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改进 YOLOv5s 的烟火检测方法∗
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(天津大学精密测试技术及仪器全国重点实验室　 天津　 300072)

摘　 要:实时、高精度烟火检测对于火情监测与快速预警具有重要意义。 针对现有检测方法难以同时兼顾准确率和实时性以及

计算复杂度较高等问题,提出了一种改进 YOLOv5s 的烟火检测方法。 首先,优化了 Neck 结构。 在原有的特征金字塔网络-路径

聚合网络(FPN-PAN)结构基础上,额外增加了一个更小尺度的 P6 特征检测层,从而提高网络的多尺度特征融合能力、小目标

的识别与定位精度。 其次,进行了骨干网络中的 C3 模块的轻量化改进。 使用基于结构重参数化的 C3RepGhost 模块替换骨干

网络中的 C3 模块,减少了计算量并加速推理过程。 此外,构建了一个包含约 18
 

000 张多样化场景(城市街道、森林、单体火焰

等)图像的大规模烟火数据集进行模型训练与验证。 试验结果表明,所提出的方法在烟火检测数据集上的平均精度均

值(mAP)达到 0. 89,相比于原始 YOLOv5s 模型,平均提高了约 29%,检测速度达到 66
 

fps。 该方法实现了高精度、高实时性的

烟火检测。 与最新的 YOLOv11s 模型相比,改进 YOLOv5s 的烟火检测方法的计算复杂度降低了 46%,更适合部署在边缘计算设

备上。
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Abstract:
 

Real-time
 

and
 

high-precision
 

detection
 

of
 

smoke
 

and
 

fire
 

is
 

of
 

great
 

significance
 

for
 

fire
 

monitoring
 

and
 

rapid
 

early
 

warning.
 

Addressing
 

the
 

challenge
 

that
 

the
 

current
 

detection
 

methods
 

have
 

difficulty
 

balancing
 

accuracy
 

and
 

real-time
 

performance,
 

as
 

well
 

as
 

the
 

problem
 

of
 

high
 

computational
 

complexity,
 

this
 

paper
 

proposes
 

a
 

refined
 

YOLOv5s
 

smoke
 

and
 

fire
 

detection
 

method.
 

Firstly,
 

the
 

Neck
 

structure
 

was
 

optimized.
 

On
 

the
 

basis
 

of
 

the
 

original
 

FPN-PAN
 

architecture,
 

it
 

adds
 

an
 

additional
 

P6
 

feature
 

detection
 

layer
 

targeting
 

smaller
 

scales.
 

Then,
 

it
 

enhances
 

the
 

network’ s
 

multi-scale
 

feature
 

fusion
 

capability
 

and
 

improve
 

the
 

recognition
 

and
 

localization
 

accuracy
 

for
 

small
 

objects.
 

Secondly,
 

a
 

lightweight
 

modification
 

was
 

applied
 

to
 

the
 

C3
 

module
 

within
 

the
 

backbone
 

network.
 

C3
 

modules
 

were
 

replaced
 

with
 

C3RepGhost
 

modules
 

based
 

on
 

structural
 

re-parameterization,
 

effectively
 

reducing
 

the
 

computational
 

load
 

and
 

accelerating
 

the
 

inference
 

process.
 

Furthermore,
 

a
 

large-scale
 

smoke
 

and
 

fire
 

dataset
 

is
 

conducted
 

and
 

it
 

consists
 

of
 

approximately
 

18
 

000
 

images
 

from
 

diverse
 

scenes
 

( including
 

urban
 

streets,
 

forests,
 

and
 

individual
 

flames )
 

for
 

model
 

training
 

and
 

validation.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

achieves
 

a
 

mean
 

average
 

precision
 

(mAP)
 

of
 

0. 89
 

on
 

the
 

above
 

dataset,
 

with
 

an
 

improvement
 

of
 

approximately
 

29%
 

compared
 

to
 

the
 

original
 

YOLOv5s
 

model.
 

The
 

detection
 

speed
 

reaches
 

66
 

fps.
 

The
 

proposed
 

method
 

realizes
 

high-accuracy
 

and
 

real-time
 

smoke
 

and
 

fire
 

detection.
 

