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Vehicle driving intention recognition method based on
vehicle-road-cloud collaborative perception

Li Haiqing Lei Yucheng Dai Yingying Lu Sheng Luo Jiufei

(School of Integrated Circuits, Chongging University of Posts and Telecommunications, Chongqing 400065, China)

Abstract: Accurately recognizing vehicle driving intentions is crucial for autonomous driving. To address the issues of limited perception
capabilities in complex traffic scenarios with single-vehicle intelligence, this paper proposes a vehicle driving intention recognition
method based on Vehicle-Road-Cloud collaborative perception. First, an overall framework for information exchange is established
through Vehicle-Road-Cloud collaborative perception, analyzing the information flow of vehicle-to-vehicle, vehicle-to-road, and road-to-
cloud communication. Next, a vehicle intention recognition model is developed by combining Bi-LSTM and the XGBoost algorithm. By
integrating the vehicle’ s historical trajectory data with the dynamic features of surrounding vehicles, the model enhances the accuracy of
driving intention recognition. Finally, the innovative Bi-LSTM bidirectional sequence processing mechanism is introduced, allowing the
model to simultaneously capture both forward and backward temporal dependencies, optimizing data processing and improving the model’
s robustness in complex traffic scenarios. Testing on the NGSIM dataset shows that, compared to traditional XGBoost and LSTM-XGBoost
models, the Bi-LSTM-XGBoost model achieves an overall recognition accuracy of 97. 4% in lane-change intention recognition and the
model maintains an accuracy of 97.2% under causal constraints. Through co-simulation testing with Sumo and Carla, the impact of
varying vehicle numbers on the model’ s recognition efficiency is analyzed, with results indicating that the model can recognize driving
intentions in real-time within 100 ms. Further testing on a real-world dataset collected from a Vehicle-Road-Cloud collaborative
perception system demonstrates that the model meets real-time requirements, exhibits high trajectory prediction capability, and enhances
the perception and adaptability of autonomous vehicles in complex scenarios.
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Table 7 Comparison of recognition metrics for different models
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