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基于轻量级改进 RT-DETR 的内窥镜息肉检测∗
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摘　 要:针对息肉检测任务中存在息肉尺度差异显著、肠道环境复杂,以及医疗诊断设备资源有限影响检测精度的问题,提出一

种基于 RT-DETR(real-time
 

detection
 

transformer)改进的轻量级息肉检测模型。 首先,采用 FasterNet 作为 RT-DETR 模型主干网

络,重构 FasterNet
 

Block 模块,分流冗余特征的同时提升对息肉的关注度;其次,设计了新模块,在内尺度特征交互( attention-
based

 

intrascale
 

feature
 

interaction,
 

AIFI)内部引入 HiLo(H-AIFI)高低频分离机制,分离局部高频细节和低频全局结构,聚焦复杂

背景下的关键病灶点;最后,设计选择性边界聚合-特征金字塔网络( SBA-FPN)重校准特征融合网络替换跨尺度特征融合模

块(cross-scale
 

feature
 

fusion
 

module,
 

CCFM),促进不同分辨率特征之间的双向融合,提升多尺度特征融合效果。 实验结果表明,
在公开的内窥镜息肉组合数据集上,与原始 RT-DETR 模型相比,改进模型 mAP@ 0. 5 和 mAP@ 0. 5:0. 95 值分别提高 2. 3%和

3. 0%,参数量和计算量分别减少 44. 4%、48. 6%。 在 Br35H 脑肿瘤数据集上,改进模型 mAP@ 0. 5 提高 1. 3%。 由此可知,改进

模型不仅满足息肉自动检测需求,而且满足医疗场景下泛化病灶的高精度检测。
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Abstract:
 

Aiming
 

at
 

the
 

problems
 

of
 

significant
 

differences
 

in
 

polyp
 

size,
 

complex
 

intestinal
 

environment,
 

and
 

limited
 

medical
 

diagnostic
 

equipment
 

resources
 

affecting
 

detection
 

accuracy
 

in
 

polyp
 

detection
 

tasks,
 

a
 

lightweight
 

polyp
 

detection
 

model
 

based
 

on
 

RT-DETR
 

improvement
 

was
 

proposed.
 

Firstly,
 

FasterNet
 

is
 

used
 

as
 

the
 

backbone
 

network
 

of
 

the
 

RT-DETR
 

model
 

to
 

reconstruct
 

the
 

FasterNet
 

Block
 

module
 

to
 

divert
 

redundant
 

features
 

while
 

increasing
 

attention
 

to
 

polyps.
 

Secondly,
 

the
 

new
 

module
 

is
 

designed
 

to
 

introduce
 

HiLo
 

high
 

and
 

low
 

frequency
 

separation
 

mechanism
 

into
 

the
 

attention-based
 

intrascale
 

feature
 

interaction
 

( AIFI)
 

to
 

separate
 

local
 

high
 

frequency
 

details
 

and
 

low
 

frequency
 

global
 

structures,
 

and
 

focus
 

on
 

key
 

lesions
 

in
 

complex
 

backgrounds.
 

Finally,
 

an
 

SBA-FPN
 

recalibration
 

feature
 

fusion
 

network
 

is
 

designed
 

to
 

replace
 

the
 

cross-scale
 

feature
 

fusion
 

module
 

( CCFM)
 

to
 

promote
 

two-way
 

fusion
 

between
 

features
 

with
 

different
 

resolutions
 

and
 

improve
 

the
 

multi-scale
 

feature
 

fusion
 

effect.
 

The
 

experimental
 

results
 

show
 

that
 

compared
 

with
 

the
 

original
 

RT-
DETR

 

model,
 

the
 

mAP@ 0. 5
 

and
 

mAP@ 0. 5:0. 95
 

values
 

of
 

the
 

improved
 

model
 

are
 

increased
 

by
 

2. 3%
 

and
 

3. 0%
 

respectively,
 

and
 

the
 

amount
 

of
 

parameters
 

and
 

calculations
 

is
 

reduced
 

by
 

44. 4%
 

and
 

48. 6%
 

respectively.
 

On
 

the
 

Br35H
 

brain
 

tumor
 

dataset,
 

the
 

mAP@
0. 5

 

of
 

the
 

improved
 

model
 

increased
 

by
 

1. 3%.
 

