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Probabilistic prediction of temperature telemetry based on multi-granularity
time-frequency domain feature fusion
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Abstract: The prediction of satellite temperature telemetry data has important research and application value for monitoring satellite
status and fault warning in ground operation and maintenance systems. However, traditional prediction methods have limitations such as
low accuracy, insufficient robusiness, and inability to provide probabilistic interval expressions. Therefore, this study proposes a
multivariate temporal probabilistic prediction model TFM Diff for satellite temperature telemetry sequences. Firstly, a hybrid architecture
based on gated recurrent units and discrete cosine transform was constructed to more accurately identify time-frequency domain dynamic
patterns in telemetry data. Next, by integrating multi granularity features, complex modeling of short-term fluctuations and long-term
trends in temperature telemetry data can be achieved, effectively analyzing the multi-scale characteristics of satellite temperature data.
Finally, by combining the denoising diffusion model to comprehensively analyze the potential distribution patterns of the data, the
probability interval expression of the prediction results can be achieved. Experimental verification based on four sets of real satellite
temperature datasets shows that the continuous ranking probability score sum index for probabilistic prediction has improved the predictive
performance of the proposed model by 6.26% to 27.77% compared to other mainstream methods, verifying its superior predictive
performance, good applicability, and universality in space application scenarios.
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Fig. 1 Framework of satellite temperature telemetry sequence prediction model
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Table 2 Model training hyperparameter

24 HBfe
Epochs 30
Batch size 128
Diffusion Steps 100
Learning Rate 0. 000 01
RLARL R 230 F R 1:4
GRU-layers 4
GRU-cells 40
embedding_dimension 5
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Table 3 The experimental results of the model comparison

pygies=, Fabr AR TACTIS-2 MG-TSD ScoreGrad TimeGrad  Transformer-MAF LSTNet DeepVAR
CRPS-sum 0. 009 44 0.013 709 0.013 069 0.015 44 0.015 70 0.013 36 0.017 54 0.020 97

I ND-sum 0.013 17 0.014 037 0.016 705 0.018 37 0.019 42 0.018 46 0.017 87 0.027 09
NRMSE-sum 0.017 36 0.017 583 0.017 74 0.021 72 0.023 39 0.021 16 0.019 18 0.033 90
CRPS-sum 0. 047 07 0.067 31 0. 063 043 0. 055 39 0.057 51 0.083 92 0.079 25 0.069 61

I ND-sum 0.061 69 0.069 77 0.081 136 0. 086 02 0.092 13 0.098 67 0.079 25 0. 086 69
NRMSE-sum 0. 075 96 0.099 35 0. 100 78 0. 109 51 0.103 28 0.125 18 0. 089 26 0.109 52
CRPS-sum 0. 009 25 0.010 82 0.011 00 0.013 75 0.019 00 0.016 41 0.032 52 0.020 42

I ND-sum 0. 008 26 0.014 02 0.015 55 0.014 93 0.023 57 0.019 99 0.032 52 0.032 26
NRMSE-sum 0.010 99 0.015 58 0.017 98 0. 025 80 0.028 37 0.026 34 0. 039 38 0.039 36
CRPS-sum 0.015 41 0.016 93 0.016 87 0.017 33 0.016 38 0.018 79 0.016 44 0.028 12

v ND-sum 0.018 82 0.025 39 0.024 49 0.024 97 0.023 79 0.021 74 0.024 17 0.028 12
NRMSE-sum 0. 025 33 0. 026 56 0. 027 09 0. 026 35 0.026 91 0.029 47 0. 025 95 0. 030 93
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Table 4 Ablation test results

PRET e CRPS-sum ND-sum NRMSE-sum
ERLE 2 Aot 0.011 4 0.0157 0.017 6
RS A 0.012 8 0.016 1 0.019 8
GRU+Diffusion 0.018 2 0.024 7 0.029 9
RS 0.009 4 0.013 7 0.017 3
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