Compared
 

to
 

the
 

latest
 

YOLOv11s
 

model,
 

the
 

computational
 

complexity
 

of
 

the
 

refined
 

YOLOv5s
 

method
 

is
 

reduced
 

by
 

46%,
 

making
 

it
 

more
 

suitable
 

for
 

deployment
 

on
 

edge
 

computing
 

devices.
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0　 引　 言

　 　 火灾是一种普遍发生的灾害,对公众安全和社会稳

定发展具有巨大威胁,并严重危害人民生命财产。 已有

的火灾案例表明超过 60%以上的火灾遇难者是死于烟雾

造成的中毒或窒息,即火焰产生的有毒浓烟是造成严重

伤害和死亡的最大威胁。 因此,及时、有效地进行烟火检

测,实现火情和火灾隐患快速预警,对于维护人民的生命

与财产安全具有重要意义[1] 。
现有的烟火检测方法包括人工检测方法、传感器检

测方法和基于视觉的检测方法等。 其中,人工检测存在

效率低下,检测及时性差等问题,在商场、酒店等室内场

所已逐渐被传感器检测方法取代。 传感器检测方法的缺

点是检测性能随使用时间下降、检测范围相对较小,且易

发生误检、漏检等情况,难以胜任室外或者大范围的烟火

检测需求[2] 。 基于视觉的检测方法通过摄像机监控数据

可实现大面积、快速地烟火检测,已广泛应用于森林及城

市建筑火灾预警等领域[3] 。
基于传统图像处理的烟火检测方法的主要原理是利

用烟雾和火焰具有的强烈排他性特征如颜色、纹理等进

行烟火的识别和检测。 文献[4]提出的实时视频火焰检

测算法,利用视频中火焰的各种时空特征和动态纹理特

征研究了候选图像区域中像素强度随时间的演化。 传统

烟火检测方法取得了较好的研究效果,但面对复杂环境

背景时,利用单一或若干个组合特征的识别方法并不能

很好地完成检测,存在识别速度较慢的问题,难以实现实

时的烟火检测。
随着卷积神经网络 ( convolutional

 

neural
 

networks,
 

CNN)的快速发展,基于深度学习的烟火检测方法显著提

升了检测效果[5] 。 深度学习的目标检测方法主要分为两

类:一阶段和二阶段检测方法。 二阶段检测方法借鉴候

选区域生成的思想,其典型代表是快速基于区域的卷积

神经网络( fast
 

region-based
 

convolutional
 

neural
 

network,
Fast

 

R-CNN)。 一阶段检测方法则基于回归思想,其代表

模型有多尺度单发射击 ( single
 

shot
 

multibox
 

detector,
SSD) [6] 和 YOLO( you

 

only
 

look
 

once) 系列[7] 。 文献[8]
利用改进的 Fast

 

