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基于车路云协同感知的车辆驾驶意图识别方法∗

李海青　 雷宇铖　 戴盈莹　 禄　 盛　 罗久飞

(重庆邮电大学集成电路学院　 重庆　 400065)

摘　 要:准确获取车辆驾驶意图对自动驾驶至关重要,针对单车智能在复杂交通场景存在感知能力不足等问题,提出了一种基

于车路云协同感知的车辆驾驶意图识别方法。 首先,通过车路云协同感知构建网联信息交互总体框架,解析车车、车路、路云协

同信息流;其次,结合双向长短时记忆网络(Bi-LSTM)和 XGBoost 算法,建立车辆意图识别模型,通过融合车辆历史轨迹和周围

环境车辆的动态特征,提升驾驶意图识别的准确性;最后,创新性引入了 Bi-LSTM 的双向序列处理机制,使模型能够同时捕捉正

向与反向的时间依赖关系,并在数据处理方面进行优化,提高模型在复杂交通场景下的鲁棒性。 在 NGSIM 数据集的测试表明,
与传统 XGBoost 模型和 LSTM-XGBoost 模型相比,Bi-LSTM-XGBoost 模型在换道意图识别中的整体识别准确率达到 97. 4%;模型

在因果约束条件下仍保持 97. 2%的准确率。 通过 Sumo 与 Carla 的联合仿真测试,分析了不同数量车辆对模型识别效率的影

响,结果表明模型能够在 100
 

ms 内实时识别驾驶意图;在车路云协同感知道路下采集的实际数据进行测试,结果表明建立的模

型具有较高的意图识别及轨迹预测能力,应用于自动驾驶,可显著增强车辆在复杂交通场景中的感知能力与适应性。
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Abstract:
 

Accurately
 

recognizing
 

vehicle
 

driving
 

intentions
 

is
 

crucial
 

for
 

autonomous
 

driving.
 

To
 

address
 

the
 

issues
 

of
 

limited
 

perception
 

capabilities
 

in
 

complex
 

traffic
 

scenarios
 

with
 

single-vehicle
 

intelligence,
 

this
 

paper
 

proposes
 

a
 

vehicle
 

driving
 

intention
 

recognition
 

method
 

based
 

on
 

Vehicle-Road-Cloud
 

collaborative
 

perception.
 

First,
 

an
 

overall
 

framework
 

for
 

information
 

exchange
 

is
 

established
 

through
 

Vehicle-Road-Cloud
 

collaborative
 

perception,
 

analyzing
 

the
 

information
 

flow
 

of
 

vehicle-to-vehicle,
 

vehicle-to-road,
 

and
 

road-to-
cloud

 

communication.
 

Next,
 

a
 

vehicle
 

intention
 

recognition
 

model
 

is
 

developed
 

by
 

combining
 

Bi-LSTM
 

and
 

the
 

XGBoost
 

algorithm.
 

By
 

integrating
 

the
 

vehicle’s
 

historical
 

trajectory
 

data
 

with
 

the
 

dynamic
 

features
 

of
 

surrounding
 

vehicles,
 

the
 

model
 

enhances
 

the
 

accuracy
 

of
 

driving
 

intention
 

recognition.
 

Finally,
 

the
 

innovative
 

Bi-LSTM
 

bidirectional
 

sequence
 

processing
 

mechanism
 

is
 

introduced,
 

allowing
 

the
 

model
 

to
 

simultaneously
 

capture
 

both
 

forward
 

and
 

backward
 

temporal
 

dependencies,
 

optimizing
 

data
 

processing
 

and
 

improving
 

the
 

model’
s

 

robustness
 

in
 

complex
 

traffic
 

scenarios.
 

Testing
 

on
 

the
 

NGSIM
 

dataset
 

shows
 

that,
 

compared
 

to
 

traditional
 

XGBoost
 

and
 

LSTM-XGBoost
 

models,
 

the
 

Bi-LSTM-XGBoost
 

model
 

achieves
 

an
 

overall
 

recognition
 

accuracy
 

of
 

97. 4%
 

in
 

lane-change
 

intention
 

recognition
 

and
 

the
 

model
 

maintains
 

an
 

accuracy
 

of
 

97. 2%
 

under
 

causal
 

constraints.
 

Through
 

co-simulation
 

testing
 

with
 

Sumo
 

and
 

Carla,
 

the
 

impact
 

of
 

varying
 

vehicle
 

numbers
 

on
 

the
 

model’s
 

recognition
 

efficiency
 

is
 

analyzed,
 

with
 

results
 

indicating
 

that
 

the
 

model
 

can
 

recognize
 

driving
 

intentions
 

in
 

real-time
 

within
 

100
 

ms.
 