It
 

can
 

be
 

seen
 

that
 

the
 

improved
 

model
 

not
 

only
 

meets
 

the
 

needs
 

of
 

automatic
 

polyp
 

detection,
 

but
 

also
 

meets
 

the
 

high-precision
 

detection
 

of
 

generalized
 

lesions
 

in
 

medical
 

scenarios.
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0　 引　 言

　 　 结直肠癌已成为世界上第二大常见的恶性肿瘤,其
主要来源于结直肠内息肉,通过内窥镜检查并切除息肉

可以降低结直肠癌的发病率[1] 。 针对息肉检测过程中存

在背景干扰且易受人工经验性、疲劳度等主观因素的影

响,导致出现漏诊和误诊的问题。 为提高息肉检测的准

确度,保证其实时性,计算机辅助诊断系统被广泛应用于

息肉检测。 因此,如何更好地实现智能化的息肉检测具

有重要的研究意义。
内窥镜息肉检测的研究工作,以机器学习方法和深

度学习方法为主要研究方向。 传统的机器学习方法通过

人工提取特征并采用合适的分类器进行目标检测[2] 。 机

器学习方法过分依赖人工经验,效率较低。 随着深度学

习的兴起[3] ,卷积神经网络(convolutional
 

neural
 

network,
 

CNN)逐渐成为息肉检测任务的主流[4] 。 常见的深度学

习息肉检测方法分为有锚点框方法和无锚点框方法。 为

了精确定位肿瘤并辨别息肉和腺瘤,杨昆等[5] 对双阶段

检测算法 Faster
 

R-CNN 进行改进,通过数据集图像增强,
采用改进网络进行训练,实现了更高的息肉检测精度。
但模型依然存在对不同病灶区分度低的问题。 为此,He
等[6] 针对 Faster

 

R-CNN 进一步优化,通过增加批量归一

化卷积层,构建混合损失函数,采用预训练卷积结构和随

机梯度下降法测试最优特征提取网络。 然而,双阶段检

测算法相对单阶段检测算法速度较慢,检测成本更高,因
此在实际应用中单阶段检测算法更加常见。 针对结肠病

变检测中出现漏检、误检的问题,Gao 等[7] 基于 YOLOv5
设计 YOLOv5x-CG 架构,采用 Mosaic 数据增强提高小目

标息肉检出率,引入 CA 注意力机制实现病理特征有效

提取,加快模型检测速度。 但模型计算资源消耗较大,无
法做到实时检测效果。 于是设计轻量级 YOLOv7 模型,
采用 CNeB 模块提取病灶区域特征,加入 SPD-Conv 缓解

步进卷积引起的细粒度损伤,引入 SIoU 损失函数实现快

速收敛, 有效提高检测精度和效率[8] 。 杨昆等[9] 在

YOLOv4 主干网络集成卷积块注意力模块( CBAM),剪枝

特征融合层并优化网络结构,在不影响检测性能的情况

下,模型计算复杂度和参数量进一步降低。
随着 Transformer[10] 成为自然语言处理的基准范式,

研究者们开始探索更多基于无锚点框的检测方法。
DETR(detection

 

transformer) [11] 作为该领域代表,采用端

到端检测方式,无需候选框生成和非极大值抑制( non-
maximum

 

suppression,
 

NMS)等后处理步骤,简化了检测

流程。 Deformable
 

DETR 作为息肉检测框架,采用不同损

失函数和测试时间增强进行分析,实验表明所提方法的

有效性,但模型依然存在参数量较大的问题[12] 。 为此,

刘 亚 蒙 等[13] 通 过 在 RT-DETR ( real-time
 

detection
 

transformer)的主干网络中集成轻量级 FasterNet
 

Block 模

块,引入 SimAM 注意力机制,采用 MPDIoU 损失函数加

快收敛速度,缓解轻量化造成的算法精度下降。 可见,具
有端到端训练优势的 Transformer 架构能够有效应用于息

肉检测。 然而,内窥镜息肉区域存在多尺度问题,模型无

法有效捕捉病变的全局特征和局部细节。 此外,息肉与

正常组织之间存在边界模糊,模型检测性能可能因此下

降。 同时,大多数模型对计算资源消耗较大,无法实现较

好的实时检测效果。
针对以上研究仍然存在的问题,本文以兼顾高效混

合编码器和多尺度特征融合的 RT-DETR[14] 为基底模型,
探究一种更加轻量化,检测效果更优的端到端息肉检测

模型。
针对息肉多尺度分布且模型参数量较大,研究采用

更加轻量化的 FasterNet[15] 作为主干网络,重构 FasterNet
 

Block 模 块, 采 用 多 层 部 分 卷 积 ( partial
 

convolution,
 

PConv)进行特征提取,降低模型参数量的同时增强对关

键病灶特征的敏感度,提高检测准确率。
针对复杂背景下无法聚焦关键病灶点,内尺度特征

交互( attention-based
 

intrascale
 

feature
 

interation,AIFI) 模

块内部引入 HiLo 高低频分离机制[16] 分离特征图的高频

与低频信息,弱化复杂背景对息肉检测的干扰,增强模型

对小息肉和复杂特征的提取能力。
针对息肉与正常组织之间存在边界模糊,设计选择

性边界聚合-特征金字塔网络( SBA-FPN) 重校准特征融

合网络,通过高分辨率特征与低分辨率特征之间双向融

合机制,增强特征保留能力,提高息肉检测精度。

1　 改进 RT-DETR 算法检测原理

　 　 RT-DETR 作为端到端目标检测框架,摒弃了传统目

标检测算法的 NMS 处理,检测速度和精度均优于现有的

实时检测器。 研究采用 RT-DETR-r18 作为基准模型,其
主要由主干网络、混合编码器、交并比( IoU)感知查询选

择以及预测解码器 4 部分组成。 主干网络 ResNet18 进

行特征提取,捕捉图像中局部和全局信息,输出 S3、S4、
S5 不同层级特征作为编码器输入;混合编码器通过 AIFI
和跨尺度特征融合(CCFM)将多尺度特征转化为结合上