R-CNN 实现了烟火检测,但模型较高的

时空复杂度导致检测速度较慢。 文献[9]提出了结合改

进的混合高斯算法与 YOLOv2 的烟雾检测方法,通过混

合高斯算法初步筛选获得动态目标兴趣区域,再利用

YOLOv2 进行二次检测,从而精准定位烟雾区域。 文

献[10]提出的基于角度回归的 YOLOv3 模型实现了高分

辨率图像密集建筑物的精确定位,提升了检测性能。 文

献[11]提出将 YOLOv5s 与超分辨率生成对抗网络融合,
用于隧道场景的实时火灾检测,能够更好地识别小目标。

针对复杂环境下难以兼顾烟火检测效率与精度的问题,
文献[12-15]优化了 YOLOv5s 模型,提高了检测效率和

精度。 随着众多新版本的发布,ODverse33 基准[16] 系统

评估了 YOLOv5 到 YOLOv11 不同版本间的性能差异。
YOLOv11 进一步增强了特征提取能力,并提高了目标检

测的精度。 然而,YOLOv5 在推理速度上优于 YOLOv11,
仍是工业界主流的目标检测算法[17] 。

在具有实时处理能力(达到 60
 

fps 以上)的基础上,
进一步提升网络模型对小目标检测的精度与复杂场景的

鲁棒性,仍是当前亟需解决的问题。 因此,本文提出了一

种改进 YOLOv5s 的烟火检测方法,能够在实时性的基础

上,提高烟火检测的准确率。 通过构建大规模烟火检测

数据集(大于 18
 

000 张),加强模型的泛化能力;改进

Neck 结构,加强特征提取和融合能力,提高小目标的识

别能力;引入 RepGhost 轻量化模块[18] 改进骨干网络的

C3 结构,大幅减少网络参数,加速模型收敛并提高检测

推理速度。 试验证明本文所提方法在各类城市或森林场

景中可达到快速、准确的烟火检测。

1　 相关技术概述

　 　 YOLO 将图像检测视为一个回归问题,在输入图像

的若干个区域候选框中回归出目标的类别和位置,利用

简单的流水线操作大幅提升了检测速度,能够实时处理

视频数据。 在训练过程中,YOLO 算法将整张图像作为

训练网络的输入,在输出端返回回归问题的位置和类别。
YOLOv5 网 络 可 以 看 作 3 部 分 组 合, 包 括 主 干 网

络(backbone)、特征检测层(neck)和预测层(prediction),
网络结构如图 1 所示。

Backbone 负责提取图像特征,将输入图像转换为多

层特征图,供后续目标检测使用。 Backbone 的主要结构

包括聚焦( focus) 模块、卷积( convolutional,
 

Conv) 模块、
C3 模块和空间金字塔池化 ( spatial

 

pyramid
 

pooling,
 

SPP)模块。 Focus 模块通过切片操作降低内存占用,提
高推理速度;Conv 模块通过卷积操作提取局部特征并加

入非线性变换;C3 模块借鉴跨阶段局部网络( cross
 

stage
 

partial
 

network,
 

CSPNet)设计,用于获取深层次特征;SPP
模块通过多尺度池化生成深层特征并与初始特征融合。

Neck 模块整合不同层级的特征图,生成包含多尺度

信息的特征图,以提升检测精度。 YOLOv5 的 Neck
 

采用

特征金字塔网络( feature
 

pyramid
 

network,
 

FPN)-路径聚

合网络
 

(path
 

aggregation
 

network,
 

PAN) 结构,通过上采

样和下采样结合,实现特征融合和多尺度金字塔生成,能
够自上而下路径结合粗粒度特征和自下而上路径整合多

层次特征。
Prediction 负责目标检测,生成边界框并预测类别。
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该模块采用多层级特征融合,对特征检测层输出的特征

图进行降维和缩放,生成多尺度预测框。 Prediction 包括

锚框(anchors)、分类( classification) 和回归( regression) 3
部分。 Anchors 定义不同大小和长宽比的目标框,可通过

K-means 聚类或自适应生成; Classification 判断目标类

别,采用全连接层加 Softmax;Regression 预测检测框的位

置和大小,通过全连接层对特征进行回归。

图 1　 YOLOv5 网络结构

Fig. 1　 YOLOv5
 

network
 

structure

2　 改进的 YOLOv5s 网络模型

　 　 本文从以下两个方面对 YOLOv5s 模型进行了改进:
1)对模型的 Neck 结构做出改进,增加了一级更小尺度的

特征,使得每个输出特征图都能够融合更多的特征信息。
改进后的 Neck 结构加强了对小目标火焰、烟雾的检测能

力;2)利用结构重参数化技术,将原网络中的 C3 模块替

换为 C3RepGhost 模块,在训练时保持较高复杂度以获得

性能优势,在推理时等价变换为简洁高效结构,实现减少

运算量和内存占用的目的。
2. 1　 改进的 Neck 结构

　 　 本文改进了 YOLOv5s 的 Neck 结构,如图 2 所示。
在原有的 P3、P4、P5 三层特征检测层的基础上,新增了

P6 层,增强多尺度特征融合能力,提升对小目标的检测

性能。 YOLOv5s 采用的 FPN-PAN 结构,在预测时只有

P3、P4、P5 三层的特征图。 从 M5 到 M3 是 FPN 路径,自
顶向下的将高层的强语义信息传递到低层,补充低层的

语义表达能力。 从 N3 到 N5 是 PAN 路径,自底向上的将

低层的强定位信息传递到高层。 本文在原有结构上增加

P6 特征图,令 M6 通过上采样与 M5 层融合,N5 通过下

采样与 N6 层融合,如式(1)、(2)所示。
M5 = Conv(Concat(UpSample(M6),C5)) (1)
N6 = Conv(Concat(DownSample(N5),M6)) (2)
新增的 P6 特征层的分辨率最低,具备的感受野最