Further
 

testing
 

on
 

a
 

real-world
 

dataset
 

collected
 

from
 

a
 

Vehicle-Road-Cloud
 

collaborative
 

perception
 

system
 

demonstrates
 

that
 

the
 

model
 

meets
 

real-time
 

requirements,
 

exhibits
 

high
 

trajectory
 

prediction
 

capability,
 

and
 

enhances
 

the
 

perception
 

and
 

adaptability
 

of
 

autonomous
 

vehicles
 

in
 

complex
 

scenarios.
Keywords:intention

 

recognition;
 

vehicle-road-cloud;
 

collaborative
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autonomous
 

driving
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0　 引
 

言　

　 　 近年来,自动驾驶技术快速发展,以单车智能为主的

车辆在感知、决策和控制方面面临许多挑战[1] 。 从感知

角度来看,单车存在感知盲区,限制了自动驾驶从辅助驾

驶阶段向全自动驾驶阶段的过渡。 车路云一体化系

统(vehicle-road-cloud
 

integrated
 

system,
 

VRCIS)通过将车

载单元(on-board
 

unit,
 

OBU)、路侧设备与云平台进行深

度信息融合,实现了车路云之间的实时数据共享与智能

决策[2] 。 VRCIS 的 基 础 是 构 建 车 路 云 协 同 感 知 框

架(vehicle-road-cloud
 

collaborative
 

perception
 

framework,
 

VRCCPS),即 VRCIS 的感知部分,基于 VRCCPS 实现数

据实时共享的车辆能够实现更高的感知精度,超越仅依

赖车载传感器的自动驾驶车辆[3] 。 在车路协同感知技术

方面,已有多篇文献分别讨论了感知算法[4] 、通信方

式[5] 、路侧传感布置[6] 、节点优化[7] 等问题,然而,专门针

对 VRCCPS 及其相关技术的研究较为稀缺,当前还面临

许多挑战, 涉及从硬件部署到软件算法开发的多个

方面[2] 。
在 VRCIS 中,驾驶意图是连接驾驶决策与交通环境

动态变化的关键纽带,居于核心地位[8] 。 虽然车辆的被

动安全措施能够在交通事故发生后减轻伤害,但从源头

预防事故,提前识别周车的换道意图,对于减少交通事故

和提高交通效率至关重要[9] 。 自动驾驶要求车辆能够主

动感知周围环境的变化,准确识别短期内的换道意图,从
而做出最优的换道决策,完成复杂驾驶场景任务[10] 。 驾

驶意图识别一直是国内外学者研究的重点领域,核心目

标均是提升驾驶意图识别的准确性和实时性,以增强自

动驾驶的安全性和可靠性。
早期研究主要利用简单的监督学习对驾驶意图进行

建模,并且使用的输入参数较为有限。 近年来,随着人工

智能技术的迅猛发展,意图识别模型在方法上发生了显

著变化[11] ,从传统统计模型不断演进。 生成模型以概率

分布建模为核心,主要通过捕获驾驶行为的内部状态变

化来预测驾驶意图。 Liu 等[12] 利用隐马尔可夫模型对车

辆的历史轨迹和动态特征进行离散或连续建模,结合周

边车辆动态特征,提高了变道或保持车道意图预测的精

度。 Li 等[13] 结合隐马尔可夫模型与贝叶斯滤波,实现了

换道意图的识别,左换道和右换道预测精度分别达到

93. 5%和 90. 3%。 Zhang 等[14] 提出了基于 XGBoost 的三

步特征学习算法,综合特征重要性排序、指标筛选和递归

特征消除,通过滑动窗口方法生成时间序列数据集,车道

变更预测准确率达到 97. 6%。
深度学习模型以自动特征提取和强大的非线性建模

能力为特点,近年来成为驾驶意图识别的主流方向。 季

学武等[15] 利用长短期记忆(LSTM)网络并结合混合密度

网络进行车辆意图识别,提高了模型在复杂场景中的精

度和鲁棒性。 赵建东等[16] 将卷积神经网络( CNN) 与门

控循环单元(GRU)结合,并引入注意力机制优化特征权

重分配,实现了换道前 2
 

s 内 89%以上的预测准确率。
方华珍等[17] 通过混合示教长短时记忆网络预测未来轨

迹,并结合 XGBoost 算法建立驾驶意图分类识别模型,利