下文信息的丰富图像特征表示;IoU 感知查询选择通过

优化查询选择机制,从编码器输出序列选择一定数量图

像特征作为预测解码器初始查询对象,提高预测分析的

准确性;预测解码器通过辅助预测头迭代优化对象查询,
生成边框和置信度分数,将特征映射转换为最终检测

结果。
尽管 RT-DETR 算法在多个具有挑战性数据集表现
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出色, 实 现 了 高 的 实 时 性 与 准 确 性。 然 而, 基 于

Transformer 架构对计算资源和时间的需求较为庞大。 因

此,本文基于 RT-DETR 设计一种轻量级内窥镜息肉检测

模型。 如图 1 所示,首先,改进模型采用 FasterNet 作为主

干网络,通过重构 FasterNet
 

Block 模块,简化模型结构并

消除干扰特征的冗余,提高息肉检测的效率与准确性;其
次,由于研究选择 4 种公开的内窥镜息肉数据集,部分图

像存在复杂背景且息肉之间具有高度相似性,模型在

AIFI 内部引入 HiLo 高低频分离机制,组成 H-AIFI 模块,
分离特征图的高频和低频信息,弱化复杂背景对检测任

务的影响,增强模型对息肉的聚焦能力;最后,设计 SBA-
FPN 重校准特征融合网络,选择性聚合边界信息与语义

信息,进一步提升多尺度特征融合效果,提高息肉的检测

精度。

图 1　 轻量化 RT-DETR 模型整体结构

Fig. 1　 The
 

overall
 

structure
 

of
 

the
 

lightweight
 

RT-DETR
 

model

1. 1　 重构 FasterNet 主干网络

　 　 主干网络作为模型中的关键部分,其设计和结构直

接决定模型的整体性能。 RT-DETR 采用 ResNet 系列作

为主干网络,通过深度残差结构提取图像中关键空间特

征信息。 然而,ResNet 的深层网络架构虽具有强大表征

能力,但其复杂层级设计在处理高分辨率医学图像时存

在计算冗余,制约了模型实际部署效率。
为减少医疗诊断设备所需的高昂计算成本,研究采

用 FasterNet 网络作为主干网络进行图像特征提取。
FasterNet 通过部分卷积操作,对重要局部病灶特征具有

高敏感度。 同时,网络的轻量级架构使其拥有较少的计

算资源消耗。 具体来说,网络主要包含 4 个层级,每一层

级前都包含嵌入层( embedding)或合并层( merging)。 首

先,网络通过嵌入层和合并层进行空间下采样和通道拓

展。 嵌入层从输入图像提取初始特征,为后续检测提供

丰富的病灶信息。 合并层整合不同层级的语义信息,提
高模型对关键病灶点的识别能力。 其次,FasterNet

 

Block
中 PConv 和逐点卷积(pointwise

 

convolution,
 

PWConv)提

取局部特征并处理全局信息,增强特征表达能力,实现特

征的深度融合。 最后,网络通过全局平均池化、1×1 卷积

和全连接层进行特征转换并分类,输出最终检测结果。
针对 FasterNet 进行深入分析,FasterNet

 

Block 仅使

用一个 PConv
 

3×3 模块,无法有效提取输入的病理特征,
容易忽略特征的空间维度关系,其限制模型学习更复杂

特征。 因此,本文在第 1 个 PConv
 

3×3 后加入新的 PConv
 

3×3 扩大模型的感受野范围,进一步对已提取特征进行

加工,挖掘更深层次的空间信息。 在保留较多原始信息

的基础上,对特征进行两次局部的细化处理,更好地识别

息肉的形状和纹理。 同时引入残差连接,避免多层卷积

过程中丢失重要细节,促进模型学习有效特征表示。 重

构模型如图 2 所示,该结构在增加较少参数的前提下,有
效融合了所有通道信息,优化了模型在更大范围内对关

键病灶特征的聚焦能力,在部分卷积操作后,通过添加批

归一化 BN 层和 ReLU 激活层,保持特征多样性并减少特

征延迟,为高精度的息肉检测奠定基础。
FasterNet 网路中 PConv 通过保持其他特征通道不变

的情况下,只在部分输入通道应用常规卷积进行特征提

取。 PConv 的 浮 点 运 算 ( floating-pointing
 

operations,
 

FLOPs)低于 Conv,可以更好利用设备计算能力,有效提

取空间特征。 因此,在主干特征提取网络中集成 PConv
算子可以显著减少计算需求和内存访问,实现模型的轻

量化并提升推理速度。
标准 3×3 卷积和 PConv 的 FLOPs 分别表示为:
FConv = H × W × K2 × C2 (1)
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图 2　 重构的 FasterNet 结构