图 2　 改进的 Neck 结构

Fig. 2　 Refined
 

neck
 

structure

大。 FPN 自顶向下的路径通过上采样和融合将 C6 包含

的极丰富的语义信息传递回 P3 特征层。 这间接增强了

P3 层的语义理解能力,使 P3 层能更好地理解小目标所

处的上下文环境,可显著提升模型的检测精度。
2. 2　 C3RepGhost 模块

　 　 本文改进了 YOLOv5 网络中的 C3 模块,通过结构重

参数 化 技 术, 构 建 了 C3RepGhost 模 块。 C3 模 块 在

YOLOv5s 中主要用于提取图像的深度特征。 它通过串联

卷积的方式低效地保持大量通道数量。 与之相比,
ResNet 网络中使用多个卷积模块和 Add 操作组成有瓶

颈层的残差模块,可减小计算量。 本文用 RepGhost 瓶颈
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层代替 C3 模块中的瓶颈层( 图 3 中红色实线框住部

分),得到 C3RepGhost 模块,如图 3 所示。

图 3　 C3 模块与 C3RepGhost 模块对比

Fig. 3　 Comparison
 

of
 

C3
 

module
 

and
 

C3RepGhost
 

module

基于 RepGhost 模块设计的瓶颈层如图 4 所示。
RepGhost 模块是在 Ghost 模块的设计基础上,引入结构

重参数化方法,构建了更高效、精度更高的 CNN 模块。
其推理结构(图 4( b))相比于训练结构(图 4( a)) 计算

量有效降低,仅包含规则卷积层与 ReLU 激活函数。 在

结构重参数化过程中,卷积分支的参数 Wconv 和 BN 层参

数(均值 μ,方差 σ2,缩放 γ,平移 β), 可以等效为新的卷

积层参数 W′conv和 B′conv ,如式(3)和(4)所示。

W′conv =
γ

σ2 + 􀆠
Wconv (3)

B′conv = β - γμ

σ2 + 􀆠
(4)

式中: 􀆠 为防止分母为 0 的极小常数。 恒等映射分支可

视为特殊卷积核参与融合,各分支等效卷积核与偏置项

经求和,形成最终单一卷积层参数。 该模块通过重参数

化实现隐式特征重用,将特征融合操作从特征空间转移

至权重空间,避免使用串联运算符。 RepGhost 模块以隐

含 Add 操作融合特征信息,既提升融合效率,又减轻其他

卷积层负担,显著降低硬件内存占用与推理时间。

3　 实验结果与分析

3. 1　 制作数据集

　 　 本文使用 LabelImg 图像标注软件对图像中的火焰、
烟雾目标进行标注。 烟雾、火焰目标于与流体类似,没有

固定的形状,标注它们时,其精度容易受到人为因素的影

响。 为了减少上述影响,本文标注时采用目标的最大外

接矩形[19] 。 稀疏的轻烟并没有实际的检测价值,且容易

引进背景特征,产生干扰,因此数据集中并不标注稀疏烟

图 4　 RepGhost 瓶颈层模块

Fig. 4　 RepGhost
 

bottleneck
 

module

雾。 本文构建了约 18
 

000 张烟雾与火焰图片的大样本

烟火检测数据集,其示例样本如图 5 所示。 数据集主要

包括城市街道烟火图像、森林烟火图像、单体火焰图像 3
类数据。 按照 9 ∶ 1 的比例将数据集划分为训练集与测

试集两部分,分别用于模型训练和精度测试。

图 5　 数据集样本示例

Fig. 5　 Sample
 

example
 

of
 

the
 

dataset

3. 2　 实验环境及准备工作

　 　 本文使用自建数据集的类别数目为 3 种,分别为火

焰(fire)、烟雾( smoke)、火焰及烟雾( all)。 输入图像尺

寸为 640× 640。 根据一般深度学习经验设置参数值如

下:批处理大小为 28, 总轮次为 300, 初始学习率为

0. 001。 其他预训练权重均未使用。 每轮训练后,利用验
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证集对模型训练情况进行测试,生成验证集的损失曲线,
并根据精度评估结果保存最优模型。

本文使用的实验硬件配置如下: CPU 为 Intel ( R)
Core(TM) i7-11800H

 

