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Endoscopic polyp detection based on lightweight improved RT-DETR

Wu Tao Wei Lisheng Shao Zigiang
(School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China)

Abstract; Aiming at the problems of significant differences in polyp size, complex intestinal environment, and limited medical diagnostic
equipment resources affecting detection accuracy in polyp detection tasks, a lightweight polyp detection model based on RT-DETR
improvement was proposed. Firstly, FasterNet is used as the backbone network of the RT-DETR model to reconstruct the FasterNet Block
module to divert redundant features while increasing attention to polyps. Secondly, the new module is designed to introduce Hilo high
and low frequency separation mechanism into the attention-based intrascale feature interaction ( AIFI) to separate local high frequency
details and low frequency global structures, and focus on key lesions in complex backgrounds. Finally, an SBA-FPN recalibration feature
fusion network is designed to replace the cross-scale feature fusion module (CCFM) to promote two-way fusion between features with
different resolutions and improve the multi-scale feature fusion effect. The experimental results show that compared with the original RT-
DETR model, the mAP@ 0.5 and mAP@ 0. 5:0. 95 values of the improved model are increased by 2.3% and 3. 0% respectively, and
the amount of parameters and calculations is reduced by 44. 4% and 48. 6% respectively. On the Br35H brain tumor dataset, the mAP@
0.5 of the improved model increased by 1.3%. It can be seen that the improved model not only meets the needs of automatic polyp
detection, but also meets the high-precision detection of generalized lesions in medical scenarios.
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Fig. 1 The overall structure of the lightweight RT-DETR model
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Fig. 7 Polyp sample images of the combined dataset
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Table 1 Ablation experimental results

Jrik M1 2 M3 44 45 e
JE IR vV vV vV vV v oV
FasterNet vV
it EF 2 vV vV

H-AIFI VvV vV
SBA-FPN vV
P/% 89.5 93.6 94.6 953 955 95.6

mAP@ 0. 5/% 95.2 958 96.2 96.4 97.2 97.5
mAP@0.5:0.95/% 73.4 74.2 75.2 75.6 75.3 76.4
Params/ ( x10°) 19.8 10.8 11.0 11.0 11.0 11.0
TF A RE/GFLOPS 56.9  28.6 29.1 29.2 29.1 29.2
MR/ fps 64.2 84.4 80.5 89.9 80.8 90.4
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0.5:0. 95 FHAL AL AL 23 5T 5. 1% (1. 0% F1 1. 8%, Ui,
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Table 2 Comparative experimental results

" mAP@0.5/ mAP@0.5: JEMiilHE/ Params/
] P/%
% 0.95/% GFLOPs  (x10%)
Faster R-CNN'?2) 92,1 9.6 - - -

sspt? 93.4 95.4 - 60.7 21.6
YOLOV7 93.2 94.4 72.2 106. 4 37.6
YOLOv8s  93.6 9. 1 73.4 28.6 11.1
YOLOvIOm  91.6 94.3 72.6 59.1 15.3
YOLOvIIm  95.0 95.7 75.2 68.2 20.0
RT-DETR  89.5 95.2 73.4 56.9 19.8
£ 95.6 97.5 76.4 29.2 11.0

% 2 nH R I & LB BRI T, el
REFRUAR LE AR RS IR B 5 B T SSD il Faster R-
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Fig. 8 Comparison of feature extraction effect
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Fig. 9  Comparison of mAP@ 0. 5 curves of different models

SR T TR BUANE . TIAS R BEREAS i (2 AN [] 20
BTFZAKRDA— BN, W2 M2 D, 4
KW, IR AR A B AR I T TRLEA S
2.5 BHEREITH

F T BT R e AR SR LR (19 2 A4, BT 3R AR
14 BR 225 AR W AT A DI 2800, ik BRI 1 A 2R 4 92 4k
AE T, I RE 23 5 We 4SS 0 7 AN ] 45 ik 2 A 1] 5% ) A 0 2k
R N TR Z MLRE ST, R Kvasir-SEG ,CVC-

ClinicDB H1 CVC-ColonDB 3 Ft 28 JF $ 48 4 o 47 #5584 1)I|
Y5, 1F ETIS-LaribPolypDB %04 42 [ i 17 M PP A, itk
Hh 55 YIS — SR 5 A SR AT X L AT, 25 R
3 iR,

R3 BEIREMEEITM

Table 3 Performance evaluation across datasets ( %)

i Test Dataset P R F1

SCHk[24]  ETIS-LaribPolypDB  83.2 71.6 77.0
Xiik[25]  ETIS-LaribPolypDB  83.2 71.6 77.0
SCHR[26]  ETIS-LaribPolypDB  63.9 81.7 71.7
XHik[27]  ETIS-LaribPolypDB  77.8 87.5 82.4
XHk[28]  ETIS-LaribPolypDB  82.3 91.8 86.8
YOLOv8s ETIS-LaribPolypDB ~ 74.9 69. 4 72.0
YOLOvIOm  ETIS-LaribPolypDB  71.6 55.1 62.0
YOLOvllm  ETIS-LaribPolypDB  80.6 70.3 74.2
RT-DETR  ETIS-LaribPolypDB  79. 6 64. 8 72.0

A3 ETIS-LaribPolypDB  85.2 71.7 78.6

H 2 3 A0, BRI FE ETIS-LaribPolypDB $t#i84E iy
WA H B F 800 3538 2] 85.2% . 71. 7%
78. 6% , K U SR IR T 3 B HE T 5. 6% .6. 9% 6. 6%, B
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Table 4 Generalization experimental results
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Fig. 10  Comparison of detection effects of different algorithms

HaE Params/
el P/% mAP@O.5/%
GFLOPs (x10%)
Faster R-CNN 93.0 93.9 - -
SSD 92.5 91.5 60.7 21.6
YOLOv7 92.0 94.0 106. 4 37.6
YOLOv8s 92.6 92.6 28.8 1.1
YOLOv10m 92.8 93.5 59.1 15.3
YOLOvI1m 92.2 93.9 68.0 20.0
RT-DETR 91.8 93.2 56.8 19.8
AL 93.3 94.5 29.2 11.0
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Fig. 11 Comparison of tumour detection effects
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