Fig. 2　 Reconstructed
 

FasterNet
 

structure

FPConv = H × W × K2 × Cp
2 (2)

式中: W 和 H 分别是输出特征图的高度和宽度; K 是卷

积核的大小; C 是每个 3×3 卷积内核的通道数; Cp 是每

个 PConv 卷积内核的通道数。 每个 PConv 仅需对 1 / 4 通

道进行卷积操作,较原来的 3×3 卷积参数量更小,使其浮

点计算量仅为 3×3 卷积的 1 / 16。
1. 2　 H-AIFI 模块

　 　 AIFI 模块作为 RT-DETR 实现高效实时目标检测的

核心组件,采用层级化特征交互机制对 S5 级特征进行优

化。 AIFI 中的多头自注意力 ( multi-head
 

self-attention,
 

MSA)机制通过并行处理架构,使各注意力头能够提取不

同表示子空间的特征信息,捕获全局依赖关系。 然而,面
对内窥镜下的息肉检测任务,肠道内部环境复杂,息肉与

正常组织颜色高度相似,MSA 通常只保持对所有图像块

的全局关注,忽视了特征存在的不同基础频率,无法有效

区分高频的息肉边缘信息和低频的图像背景信息。 由于

MSA 缺乏有效的解耦策略,这种局限在检测小息肉时更

加明显,同时也带来了较高的计算资源消耗。 为克服这

一限制,提高模型在肠道内部复杂环境下对息肉的识别

效果,本研究引入 HiLo 高低频分离机制代替 MSA,设计

H-AIFI 模块,改进结构如图 3 所示。
H-AIFI 能够同时捕捉息肉图像中高频细节特征和

低频结构特征,进一步优化特征交互和提取过程,从而增

强模型对医疗复杂场景的处理能力。 HiLo 由低频注意

力( low-frequency
 

attention,
 

Lo-Fi) 和高频注意力( high-
frequency

 

attention,
 

Hi-Fi)两部分组成,结构如图 4 所示。
首先,Hi-Fi 通过局部窗口自注意力(如 2×2 窗口) 提取

息肉的边缘和轮廓,Lo-Fi 对每个窗口应用平均池化捕获

内窥镜图像背景等低频特征信息,并将池化后特征映射

到键 ( key,
 

K ) 和值 ( value,
 

V ) 中, 同时 Lo-Fi 的查

询(query,
 

Q)仍然来自原始特征图;其次,Lo-Fi 和 Hi-Fi
中不同局部窗口自注意力结果通过缩放点积注意

图 3　 H-AIFI 模块

Fig. 3　 H-AIFI
 

module

力(scaled
 

dot-product
 

attention,
 

SDPA)后进行拼接,拼接

特征信息经过线性投影层(projection)进一步整合并转换

融合;最后,高频和低频注意力输出特征再次拼接组成更

加全面的特征表示。
HiLo 注意力机制将多头自注意力中相同数量的磁

头分为两组,分组比为 α 。 其中 (1 - α)Nh 磁头用于 Hi-
Fi,其余 αNh 磁头用于 Lo-Fi。 Hi-Fi 利用局部窗口注意力

提取特征图高频细节,Lo-Fi 通过平均池化简化计算,处
理大尺度背景和全局特征。 同时,由于每个注意力的复

杂度都低于标准多头自注意力,因此确保了 HiLo 整体框

架的低复杂度,并且保证了模型在 GPU 上的高吞吐量。
H-AIFI 的计算公式如下:
Q = K = V = Flatten(S5) (3)
H - AIFI(x) = [Hi-Fi(x)·Lo-Fi(x)] (4)
F5 = reshape(H-AIFI(Q,K,V)) (5)

式中: Flatten 表示将 S5 特征展平并重新排列;[·]表示

concat 拼接操作; reshape 表示将处理后特征图恢复原始

空间维度和通道数; Hi-Fi 表示高频注意力操作; Lo-Fi
表示低频注意力操作。
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图 4　 HiLo 注意力机制结构