用公开数据集进行测试验证,意图识别平均准确率达到

97. 7%。 Zhang 等[18] 提出基于互联环境的驾驶意图识别

模型,将时间序列数据转换为图像,利用 Swin
 

Transformer
算法进行高精度分类,实现换道前不同时间段的精准

预测。
综上所述,当前驾驶意图识别大多依赖于有限的行

为特征,未充分考虑驾驶环境的复杂性,且停留在公开数

据集上进行测试验证。 为了提高车辆驾驶意图识别准确

性的同时,考虑复杂场景的时效性,本文利用车路云协同

感知提出了一种基于双向长短时神经网络的意图识别模

型,通过将车辆历史轨迹等数据作为模型输入,识别车辆

驾驶意图,其主要的创新点如下:1)构建了车路云协同感

知的驾驶意图识别框架,克服了单车智能在复杂场景中

的感知局限,实现了更广泛、更可靠的环境感知与决策支

持;2)创新性引入了 Bi-LSTM 结构融合双向时序特征提

取机制,增强了对驾驶行为时序依赖关系的建模能力,提
升了意图识别准确性与轨迹预测一致性;3)在 NGSIM 公

开数据集、Sumo-Carla 联合仿真平台和真实 VRCIS 分别

进行了多维度测试验证,模型能够有效识别车辆驾驶意

图,且满足实时性要求。

1　 车路云一体化系统

1. 1　 车路云协同感知框架

　 　 车路云协同感知系统主要涉及物理层的车端与路侧

单元(road
 

side
 

unit,
 

RSU)和网络层的云平台之间的数

据感知、交互和智能协同,每一方有不同的功能和责任。
VRCCPS 如图 1 所示。 车端负责采集车辆状态信息,并
通过车联网与环境中路侧单元和云端进行实时数据交

互。 RSU 设备安装在道路设施上,负责收集周围交通流

量、交通标志、交通信号灯等信息。 云端作为车路协同系

统的“ 大脑”,汇集来自各车辆、路侧单元和传感器的

数据。
1. 2　 VRCIS 信息交互机制

　 　 VRCIS 的核心在于通过实时数据交换提升交通效率

与安全。 交通流和车辆信息的实时共享显著提高了交通

管理的精度和响应速度,有效解决了传统交通管理系统

中的信息滞后问题[19] 。 车辆通过 OBU 与云端进行实时



·100　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

图 1　 车路云协同感知框架

Fig. 1　 The
 

framework
 

of
 

VRCCPS

信息交互。 OBU 负责采集车辆的状态信息,如速度、航向

角、位置等,并通过 CAN 网络将这些信息传输给车载控制

器。 RSU 与云端通过 MQTT 协议连接,车端 OBU 与 RSU
通过 C-V2X(车-路通信)协议连接,同时车辆与路侧单元

之间使用 PC5&Uu
 

(LTE-V)网络进行通信。 车端与外部

交互都在 OBU 上进行,OBU 接收外部信息后转送至车载

协同控制器,同时 OBU 根据具体协同驾驶场景下的需要

从车载协同控制获取信息转发至外部需求方。 RSU 于路

端需接入通信范围内的网联车辆进行交互并配合 RCU 交

互引导控制信息,同时也连接云端,接收其管控信息并上

报路端信息。 VRCIS 信息交互详细流程如图 2 所示。

图 2　 VRCIS 信息交互

Fig. 2　 Information
 

exchange
 

of
 

VRCIS

LTE-V 协议下车车、车路信息交互体体类别如表 1
所示。 车辆信息包括

 

BSM(基本安全信息)、SSM(感知

共享信息)等,传输频率为 10
 

Hz。 MQTT 协议下路云信

息交互消息体如表 2 所示。
表 1　 车车-车路信息交互消息体类别

Table
 

1　 V2V
 

and
 

V2I
 

message
 

types
消息体 说明

BSM 基本安全信息:车辆速度、位置等

SSM 感知共享信息

RSM 路侧视角道路交通参与者信息

ISM 车辆意图共享信息

MAP 路段、车道信息

RSC 路侧对车辆进行引导规划

表 2　 路云信息交互消息体类别

Table
 

2　 Message
 

types
 

of
 

road-cloud
 

interaction
消息体 说明

RSU2CLOUD_STATUS RSU 设备状态上报云端

RSU2CLOUD_BSM RSU 接收范围内车辆 BSM 数据

RSU2CLOUD_RSI(MAP) 云端下发交通事件标志(地图)
RCU2CLOUD_STATUS 向云端上报 RCU 状态

RCU2CLOUD_OBJS 上报路侧感知对象

　 　 系统通过多个环节进行信息交互:1) RSU 与云平台

之间通过
 

RSU2CLOUD_HEARTBEAT 发送心跳信息,确
保连接的稳定性,云平台按需响应;同时,路侧设备通过

 