@ 2. 30
 

GHz,内存 16
 

GB;GPU 为

NVIDIA
 

GeForce
 

RTX
 

3070
 

Laptop
 

GPU,内存 8
 

GB。 实验

软件环境:操作系统为 Windows11;编译环境为 Python3. 8+
Pytorch1. 12. 1+CUDA10. 1。
3. 3　 精度评估参数

　 　 目标检测任务中,通常采用平均精度均值 ( mean
 

average
 

precision, mAP )、 精 确 率 ( precision ) 和 召 回

率(recall)等指标衡量烟火检测模型的准确率[20] 。
本文评估多目标检测精度的指标是 Precision 和

Recall。 预测框与设定框的交并比 ( intersection
 

over
 

union,IoU) 检测大于设定阈值的,判定为真阳性 ( true
 

positive,TP);小于设定阈值的预测框,则判定为假阳

性(false
 

positive,FP)。 漏检目标为预测时未被检测出的

目标, 设 为 假 阴 性 ( false
 

negative, FN )。 Precision 和

Recall 是根据每个类别的 TP、FP、FN 值,分别利用式(5)
和(6)计算得到的。

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

平均精度(average
 

precision,AP)结合了精确度和召

回率,更直观地衡量了模型的精度。 P-R 曲线与坐标轴

围得的面积表示某个类别的平均精度。

AP = ∫1

0
p( r)dr (7)

mAP 代表了各个类别的 AP 的均值,能够更客观地

衡量预测精度。

mAP = 1
N ∑

N

i = 1
AP i (8)

此外,利用每秒传输帧数( frames
 

per
 

second,FPS)评

估烟火检测模型的预测速度。
3. 4　 识别结果与精度评估

　 　 分别使用 YOLOv5s 原始模型和改进后的 YOLOv5s
模型( YOLOv5s-改) 进行训练,以 YOLOv5s 模型的训练

结果作为基线试验。 模型的训练损失和验证损失的对比

如图 6 所示。 其中,定位损失代表着预测框位置与设定

框位置之间的误差;置信度损失代表着预测框中是否存

在待检测目标;分类损失代表着锚框预测的类别与对应

的设定类别是否一致。 蓝色虚线和红色实线分别代表

YOLOv5s 模型和本文改进模型。 本文改进的 YOLOv5s
模型的定位损失、置信度损失、分类损失都比 YOLOv5s
更小,且未出现过拟合现象。 同时,改进模型收敛速度更