Fig. 4　 HiLo
 

attention
 

mechanism
 

structure

1. 3　 SBA-FPN 重校准特征融合网络

　 　 在 RT-DETR 的颈部网络中,CCFM 能够融合不同层

级特征,并迭代细化特征表达提高检测的精度与稳定性。
然而,对于内窥镜息肉检测任务,息肉尺度变化较大,模
型在处理多尺度特征融合时存在融合不充分,容易忽视

高分辨率特征与低分辨率特征之间关系。 具体来说,浅
层特征层语义信息较少,主要包含息肉的边缘、纹理等细

节信息,有更明显的边界和较少的失真。 深层特征层蕴

含丰富语义信息,更利于理解息肉全局结构,并结合上下

文信息提高检测精度。 因此,直接融合低级特征和高级

特征可能导致信息的冗余与特征表达不一致。 为了更好

结合深层特征图高维信息与浅层特征图特征,参考文献

[17],采用 SBA 模块对不同层级特征进行双向融合,挖
掘深层特征与浅层特征之间互补性,进一步提高多尺度

特征融合效果。
SBA 模块结构如图 5 所示,SBA 通过聚合关键边界

和语义信息,增强多尺度目标检测性能,从而实现息肉边

缘轮廓的亚像素级定位精度提升。 具体来说,为了更精

细融合不同层级特征,重校准注意力单元( re-calibration
 

attention
 

unit,
 

RAU)在特征融合之前,通过自适应机制对

来自编码器深层语义信息和主干网络浅层边界细节信息

的两个输入特征 (Fs,Fb) 进行协同重校准,构建具有判

别性的多尺度特征表示,从而提取不同层级特征的互补

信息。
RAU 单元结构如图 6 所示,针对高层特征边界丢失

细节与低层特征语义上下文信息不足的问题,通过差异

化的重校准注意力单元处理机制,实现多层次特征的自

适应优化。
为融合经 RAU 增强后的特征,两个重校准注意力单

元输出会经过 3 × 3 卷积层进行整合。 RAU 函数公式

图 5　 SBA 模块结构

Fig. 5　 SBA
 

module
 

structure

图 6　 RAU 单元结构

Fig. 6　 RAU
 

unit
 

structure

如下:
T′1 = Wθ(T1),T′2 = Wϕ(T2) (6)
RAU T1,T2( ) = T′1☉T1 + T′2☉T2☉ 􀱉 T′1( )( ) + T1

(7)
式中: T1 和 T2 表示通过 Wθ(·) 和 Wϕ(·) 处理的输入特

征,其使用 1×1 卷积将通道维度减少到 32,生成 T′1和T′2;
运算符号☉表示逐元素相乘,􀱉(·)表示 T′1的补集。
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SBA 的模块流程如下:
Z = C3 ×3(Concat(RAU(Fs,Fb),RAU(Fb,Fs)))

(8)
式中: C3×3(·) 表示带有批归一化 BN 层和 ReLU 激活层

的 3×3 卷积; Fs ∈ R
H
8 × W

8 ×32
包含编码器生成的深层语义

信息; Fb ∈ R
H
4 × W

4 ×32
包含主干网络的丰富边界信息;

Concat(·)表示沿通道维度进行拼接,最终生成 SBA 模

块的输出 Z ∈ R
H
4 × W

4 ×32
。

SBA-FPN 重校准特征融合网络继承了 SBA 模块的

双向融合优势,通过高分辨率与低分辨率特征之间的交

互增强,实现更充分的信息传递与特征互补,进一步增强

模型对关键病灶特征的关注度。 同时,借助自适应注意

力机制,模型能够根据特征图的分辨率与内容动态调整

特征权重,更精准地捕捉息肉多尺度特征,进一步提升模

型对复杂医疗场景的适应能力。 过程表示如下:
FOutput = SBA - FPN({S3,S4,F5}) (9)

式中: S3 表示浅层级特征图; S4 表示中层级特征图; F5

表示深层级特征图。

2　 实验与分析

2. 1　 实验数据集

　 　 本文实验从 Kvasir-SEG[18] 、CVC-ClinicDB[19] 、CVC-
ColonDB[20] 和 ETIS-LaribPolypDB[21] 4 种公开数据集中获

取内窥镜息肉病灶图片作为研究数据集。 Kvasir-SEG 数

据集包含 1
 

000 张息肉图像以及对应的息肉标注信息。
其中,息肉在大小、形状和颜色上各异。 CVC-ClinicDB 数

据集包含从西班牙巴塞罗那医院提供的 29 个结肠镜检

查视频中提取的 612 帧息肉病灶图像,其涵盖了多种清

晰度和光照条件的图像,更加接近实际临床场景。 CVC-
ColonDB 由来自 15 个不同视频的 380 个结肠息肉图像组

成,包含不同形态的息肉,包括扁平息肉和带蒂息肉。
ETIS-LaribPolypDB 数据集包含从 34 个内窥镜视频采集

的 196 张息肉图像,该数据集中息肉尺寸较小,也常被用

作测试集使用。
根据其标注信息通过 python 编写代码得到每张图像

的边框标签用于训练。 将数据集统一为病灶( lesion)一

个大类,总共有 2
 

188 张图像,按照 7 ∶ 1 ∶ 2 随机划分为

训练集、验证集和测试集。 其中训练集 1
 

531 张,验证集

219 张,测试集 438 张。 同时,在训练过程中对数据集进

行数据增强,提高模型的泛化性,防止过拟合。 图 7 所示

为上述 4 组公开数据集的精选息肉样本和对应的边框注

释标签,包含不同尺寸大小以及复杂环境(反光、肠道填

充物、气泡和褶皱等)下的内窥镜息肉图像,直观呈现了

每个数据集的不同风格特征。

图 7　 组合数据集的息肉样本图像

Fig. 7　 Polyp
 

sample
 

images
 

of
 

the
 

combined
 

dataset

2. 2　 实验配置与测评标准

　 　 本文实验采用的硬件配置为 i5-12490F 处理器,
NVIDIA

 

