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Design of high-speed TDI camera for diffraction flow cytometry

Han Yangguang' Li Qifeng' Cheng Jiaming” Yang Yunpeng' Zhang Pengfei' Sa Yu’

(1. School of Precision Instrument and Opto-Electronics Engineering, Tianjin University , Tianjin 300072, China;
2. Medical School of Tianjin University, Tianjin 300072, China)

Abstract : Our research group has previously developed a novel label-free flow cytometry method based on diffractive imaging, which
utilizes a time delay integration ( TDI) camera to capture diffraction images and employs machine learning algorithms for cell
identification. However, the detection throughput is limited by the scanning frequency of the TDI camera. To address this limitation, we
designed an TDI camera optimization scheme to increase the scanning frequency and verify its practical effectiveness. In this study, we
optimized the timing control of the TDI camera, successfully increasing its scanning frequency from 50 kHz to 100 kHz. In the validation
experiments, after capturing diffraction images with the optimized camera, we extracted feature values using the Gray-level co-occurrence
matrix (GLCM) and conducted machine learning training with support vector machine (SVM) and random forest (RF) classifiers. The
classifiers were used to distinguish between cultured normal liver cells and hepatocarcinoma HepG2 cells, and to classify three lung
cancer cell lines ( A549, NCI-H378, and NCI-H446) in a three-class identification task, achieving test set recognition accuracies of
94.14% and 95.20% , respectively. Our optimized system not only doubled the cell flow rate but also ensured the acquisition of images
that meet the recognition requirements. This innovation provides a novel technical support for high-speed imaging, with significant
scientific and practical value.

Keywords : diffraction flow cytometry; time-delay integration camera; FPGA ; machine learning

Wik H #1.2025-02-22 Received Date ; 2025-02-22
* BATH  HRK ARFLAEL LT H (12474297) %8



- 108 - LSRR R e o

539 &

0 35l

il

WA (flow cytometry, FCM ) 38 12 % 41 Jifg i £
F R R S #0451 R A T AR, SE BT S 40 B Y 5
2SR kS PU A0 BRS 4325 TRk
AW LA K AR A3 AT R AS B SR, % e
Xt A AT YL (o Ab B | T REXT 4 MO B 2, AR T Y
BT LSO A0 AR BRSBTS eAh, et s
F4) 2 R0 5 TG FH T 5 2 S B B IR o) 1 EL A T 40
TR, R, 28 6hRic 32 B AT X 43 F K F B 4%
fEFETR W20 M 2540 A B A A b B A IR e LA 4 T e ke
Eai1 ) alEB IR 3 B (T N 7 €y P 3 0 B2 L S s W |
A AN S A PR T & T 3T 5 RS R 19 3
AN, AT S AR B A 3 3 3 BG4 i, R &
JE AR A 40 5 1 A P A RO R R, A A AN
VI AT MR . SE G MR g 2 1 i 5X
20 BRASI F AR A B, 77T S AR TE T o AN A T Y A B
RERSFE CHUIRAS N ARBUM M A e ARt Ss Ff5 B, 1%
FEAR M DAL T, 38 130 5 AT 737 5 R 0 2 1)
Sy AR FERAR AL, AT AR U AR B A L /N B Py R AT
SRS MNZSHE RN . Eh—FEksic AR AR
BARGHIN F- Bt , 56117 S 115 04 9 =X 400 B S A I e £ 440 it
GYRTAriE ML = AE SR R AT T RERIFY S oy JEERAE T
AR

ST 1758 A% A 0 2 0 ARSI 2 A A 6 e T ekt
ST U A0 M AT SRR T AR A A
R TSN, X AR R G R W s ] sh A
TU PRI RIS 25 40 B 5 1 7 W s 2R, PR I e 9% e ool i 1%
Rk EOEL R A AL 3R B 4 (time delay and
integration , TDI) £& [ A L 4% R J2 5 F £ 4 38 i FL 43 JR
B (S AL AR BRI AE B AR5 iR R Ge A XS sl
Xif [l — 25 [ AR AR A 15 Z A5 5 R A T84T RSN, 7l 7655
O R RS S R A R S SRR
4325 5 T g P HR AL nT SE A MG LR, AR IR R
i) TDI-CCD f&/84% 0 H AR 28 A 77, JRA T il
N 50 kHz, {5 A T f 0 3 e A 7 oK, T B AT
I AVC RO = i, AR5, Park 2611
P 246 A% TR 55 TDT A R 18, Xu 260V 3 T —
Pty A I 7K 2k L for 55 A5 12 9 TDI-CMOS 1% 8, {15
I AFAE AR (R B | RGBT B 5 SR 0 X L S Jt ) [ A

ASCLARATIHE A 50 kHz 19 TDI A EERE 31T
— PP T 2 AT R R LT 2 100 kHz, X1
175 %K A TDT AALAE A A% O AR 4114, 38 33 B3 ] 4
FEITBES) (FPGA ) X TDI AHHLIE AT 9K 8h ¥ i, 3 FI F
H ADC SERUR R AR AL EE A SCedt A9 DI AHAL

HAT W AR 5 9 5 4 L (SNR) | REAE i A2 e R 9
T FP AR T A TR S 3R A 5K

1 THERIE

1.1 FT8tm G 4R R

TS A A A T AR BN ] 1 o . FE AR
% (flow chamber) H | SR F#E 0 ZM M B (A% 00 ) 64160
BERUEAR B A A0 AR vk 83k e RS I X 3, i
WOCTERE N &, 5% 5 10 3R BT xy P i 2 Sl 1, 20
JH A O RS X S vk 2ea T1 T2 T3 3 NAf 2], Hoefr
T B 20 8 7R A 2 ok 3386t 5%, T2 st 20 3 7R 41 i 3 3
FEWOCEBE T3 B 23R 402 s B o, R
PRZE T , 3 3 BB (objective ) YLER M 1] 90° fi7 556
fF58, B 5 L1 5 BUR7E 12 1 (image plane) I+,
EUGL IR L H CCD 2k M R R A5 1% i . =X 40 i T
VRS 7E o 5l 2 b 0y 1 i) Asf ofSe 0 1) 305 6 5 AR 17
[ Cip i

,

e

Sample at T1
lv1 /
/ Objective L1
17 Image
a {
____:s 0 1 Sensor
s Sample at T2 I V2
W Sample at T3

Flow Chamber Image Plane

B A g AR B IR
Fig. 1 Diagram of the diffraction imaging flow cytometry
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