快,有效缩短了训练时间,提升了模型的训练效率。

图 6　 验证集损失值对比

Fig. 6　 Loss
 

comparison
 

of
 

validation
 

set

　 　 两个模型的 Precision、Recall、mAP 等精度指标的对比

结果如图 7 所示,所有指标均为烟雾及火焰目标的识别精

度。 改进的 YOLOv5s 模型在准确率、召回率以及不同步长

的 mAP 指标上,都远超 YOLOv5s。 以上试验结果表明改

进的 YOLOv5s 模型显著增加了火焰和烟雾目标的检测能

力、精度较高,可满足实际烟火检测的应用需求。
为验证各项改进的有效性,本文进行了消融实验,结

果如表 1 所示。 其中,All 指既有烟雾又有火焰的目标。

两个模块的改进均取得了较好的效果。 在改进 Neck 模

块后,显著提升了火焰和烟雾的检测效果,平均检测精度

提高了 14. 3%。 其问题是增加了网络的复杂度,提高了

访存量和计算量,大幅降低了检测速度,约为 YOLOv5s
的 58%。 在此基础上加入 C3RepGhost 模块后,形成改进

的 YOLOv5s 模型,有效降低了访存量和计算量,减小了

内存占用,加快了模型训练和预测的速度,并且将模型的

检测精度提高至 89. 0%。
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图 7　 检测精度对比

Fig. 7　 Detection
 

accuracy
 

comparison

表 1　 消融实验结果

Table
 

1　 Ablation
 

experimental
 

results

改进
mAP@ 0. 5

Fire Smoke All
帧率 /
FPS

访存量 /
MB

计算量 /
GFLOPs

YOLOv5s 0. 665 0. 533 0. 599 102 27. 0 16. 0
YOLOv5s+
改进 Neck

 0. 737 0. 746 0. 742 59 47. 2 16. 3

YOLOv5s+
C3RepGhost

0. 813 0. 623 0. 718 111 20. 0 11. 4

YOLOv5s-改 0. 878 0. 903 0. 890 66 37. 0 11. 5

　 　 将 YOLOv5s-改方法与其他常用目标检测网络模型

进行对比试验。 指标包括访存量(代表空间复杂度)、计
算量(代表时间复杂度)、mAP 和帧率。 其结果如表 2 所

示。 本文所提方法由于优化了网络结构,在检测精度上

远高于 YOLOv5s,提升了 29. 1%。 与 YOLOv5s 网络相

比,GFLOPs 降低,能稳定地实现 60
 

Hz 刷新率的视频检

测。 虽然改进的 YOLOv5s 模型增大了访存量,检测速度

有所降低,但仍然能够达到轻量级网络的水平。 主流的

监控摄像机的帧率一般为 24 ~ 25
 

fps;百万像素的监控摄

像机的帧率一般为 30
 

fps;画面流畅度要求很高的摄像

机(如用于监控运动场所或者交通要道) 的帧率一般为

50 ~ 60
 

fps。 本模型均能满足上述应用要求。 与最新版

本的 YOLOv11s 比较,本文方法在精度上与之相近,相差

仅为 0. 043。 但计算复杂度显著降低,降低了 46%,更适

用于边缘设备的嵌入式部署与低功耗应用。
表 2　 模型性能对比

Table
 

2　 Model
 

performance
 

comparison

测试模型 访存量 / MB 计算量 / GFLOPs mAP@ 0. 5 帧率 / FPS
YOLOv3-Tiny 35. 9 4. 6 0. 533 25
YOLOv5-Lite 19. 1 15. 6 0. 504 59

YOLOv5l 174. 0 109. 1 0. 702 18
YOLOv5s 27. 0 16. 0 0. 599 102
YOLOv11s 17. 9 21. 3 0. 933 83

YOLOv5s-改 37. 0 11. 5 0. 890 66

　 　 分别利用 YOLOv5s 模型和改进的 YOLOv5s 模型进

行烟火检测。 测试集中部分图片的结果如图 8 所示。 对

比图 8(a)和(b)可见,改进的 YOLOv5s 模型可以检测到

部分 YOLOv5s 不能检测到的目标。 对比图 8( c)和( d)
可见,改进的 YOLOv5s 模型可以完成对于小目标火焰的

检测。 图 8( e)和( f)表明了对于易与背景混淆的、受到

环境光干扰较大的烟火目标,改进后的模型也能够完成

精确识别。 综上,在火焰与烟雾中背景复杂且存在其他

干扰较多的情况下,改进的 YOLOv5s 模型对于烟雾与火

焰等目标的检测准确率更高。 其试验结果表明该模型在

满足实时检测的情况下(60
 

fps),在火焰和烟雾检测中能

够达到更好的检测精度。

图 8　 烟火检测结果示例

Fig. 8　 Examples
 

of
 

fire
 

and
 

smoke
 

detection
 

results
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4　 结　 论

　 　 针对目前烟火检测存在的问题,本文提出了一种改

进 YOLOv5s 的烟火检测方法。 基于 YOLOv5s 模型,构建

了改进的 Neck 结构和 C3RepGhost 模块,加强小目标的

检测能力,并实现了模型的轻量化。 与 YOLOv5s 模型相

比,本文所提方法的 mAP 可以达到 0. 89,平均提高了约

29%,检测速度仍能维持在 66
 

fps 的水平,实现了高精

度、实时的烟火检测。 算法在保证烟火检测的精度的同

时,兼顾了检测速度和时空复杂度,降低了对检测硬件设

备的配置要求,适合在实际生活中各类移动设备上的推

广应用。 试验表明本文方法具有实际应用于城市环境、
道路交通、森林远距离视频监控等烟火检测场景的潜力。

未来的研究工作可从以下 3 个方面展开:1)将本文

所提出的方法与其他先进检测或特征提取算法进行融

合,进一步提升模型的检测精度和鲁棒性;2)在多种嵌入

式平台上开展评测,并对网络结构进行针对性地裁剪与

优化,提高实时性;3)拓展模型在多类别检测场景中的应

用,进一步提升对烟火目标形态与种类的识别能力,为火

情监测和预警系统提供更完善的解决方案。
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