GeForce
 

RTX
 

3060
 

12
 

G 显 卡; 操 作 系 统 为

Windows
 

10,软件平台为 PyCharm;使用深度学习框架为

Pytorch2. 3. 1,Python 版本为 3. 9,在 CUDA11. 8 上进行加

速训练。 实验参数的设置如下:batch
 

size 为 8;训练迭代

次数为 200;采用 AdamW 作为模型优化器;采用余弦退

火学习衰减方案;初始学习率为 0. 000
 

1,权重衰减设为

0. 000
 

1。
目标检测算法主要评价指标分为模型复杂度和检测

精度。 模型复杂度由计算量、参数量(Params)体现,指标

数值越大代表模型复杂程度越高。 模型检测精度由准确

率(precision,
 

P)、召回率( recall,
 

R)、平均准确率( mean
 

average
 

precision,
 

mAP)和 F1 分数衡量。 准确率是所有

预测为真样本结果中预测正确的概率,召回率是根据所

有实际正样本中正确预测为正样本的比例计算,F1 分数

是准确率与召回率的调和平均,定义分别如下:

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

F1 = 2 × P × R
P + R

(12)

式中: TP 为真正例; FN 为假反例; FP 为假正例。
实验所用 mAP 指标分为 mAP @ 0. 5 和 mAP @ 0. 5:

0. 95 两种,mAP@ 0. 5 表示 IoU 阈值为 0. 5 时的平均检

测精度,mAP@ 0. 5:0. 95 表示 IoU 阈值为 0. 5 和 0. 95 间

的平均检测精度,计算公式如下:

AP = ∫1

0
P(R)dR (13)

mAP = 1
n ∑ n

i = 1
APn (14)

式中: n 表示内窥镜息肉类别数量。
此外,模型的实时性能通过每秒处理的图像数
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(FPS)进行衡量, FPS 的计算公式如下:

FPS = framNum
elapsedTime

(15)

式中: framNum 表示固定时间内处理的图像数量;
elapsedTime 表示处理单张图像采用的时间。
2. 3　 消融实验

　 　 为探究不同模块结构对内窥镜息肉检测任务的效

果,获取最佳模型结构,在公开内窥镜息肉组合数据集上

对不同模块进行消融实验,实验结果如表 1 所示。

表 1　 消融实验结果

Table
 

1　 Ablation
 

experimental
 

results
方法 组 1 组 2 组 3 组 4 组 5 组 6

原始模型 √ √ √ √ √ √
FasterNet √
重构主干 √ √ √ √

H-AIFI √ √
SBA-FPN √ √
P / % 89. 5 93. 6 94. 6 95. 3 95. 5 95. 6

mAP@ 0. 5 / % 95. 2 95. 8 96. 2 96. 4 97. 2 97. 5
mAP@ 0. 5:0. 95 / % 73. 4 74. 2 75. 2 75. 6 75. 3 76. 4

Params / ( ×106 ) 19. 8 10. 8 11. 0 11. 0 11. 0 11. 0
浮点计算量 / GFLOPS 56. 9 28. 6 29. 1 29. 2 29. 1 29. 2

帧率 / fps 64. 2 84. 4 80. 5 89. 9 80. 8 90. 4

　 　 对比实验组 1 和实验组 2 可知,将 RT-DETR 的主干

网络替换为 FasterNet 进行特征提取后,模型精确率、
mAP@ 0. 5 和 mAP @ 0. 5:0. 95 相较于原模型分别提升

4. 1%、0. 6%和 0. 8%;对比实验组 2 和实验组 3 可知,在
采用 FasterNet 主干网络基础上重构 FasterNet

 

Block 进行

特征提取,虽然模型的推理性能略微下降,但是模型的检

测性能进一步提高,模型精确率、mAP @ 0. 5 和 mAP @
0. 5:0. 95 相较原模型分别提升 5. 1%、1. 0%和 1. 8%,说
明重构的 FasterNet 能够缓解干扰特征的冗余,进一步提

高息肉检测的准确性;在此基础上,采用 HiLo 高低频分

离机制进一步挖掘特征图的深层次相关性,通过局部窗

口自注意力捕捉细节,高效全局注意力处理全局结构,与
原模型相比,改进模型的 P、mAP @ 0. 5 和 mAP @ 0. 5:
0. 95 分别提升 5. 8%、1. 2%和 0. 9%,验证了 HiLo 解耦特