RSU2CLOUD_STATUS
 

向云平台报告设备状态,并按照

0. 1
 

Hz 的频率每 10
 

s 更新一次数据;云平台进行相应的

控制和调整。 2)车辆 OBU 上传 BSM 信息(如车辆状态、
传感器数据等);并通过

 

RSU2CLOUD_BSM
 

转发至云平

台;车辆 OBU 还将 RSM 信息上传至 RSU,RSU 再将数据

上传至云平台,通过 RSU2CLOUD
 

_RSM
 

进行处理,频率

为 10
 

Hz。 3)车辆与路侧单元之间的安全与状态信息也

在不断交换,帮助云平台做出动态决策;此外,车辆 OBU
上传的导航和控制信息,如 SSM 和地图数据,帮助车辆

根据实时交通情况调整行驶路线,频率为 1
 

Hz。
通过这一系列信息流,VRCIS 实现了实时的决策支

持与控制,确保了整个系统在复杂交通环境中的高效

运作。

2　 车辆驾驶意图识别

2. 1　 问题分析

　 　 驾驶意图与周围车辆的交互特征有较强的关联性,
并且这种关联性通常表现出明显的时序特征。 常用的循

环神经网络(recurrent
 

neural
 

network,
 

RNN)在处理序列

信息方面有一定优势,但有“梯度消失” 缺陷,需要对其

单元结构进行进一步改进。 LSTM 创新的引入了细胞状
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态(Cell
 

State,
 

ct),这个状态有助于保持长期记忆,并能

将早期数据传递到当前时刻。 此外,LSTM 结构中还包含

输入、输出与遗忘门。 其中输入门控制新信息的接受程

度,遗忘门决定丢弃哪些无关紧要的信息,输出门负责筛

选这些信息,准备传递到下一个时间点。 这些机制克服

了传统 RNN 面临的问题。
然而,LSTM 在历史信息向前传递的过程中,主要依

据前一时刻的序列数据来预测下一时刻的输出,一些与

当前时刻距离较远的“记忆”可能会因为权重较小而逐

渐丢失。 因此,文献[ 20-21] 使用双向 LSTM 网络模型

(bi-directional-LSTM,
 

Bi-LSTM),该网络模型的核心思想

在于阅读一个连续时刻的序列样本时,会有两个阅读过

程:从前向后阅读和从后向前阅读。 也可以理解为有两

个 LSTM 对输入分别提取正反双向的时间依赖关系,模
型最终的输出结果由这两个 LSTM 的输出结果进行处理

后综合决定,提高了模型在复杂交通流场景下的精度和

鲁棒性。
2. 2　 模型构建

　 　 本文提出了一种基于 Bi-LSTM 网络的驾驶意图识别

模型。 由两个独立的 LSTM 网络组成。 模型需要的参数

由两部分组成,分别通过正向和反向方式输入。 每个

LSTM 网络都会独立提取特征向量,然后将正向与反向的

特征向量组合,形成最终的特征向量。 这样,通过将正向

LSTM 与反向 LSTM 的输出向量结合,包含了过去和未来

的信息,形成了 Bi-LSTM 网络的输出。 这一结构的流程

如图 3 所示。

图 3　 Bi-LSTM 网络

Fig. 3　 Bidirectional
 

LSTM
 

network

　 　 将其输出向量结合在一起,即为网络的输出 H t ,即:

H t = ( h
➝

t,h
←

t) (1)

式中: h
➝

t 为正向运算过程; h
←

t 为反向运算过程。
轨迹预测如图 4 所示。
采用 Bi-LSTM

 

编码-解码:
Y = fBi-LSTM(X) (2)
模型输入为历史轨迹等特征信息,即:
X = [x1,x2,…,x t -1,x t] (3)

图 4　 Bi-LSTM 轨迹预测

Fig. 4　 Bi-LSTM
 

for
 

trajectory
 

prediction

式中: x 表示特征向量; t 表示长度。
预测的未来轨迹表示为:

Ŷ = [y1,y2,…,yσ -1,yσ] (4)
式中: y 为输出特征向量; σ 为预测轨迹长度。

由于参数 α 存在最优解,此处采用网格搜索的方法

对 α 进行寻优。 基于 XGBoost 算法构建驾驶意图识别模

块,如图 5 所示。

图 5　 XGBoost 算法

Fig. 5　 XGBoost
 

algorithm

将 X 与 Ŷ 组合,构成向量 X′ 。 XGBoost 算法识别出

意图信息 I ,并进行编码:向左变道、车道跟驰、向右变

道,最后通过循环迭代拟合模型的残差。
I = fXGBoost(X′) (5)
设车辆驾驶意图识别数据集 D = {(x i,y i)} ,其中,

x i 为特征状态, y i 为意图标签。
驾驶意图识别模型的输出结果如下:
 

y

(

i = ∑
K

k = 1
fk(x i),fk ∈ Tree (6)

式中: x i 为第 i个样本; fk 为第 k棵树模型; K为回归树的
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总数; Tree 为包含所有回归树的函数空间。
基于前一次迭代的残差,XGBoost 通过迭代,产生新

的回归树,初始值为常数,因此该模型的迭代式可以表达

如下:
 

y

(

(0)
i = 0

 

y

(

(1)
i = f1(x i) =

 

y

(

(0)
i + f1(x i)

 

y

(

(2)
i = f1(x i) + f2(x i) =

 

y

(

(1)
i + f2(x i)

︙
 

y

(

(k)
i = ∑

K

k = 1
fk(x i) =

 

y

(

(k-1)
i + fk(x i)

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(7)

式中:
 

y

(

(k)
i 为第 k 次迭代第 i 个样本的预测值; fk(x i) 是

第 k 棵树。
XGBoost 目标函数由损失函数与正则化两个部分构

成。 损失函数主要是预测意图类别和真实意图类别之间

的差,正则化则用于控制每棵树的复杂程度,防止过拟

合。 目标函数为:

O(k) = ∑
K

k = 1
l(y i,

 

y

(

(k)
i ) + ∑

K

k = 1
W( fk) (8)

式中: l(y i,
 

y

(

(k)
i ) 为损失函数; W( fk) 为正则化部分,

W( fk) = γL + λ 1
2 ∑

L

t = 1
ω 2

j (9)

式中: fk 为第 k棵树; L为第 k棵树的叶子节点数; γ 为惩

罚项系数; λ 为正则化惩罚系数; ω j 为叶子节点分数;
1
2 ∑

L

t = 1
ω 2

j 为子节点分数的 L2 正则化。

迭代后更新的目标函数为:

O(k) = ∑
K

k = 1
l(y i,

 

y

(

(k-1)
i + fk(x i)) + ∑

K

k = 1
W( fk) (10)

将上式进行二阶展开后,合并整理得目标函数为:

O(k) = - 1
2 ∑

T

i = 1

G2
i

H i + λ
+ γT (11)

求解式(11),得 ω∗
i :

ω∗
i =-

G i

H i + λ
(12)

式中: G i、H i 分别表示叶子节点 i 的一阶与二阶偏导数之

和; λ、γ 为控制模型复杂度的超参数; T、ω i 分别表示叶

子节点个数与权重。

3　 模型及算法验证

3. 1　 公开数据集测试

　 　 选用公开数据集 NGSIM( next
 

generation
 

simulation)
中 US-101 和 I-80 场景下数据,如图 6 所示。

该数据提供了高速公路环境下的车辆轨迹数据,包

图 6　 US-101 与 I-80 路段

Fig. 6　 US-101
 

and
 

I-80
 

section

含大量了车辆换道、车道跟驰等驾驶行为数据,用作驾驶

意图识别模型的离线训练数据。
1)数据集处理

数据集处理包括数据滤波、特征筛选和标注[17] 。
(1)数据滤波。 由于摄像机收集的数据存在一定偏

差,如轨迹漂移和重叠等问题,特别是在横向速度的误差

较为显著, 因此需要对数据进行平滑处理。 研究表

明[22] ,基于卡尔曼滤波和粒子滤波的融合技术能够有效

提高车辆速度、位置等关键参数的估计精度,显著提升在

复杂和动态环境中的状态识别能力。 使用小波分解方法

对轨迹数据进行滤波。
XLocal = An + D1 + D2 + … + Dn (13)

