

粒子群算法 6. 62 9. 51

　 　 以工质出口压强为例,使用参数辨识结果与仿真模

型分别输出仿真结果,与真实数据进行对比,结果如图 6
所示。

图 6　 参数辨识结果仿真对比

Fig. 6　 Simulation
 

comparison
 

of
 

parameter
 

identification
 

results

由于故障在线诊断的要求,遗传算法等优化算法需

要严格限制种群最大迭代次数,使得遗传算法与 MPAGA
难以在达到最大迭代次数前有效收敛至最优解附近,进
而导致辨识效果不佳。 EGA 则受适应度分配策略影响,
在处理蒸汽发生器系统中与高阶微分项相关的参数时会

导致有效基因快速丢失。 粒子群算法则因权重设计对于

非线性系统适应性较差,导致算法难以发挥最优效果。
而本研究提出的优化遗传算法基于拟牛顿法确定向高适

应度参数序列的前进方向,结合线搜索方法准确判断合

适的参数前进距离,大大提高了最终参数辨识结果的准

确性,最终表现为表 2 和图 6 中结果。
根据上述实验结果,在所有参与实验的参数辨识算

法中,本文提出的搜索优化遗传算法的参数辨识算法在
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算法收敛速度以及参数辨识结果的准确性具有性能优

势,可以满足在线故障诊断需求。

4　 结　 论

　 　 本文针对压水堆核电站蒸汽发生器的故障诊断任务

需求,提出一种基于自启发遗传算法的参数在线辨识方

法。 针对蒸汽发生器非线性,多参数耦合特性导致的故

障诊断难题,建立模型驱动自监督的遗传算法框架,通过

优化方法实现系统关键性能参数辨识,满足故障诊断需

求。 针对传统遗传算法收敛速度慢的问题,提出基于

DTW 适应度设计遗传算法的参数辨识方法,引入拟牛顿

梯度下降法优化遗传算法种群迭代策略,有效加快了算

法收敛。 经过某压水堆核电站蒸汽发生器仿真机数据验

证以及与同类遗传算法的性能对比,证明本文提出的参

数辨识方法的有效性,实现了面向蒸汽发生器系统的参

数在线准确辨识。 未来可以继续改进的方向主要包括两

个方向,1)面向实际工程应用场景时,需要强化算法的并

行计算能力,进一步提高算法运行效率;2) 面向理论研

究,可以在精细系统机理模型与算法的配合上更进一步,
由系统模型挖掘性能参数之间的深层联系,进而针对性

缩小算法搜索空间,针对蒸汽发生器性能参数耦合问题

作出进一步优化。
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