征图高频和低频信息,弱化复杂背景对息肉检测任务影

响的积极作用;对比实验组 4 和实验组 5 可知,采用

SBA-FPN 重校准特征融合网络后,模型的 P、mAP @ 0. 5
分别提升 0. 2%和 0. 8%,说明 SBA-FPN 通过促进高分辨

率特征与低分辨率特征之间的双向融合,进一步提高息

肉检测的准确性;对比实验组 1 和实验组 6 可知,相较于

原始模型,改进模型的计算量和参数量分别下降 48. 6%
和 44. 4%,mAP @ 0. 5 和 mAP @ 0. 5:0. 95 值分别提高

2. 3%和 3. 0%,帧率达到了 90. 4
 

fps,保证了息肉检测的

准确度和实时性。
为了更清晰地展示改进模型对不同内窥镜息肉的检

测效果,如图 8(a)所示,输入五张背景各异,不同形状息

肉图像以充分验证改进模型对病灶特征提取的有效性。
对比原模型(图 8( b))和改进模型(图 8( c)) 的热力图

可知,原模型对息肉的聚焦不够专注,尚未提取到丰富的

病灶特征,对息肉的识别精度不足。 而改进模型对息肉

的特征提取效果明显增强,能够捕捉病灶集中区域,更直

观展示了关键病灶点,便于快速识别和定位息肉。
2. 4　 对比实验

　 　 将改进模型与 Faster
 

R-CNN[22] 、SSD[23] 、YOLOv7、
YOLOv8s、YOLOv10m、YOLOv11m 和 RT-DETR 模型在公

开数据集上进行对比实验,结果如表 2 所示。

表 2　 对比实验结果

Table
 

2　 Comparative
 

experimental
 

results

模型 P / %
mAP@ 0. 5 /

%
mAP@ 0. 5:

0. 95 / %
浮点计算量 /

GFLOPs
Params /

( ×106)
Faster

 

R-CNN[22] 92. 1 94. 6 - - -
SSD[23] 93. 4 95. 4 - 60. 7 21. 6
YOLOv7 93. 2 94. 4 72. 2 106. 4 37. 6
YOLOv8s 93. 6 96. 1 73. 4 28. 6 11. 1

YOLOv10m 91. 6 94. 3 72. 6 59. 1 15. 3
YOLOv11m 95. 0 95. 7 75. 2 68. 2 20. 0
RT-DETR 89. 5 95. 2 73. 4 56. 9 19. 8

本文 95. 6 97. 5 76. 4 29. 2 11. 0

　 　 由表 2 可知,在满足边缘设备上部署的前提下,改进

模型相比其他模型检测效果更优;由于 SSD 和 Faster
 

R-
CNN 的网络层数较深,网络在特征提取过程中,随着感

受野的逐层扩大,低层特征图中息肉的边缘、纹理等局部

细节信息逐渐丢失,可能导致对微小息肉的检测效果不

佳;虽然 YOLOv8s 对计算资源消耗较少,但是对息肉的

检测精度还有待提高。 而改进模型不仅检测精度得到提

升,同时在轻量化方面也做出了优化。 改进模型指标 P、
mAP@ 0. 5、mAP@ 0. 5:0. 95 和参数量达到最优,分别为

95. 6%、97. 5%、76. 4% 和 11. 0 × 106。 与原始 RT-DETR
模型相比,分别优化了 6. 1%、2. 3%、3. 0%和 8. 8×106,表
明改进模型在确保高精度检测的同时兼顾计算效率。

图 9 所示为改进 RT-DETR 模型与其他部分主流目

标检测算法的 mAP@ 0. 5 曲线对比。 可以看出改进 RT-
DETR 模型的 mAP@ 0. 5 曲线最高,表明改进模型的检测

性能更好。
此外,为了更全面评估不同模型的检测效果,如图

10 所示,将改进模型与上述主流目标检测算法进行可视

化对比。 可以看出,其他模型在息肉不明显和复杂肠道

环境中的检测精度较低,易出现漏诊和误诊,且在多尺度
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图 8　 特征提取效果对比

Fig. 8　 Comparison
 

of
 

feature
 

extraction
 

effect

图 9　 不同模型的 mAP@ 0. 5 曲线对比

Fig. 9　 Comparison
 

of
 

mAP@ 0. 5
 

curves
 

of
 

different
 

models

息肉检测方面表现不佳。 而本模型能够精准定位不同环

境下多个大小不一的息肉,漏诊和误诊数量较少。 结果

表明,所提模型在息肉检测方面具有明显优势。
2. 5　 跨数据集评估

　 　 由于医疗成像设备和采集规程的多样性,所获得

的医学影像常常存在孤岛效应,这限制了模型的泛化

能力,可能会影响模型在不同特征分布图像的检测效

果。 为了检验模型的泛化能力,采用 Kvasir-SEG、CVC-

ClinicDB 和 CVC-ColonDB
 

3 种公开数据集进行模型训

练,在 ETIS-LaribPolypDB 数据集上进行测试评估。 此

外,与当前领域的一些研究成果进行对比分析,结果如

表 3 所示。

表 3　 跨数据集性能评估

Table
 

3　 Performance
 

evaluation
 

across
 

datasets (%)