式中: An 和 Dn 分别为第 n 次分解所得的低高频信号。
滤波前后对比如图 7 所示。 显然,经过滤波处理的

数据更加平滑,能够为模型提供更接近实际的高速公路

车辆行驶数据。

图 7　 滤波前后对比

Fig. 7　 Comparison
 

before
 

and
 

after
 

filtering

(2)特征筛选。 数据通过采用鸟瞰摄像头采集,频
率为 10

 

Hz,主要的特征信息包含车辆编号、车辆前部中

心位置的横纵坐标、车辆类型、车辆瞬时速度、车辆瞬时

加速度等信息,如表 3 所示。
将目标车辆前后 50 m 范围内的 6 辆车视为环境车

辆。 车辆轨迹预测的输入包含历史轨迹信息(目标车辆、
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环境车辆与车道),共 44 维特征,如图 8 所示,具体输入

特诊如表 4 所示。
表 3　 车辆特征

Table
 

3　 Vehicle
 

features
特征名称 特征描述 单位

Vehicle_ID 车辆 ID -
Frame_ID 该条数据在某一时刻的帧 -
Local_X 车辆中心位置的横向坐标 feet
Local_Y 车辆中心位置的纵向坐标 feet
v_Class 类型:1 摩托车 2 汽车 3 卡车 -
v_Val 车辆瞬时速度 feet / s
Vacca 车辆瞬时加速度 feet / s2

Lane_ID 车道编号,行驶方向最左侧为 1

图 8　 目标车辆周围车辆

Fig. 8　 Surrounding
 

vehicles
 

around
 

the
 

target
 

vehicle

表 4　 模型输入特征描述

Table
 

4　 Description
 

of
 

model
 

input
 

features
特征组 特征描述 维度

目标车辆

横向位移 x、纵向位移 y(原始数据获取) 2
横向速度 vx 、纵向速度 vy

vx = 10(xi+1 - xi),vy = 10(yi+1 - yi)
2

横向加速度 ax 、纵向加速度 ay

ax = 10(vxi+1
- vx),ay = 10(vyi+1

- vy) 2

环境车辆

环境车辆 j 与目标车辆 i 的横纵相对距离

Δx j = x j - xi,Δy j = y j - yi
12

环境车辆 j 自身的历史瞬时速度

vjx = 10·(x jt - x jt-1 ), vjy = 10·(y jt - y jt-1 ) 12

环境车辆 j 的历史瞬时加速度

a j
x = 10·(vjx,t - vjx,t-1 ),a j

y = 10·(vjy,t - vjy,t-1 ) 12

车道 目标车辆相邻车道编号(1 存在、0 则否) 2
44

　 　 (3)数据标注。 公开数据集中的车辆驾驶意图标签

缺失,因此需自行标注。 目前大多采用车辆的横纵向运

动参数标注换道意图,但由于其波动性小,难以做出准确

的判断。 本文采用航向角来作为换道的判断依据[23] 。
首先,按照时间顺序,对同一编号车辆所在车道进行遍

历,将所有车辆车道发生改变的时间点记为变道点;通过

横纵向速度计算出航向角:

θ = arctan
vy
vx

( ) (14)

若车辆在某一帧之后,连续 1
 

s 时间内航向角都大于

所设置的航向角阈值,则将该点记为起始点,具体如图 9
所示。

图 9　 车辆变道

Fig. 9　 Lane
 

changing
 

of
 

vehicles

2)训练过程

在一台搭载 NVIDIA
 

GeForce
 

RTX
 

4060ti
 

GPU、32
 

G
内存电脑上,使用深度学习框架 PyTorch 模型进行训练。
NGSIM 数据集上共提取到 128

 

136 条有效数据,其中车

道跟驰占绝大部分,故将 3 种类型的数据平衡,并从中抽

取 50
 

000 条数据,作为数据集,并按 8 ∶ 2 划分训练集和

测试集,训练参数如表 5、6 所示。
表 5　 Bi-LSTM 参数设置

Table
 

5　 Bi-LSTM
 

parameter
 

settings
参数 值

Batch
 

size 1
 

024
损失函数 MSE
优化器 Adam
学习率 0. 001

权重衰减 0. 000
 

1
Dropout 0. 2
隐藏层 128

计划抽样比例 0. 4

表 6　 XGBoost 参数设置

Table
 

6　 XGBoost
 

parameter
 

settings

参数 值

分类器数量 110
树最大深度 6

学习率 0. 2
采样比例 1

　 　 3)测试结果

使用精确率、召回率、准确率[24] 和 F1-score 作为评

价指标。 并利用 LSTM-XGBoost 模型与 XGBoost 的模型

进行对比分析:(1)传统 XGBoost 模型,直接处理原始数

据进行识别;(2)LSTM-XGBoost 模型:采用 LSTM 进行轨
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迹预测的 XGBoost 模型;( 3) Bi-LSTM-XGBoost 模型:本
文提出采用 Bi-LSTM 网络进行轨迹预测 ( 图 10 ) 的

