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The refined YOLOVSs fire and smoke detection method

Luo Qingli Wang Jiaxu Kan Wei Zeng Zhoumo

(State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China)

Abstract: Real-time and high-precision detection of smoke and fire is of great significance for fire monitoring and rapid early warning.
Addressing the challenge that the current detection methods have difficulty balancing accuracy and real-time performance, as well as the
problem of high computational complexity, this paper proposes a refined YOLOvSs smoke and fire detection method. Firstly, the Neck
structure was optimized. On the basis of the original FPN-PAN architecture, it adds an additional P6 feature detection layer targeting
smaller scales. Then, it enhances the network’ s multi-scale feature fusion capability and improve the recognition and localization
accuracy for small objects. Secondly, a lightweight modification was applied to the C3 module within the backbone network. C3 modules
were replaced with C3RepGhost modules based on structural re-parameterization, effectively reducing the computational load and
accelerating the inference process. Furthermore, a large-scale smoke and fire dataset is conducted and it consists of approximately
18 000 images from diverse scenes ( including urban streets, forests, and individual flames) for model training and validation.
Experimental results demonstrate that the proposed method achieves a mean average precision (mAP) of 0. 89 on the above dataset, with
an improvement of approximately 29% compared to the original YOLOvSs model. The detection speed reaches 66 fps. The proposed
method realizes high-accuracy and real-time smoke and fire detection. Compared to the latest YOLOv1l1ls model, the computational
complexity of the refined YOLOvS5s method is reduced by 46% , making it more suitable for deployment on edge computing devices.
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Fig. 1  YOLOVS network structure
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Table 1 Ablation experimental results
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Table 2 Model performance comparison
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Fig. 8 Examples of fire and smoke detection results
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