模型 Test
 

Dataset P R F1

文献[24] ETIS-LaribPolypDB 83. 2 71. 6 77. 0

文献[25] ETIS-LaribPolypDB 83. 2 71. 6 77. 0

文献[26] ETIS-LaribPolypDB 63. 9 81. 7 71. 7

文献[27] ETIS-LaribPolypDB 77. 8 87. 5 82. 4

文献[28] ETIS-LaribPolypDB 82. 3 91. 8 86. 8

YOLOv8s ETIS-LaribPolypDB 74. 9 69. 4 72. 0

YOLOv10m ETIS-LaribPolypDB 71. 6 55. 1 62. 0

YOLOv11m ETIS-LaribPolypDB 80. 6 70. 3 74. 2

RT-DETR ETIS-LaribPolypDB 79. 6 64. 8 72. 0

本文 ETIS-LaribPolypDB 85. 2 71. 7 78. 6

　 　 由表 3 可知,模型在 ETIS-LaribPolypDB 数据集上的

精确率、召回率和 F1 分数分别达到 85. 2%、71. 7% 和

78. 6%,相比原始模型分别提高 5. 6%、6. 9%、6. 6%。 虽
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图 10　 不同算法检测效果对比

Fig. 10　 Comparison
 

of
 

detection
 

effects
 

of
 

different
 

algorithms

然改进模型相比其他研究召回率和 F1 分数略低,原因可

能是训练数据集过少导致模型学习到的特征信息不够广

泛,但是模型在精确率上有较明显的优势。 同时,与其他

主流目标检测模型相比,改进模型的各项指标优势较明

显,表明改进模型有较好的检测性能和泛化能力,有效缓

解了孤岛效应带来的不利影响。
2. 6　 泛化性实验

　 　 为了进一步验证改进模型的有效性,选取公开的

Br35H[29]脑肿瘤检测数据集进行泛化性实验。 该数据集

包含 701 张图像,其中 500 张用于训练和 201 张用于测

试。 将 改 进 模 型 与 Faster
 

R-CNN、 SSD、 YOLOv7、
YOLOv8s、YOLOv10m、YOLOv11m 和 RT-DETR 模型进行

对比实验,实验结果如表 4 所示。

表 4　 泛化性实验结果

Table
 

4　 Generalization
 

experimental
 

results

模型 P / % mAP@ 0. 5 / %
计算量 /
GFLOPs

Params /

( ×106 )
Faster

 

R-CNN 93. 0 93. 9 - -
SSD 92. 5 91. 5 60. 7 21. 6

YOLOv7 92. 0 94. 0 106. 4 37. 6
YOLOv8s 92. 6 92. 6 28. 8 11. 1

YOLOv10m 92. 8 93. 5 59. 1 15. 3
YOLOv11m 92. 2 93. 9 68. 0 20. 0
RT-DETR 91. 8 93. 2 56. 8 19. 8

本文 93. 3 94. 5 29. 2 11. 0

　 　 实验结果表明,改进模型 P 达到 93. 3%,mAP@ 0. 5
提升至 94. 5%,与其他主流目标检测算法相比效果更优,
相较于原始 RT-DETR 模型分别提高 1. 5%和 1. 3%。 同

时,模型兼顾轻量化和实时性,验证了改进模型在病灶检

测方面的优越性。
图 11 所示为 5 张不同的脑部磁共振成像( magnetic

 

resonance
 

imaging,
 

MRI)。 对比原模型(图 11( b)) 和改

进模型(图 11(c))的肿瘤检测图可知,改进模型对脑肿

瘤的检测优势明显,通过优化算法,模型不仅能够有效识

别和定位视觉上难以辨识的息肉,还能够应用到脑肿瘤

的检测任务中,提高肿瘤的检测精度。 由于内窥镜图像

和 MRI 属于两种不同的模态,因此模型实现了跨模态的

双向提升。

3　 结　 论

　 　 为解决内窥镜息肉检测中模型复杂度高、检测精度

低的问题,研究一种轻量级改进 RT-DETR 算法。 首先,
通过引入 FasterNet 作为主干网络,重构 FasterNet

 

Block
模块,有效减少了特征的冗余,进一步增强模型对病灶区

域的关注度。 其次,在内尺度特征交互 AIFI 内部结合

HiLo 高低频分离机制,通过区分高频和低频特征信息,
使模型能够聚焦复杂背景下的关键病灶点,提升息肉检

测的准确性。 随后,设计 SBA-FPN 重校准特征融合网

络,实现高分辨率特征与低分辨率特征之间的双向融合,
增强多尺度特征融合效果,进一步提高模型的检测性能。
最后,在公开数据集上进行消融实验和对比实验。 实验

结果表明,与其他主流算法相比,改进模型在检测性能和

模型大小上均表现优异,便于实际应用中的部署。 未来

的研究将致力于进一步轻量化模型,同时维持其高精度

的检测能力。
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图 11　 肿瘤检测效果对比

Fig. 11　 Comparison
 

of
 

tumour
 

detection
 

effects
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