XGBoost 模型。 表 7 为各模型识别指标的结果对比。
由表 7 可知,Bi-LSTM-XGBoost 模型的各项指标均较

高,尤其在右变道任务中,且在所有 3 个指标上表现突

出,最终整体准确率达到了 97. 4%。 这主要得益于 Bi-
LSTM 能更好地处理时序特征,

 

双向结构能更好地捕捉

换道意图初期那些微弱但关键的横向运动特征,从而更

早、更准确地识别意图,而 LSTM-
 

XGBoost 虽然表现稳

健,但在精准率和 F1 得分上有所欠缺。
此外,为验证 Bi-LSTM 架构本身的有效性,排除其性

能提升源于‘窥探’未来信息的可能性,补充了因果性对

比实验,结果如表 8 所示。 通过 Mask 技术,确保反向

LSTM 在计算时刻 t的特征时,无法访问 t + 1 时刻之后的

未来信息,模拟其真实部署场景。
图 10　 采用 Bi-LSTM 网络的轨迹预测对比

Fig. 10　 Trajectories
 

comparison
 

by
 

Bi-LSTM

表 7　 各模型识别指标对比

Table
 

7　 Comparison
 

of
 

recognition
 

metrics
 

for
 

different
 

models

意图

精确率 　 召回率 F1
LSTM-

XGBOOST
 XGBoost

Bi-LSTM-
XGBoost

　
LSTM-

XGBOOST
XGBoost

Bi-LSTM-
XGBoost

LSTM-
XGBOOST

XGBoost
Bi-LSTM-
XGBoost

跟驰 0. 959 0. 957
 

0. 969 0. 956 0. 958 0. 961 0. 957 0. 957 0. 965
左变道 0. 969 0. 971 0. 975 0. 971 0. 970 0. 976 0. 970 0. 970 0. 975
右变道 0. 978 0. 977 0. 979 0. 979 0. 977 0. 985 0. 979 0. 977 0. 982

表 8　 因果推理条件下模型性能对比

Table
 

8　 Performance
 

comparison
 

under
 

causal
 

inference

模型 准确率 / %
跟驰

(F1)
左变道

(F1)
右变道

(F1)
LSTM-XGBOOST 96. 8 0. 957 0. 970 0. 979

Bi-LSTM-XGBoost-Causal 97. 2 0. 963 0. 973 0. 981

　 　 由表 8 可知,即使在因果律的推理条件下,模型的整

体准确率仍保持高准确率 97. 2%,说明 Bi-LSTM 性能的

提升主要源于其强大的双向架构本身能更有效地从历史

序列中提取关键特征,而非单纯依赖于未来信息。 在训

练阶段接触完整序列,使得 Bi-LSTM 学习到了更丰富的

上下文特征表示,这种表征能力在因果推理模式下得以

保留,获得了性能提升。
3. 2　 联合仿真测试

　 　 搭建基于真实城市两车道仿真场景,Sumo 负责模拟

宏观交通流环境,提供整体车流特征;Carla 进行微观驾

驶行为仿真,提供高精度的感知信息和个体交互数据,模
拟车路云协同感知;路侧 RSU 实时将感知范围车辆状态

信息和道路信息作为数据输入,频率为 10
 

Hz,对意图识

别模型进行 Sumo 与 Carla 联合仿真。 仿真过程中,将意

图结果进行编号,其中。 左换道标记为 0,车道跟驰记为

1,右换道记为 2,持续输出意图编号结果,输出频率为

10
 

Hz。 随机选择其中 5 辆车进行测试,车辆的实时驾驶

意图随时间变化如图 11 所示,模型检测到车辆换道意图

时,持续输出对应意图直至换道完成,通过这种意图编号

方式,能直观的展现车辆之间的意图交互过程。

图 11　 驾驶意图随时间变化

Fig. 11　 Driving
 

intentions
 

over
 

time

图 12 所示为联合仿真过程中目标车辆(Car
 

1)的一

次左换道意图与轨迹预测结果。 换道初期模型持续输出

左换道意图(0)直至换道结束保持车道跟驰(1)。 对应
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的驾驶意图变化也在图 11 中有所体现。 同时,预测轨迹

与行进轨迹高度吻合,证明了本文模型能捕捉驾驶意图

与轨迹动态特征。

图 12　 车辆左换道与轨迹预测结果

Fig. 12　 Vehicle
 

left
 

lane
 

change
 

and
 

trajectory
 

prediction

在复杂交通场景中,若要实时获取车辆的意图和预

测轨迹,必须确保单次识别的耗时低于系统的输出频率

(100 ms)。 因此,需要对意图识别模型在同时处理不同

数量车辆时的耗时情况进行模拟分析。 表 9 为感知范围

内车辆数量与单次识别耗时的关系。 可以看出,随着感

知范围内车辆数量的增加,模型的耗时也随之增加。 在

同时识别 15 辆左右车时,能够满足 100
 

ms 以内的时延

要求。 而当范围车辆超过 20 辆时,耗时大幅增加,超过

了 100
 

ms,若持续同时识别超 20 辆车,将无法保证意图

识别的实时性与准确性。 分析原因,在高密度交通流下,
车辆之间的交互关系过于复杂,导致模型输入特征维数

大幅上升,处理更长序列的计算复杂度增加。 模型同时

处理的信息过多达到了瓶颈,导致时延增加。 同时过多

的数据对计算资源的消耗增加,同样会导致时延。
表 9　 感知范围内车辆数与耗时关系

Table
 

9　 Relationship
 

between
 

number
 

of
 

vehicles
 

in
perception

 

range
 

and
 

time
 

consumption
车辆数 耗时 / ms

5 21. 85
11 48. 72
15 66. 83
23 150. 32

3. 3　 真实道路测试

　 　 在真实 VRCCPS 下,采集的实际数据集上进行了测

试,选取一辆换道的车辆及其周围其他车辆的状态数据

进行验证,如图 13 所示。 图 14 所示为多车场景下,模型

输出的车辆轨迹预测对比结果。
图 13 中,基于真实道路采集的车辆数据,其预测轨

图 13　 车辆真实轨迹与预测对比

Fig. 13　 Comparison
 

of
 

true
 

and
 

predicted
 

vehicle
 

trajectories

图 14　 多车真实轨迹与预测对比

Fig. 14　 Comparison
 

of
 

true
 

and
 

predicted
trajectories

 

for
 

multiple
 

vehicles

迹与真实轨迹在一个高精度的局部坐标系下进行了对

比。 横轴为经度偏移,纵轴为纬度偏移。 由于真实道路

采集的数据不可避免地受到传感器噪声、定位误差的干

扰。 微小的误差会被模型放大。 此外 NGSIM 数据多为

常规驾驶行为,对于某些特定或突发的起始条件,模型的

泛化能力仍有提升空间。 因此,预测轨迹与真实轨迹终

存在微小偏差。 然而,从宏观轨迹形态来看,Bi-LSTM 模

型成功预测了车辆的总体行驶意图和路径走向。 表明模

型具备时序依赖关系学习能力和对驾驶策略的深层

理解。
由图 14 可知,在多车交互的复杂真实环境下,Bi-

LSTM 模型展现出较强的交互特性捕捉能力,对所有车辆

的轨迹预测结果与其真实值吻合良好。 该模型通过双向

时序建模,准确捕捉了单车运动特征,理解了车辆之间隐

含的动态相互作用关系,能够在整体上生成协调一致且

无冲突的预测轨迹簇,从而准确模拟真实交通流中多智

能体协同运动的动态过程,体现了其在复杂场景下较强

的轨迹预测能力。
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4　 结　 论

　 　 本文提出了一种基于车路云协同感知的车辆驾驶意

图识别方法,通过构建车路云多源信息融合框架,结合

Bi-LSTM 网络与 XGBoost 算法,实现了对车辆驾驶意图

的识别,并分别在 NGSIM 公开数据集、虚拟测试平台和

车路云一体化系统进行了测试。 1)构建了面向车路云协

同感知的驾驶意图识别框架,实现了更广泛、更可靠的环

境感知与决策支持;2)引入 Bi-LSTM 结构融合双向时序

特征提取机制,提升了意图识别准确性与轨迹预测一致

性;3)提出的 Bi-LSTM-XGBoost 模型在多车交互场景中

表现出良好的鲁棒性和实用性,满足实时性要求。 下一

步将重点探索基于梯度直估的端到端训练框架,融合

CNN-LSTM 等深层网络结构,进一步提升模型在极端场

景中的适应性和泛化性。
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