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多粒度时频域特征融合的温度遥测概率性预测∗

曹杨锁1 　 卢晓伟2 　 庞景月1

(1. 重庆工商大学人工智能学院　 重庆　 400067;2. 上海卫星工程研究所　 上海　 201100)

摘　 要:卫星温度遥测数据预测对于地面运维系统监测卫星状态及故障预警具有重要的研究与应用价值。 但传统预测方法存

在精度低、鲁棒性不足且无法提供概率区间表达的局限性。 为此,提出了一种针对卫星温度遥测序列的多元时序概率性预测模

型 TFM-Diff。 首先,构建了一种基于门控循环单元与离散余弦变换的混合架构,以更准确地识别遥测数据中的时频域动态模

式。 然后通过融合多粒度特征实现对温度遥测数据短期波动与长期趋势的复杂建模,以有效解析卫星温度数据的多尺度特性。
最后,结合去噪扩散模型全面分析数据的潜在分布模式,实现预测结果的概率区间表达。 基于 4 组真实卫星温度数据集的实验

验证表明,针对概率性预测的连续排序概率评分总和指标,相对于其他主流方法,所提出模型的预测性能提升 6. 26% ~
27. 77%,验证了其在空间应用场景下具有优越的预测性能、良好的适用性和通用性。
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Abstract:
 

The
 

prediction
 

of
 

satellite
 

temperature
 

telemetry
 

data
 

has
 

important
 

research
 

and
 

application
 

value
 

for
 

monitoring
 

satellite
 

status
 

and
 

fault
 

warning
 

in
 

ground
 

operation
 

and
 

maintenance
 

systems.
 

However,
 

traditional
 

prediction
 

methods
 

have
 

limitations
 

such
 

as
 

low
 

accuracy,
 

insufficient
 

robustness,
 

and
 

inability
 

to
 

provide
 

probabilistic
 

interval
 

expressions.
 

Therefore,
 

this
 

study
 

proposes
 

a
 

multivariate
 

temporal
 

probabilistic
 

prediction
 

model
 

TFM
 

Diff
 

for
 

satellite
 

temperature
 

telemetry
 

sequences.
 

Firstly,
 

a
 

hybrid
 

architecture
 

based
 

on
 

gated
 

recurrent
 

units
 

and
 

discrete
 

cosine
 

transform
 

was
 

constructed
 

to
 

more
 

accurately
 

identify
 

time-frequency
 

domain
 

dynamic
 

patterns
 

in
 

telemetry
 

data.
 

Next,
 

by
 

integrating
 

multi
 

granularity
 

features,
 

complex
 

modeling
 

of
 

short-term
 

fluctuations
 

and
 

long-term
 

trends
 

in
 

temperature
 

telemetry
 

data
 

can
 

be
 

achieved,
 

effectively
 

analyzing
 

the
 

multi-scale
 

characteristics
 

of
 

satellite
 

temperature
 

data.
 

Finally,
 

by
 

combining
 

the
 

denoising
 

diffusion
 

model
 

to
 

comprehensively
 

analyze
 

the
 

potential
 

distribution
 

patterns
 

of
 

the
 

data,
 

the
 

probability
 

interval
 

expression
 

of
 

the
 

prediction
 

results
 

can
 

be
 

achieved.
 

Experimental
 

verification
 

based
 

on
 

four
 

sets
 

of
 

real
 

satellite
 

temperature
 

datasets
 

shows
 

that
 

the
 

continuous
 

ranking
 

probability
 

score
 

sum
 

index
 

for
 

probabilistic
 

prediction
 

has
 

improved
 

the
 

predictive
 

performance
 

of
 

the
 

proposed
 

model
 

by
 

6. 26%
 

to
 

27. 77%
 

compared
 

to
 

other
 

mainstream
 

methods,
 

verifying
 

its
 

superior
 

predictive
 

performance,
 

good
 

applicability,
 

and
 

universality
 

in
 

space
 

application
 

scenarios.
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0　 引　 言

　 　 自 2016 年以来,我国航天事业的发展进入“ 快车

道”。 据 UCS 卫星数据库统计,目前我国在轨卫星数量

已达 628 颗,约占全球总量的 1 / 12[1-2] 。 随着我国航天事

业的快速发展,卫星技术的研究与应用也日益深入。 卫

星在轨运行过程中长期受到外热流、光照、辐射等多种因

素的影响,其在轨运行状态可能发生与预期不符的情况,
引发异常和故障,直接影响关键部件甚至卫星整机的性

能及寿命[3-6] 。 卫星是一个复杂庞大的力、热、电综合系

统。 其中,温度是星上热学环境的重要衡量指标,它为众

多需求各异的单机和器件提供适宜的工作条件和生存环

境。 其对应的温度遥测序列则是反映在轨卫星关键部件

性能、单机状态、分系统乃至整星健康水平的重要指标。
在此背景下,对卫星温度遥测序列进行准确的预测,不仅

能够实现卫星异常检测与预警,还有助于工程师优化卫

星热控系统设计, 提高卫星在轨运行的可靠性和稳

定性[7-9] 。
实际工程应用中,传统的卫星温度预测方法通常基

于有限元、有限差分等理论建立卫星热控数学模型,并根

据卫星在轨的典型工况完成热控系统仿真[8] 。 尽管传统

热控系统仿真方法能够在一定程度上解决温度预测问

题,但面向不同卫星型号、分系统和单机部件进行温度预

测时通常需要根据相应机理构建不同的模型,模型的通

用性和拓展性较差,难以满足全卫星平台乃至多卫星平

台的温度监测需求。 因此,在应对现代航天工程的复杂

环境和快速响应需求时,传统方法具有较大的局限性[9] 。
考虑到在轨卫星不同部件的温度变化受到多种因素的影

响,包括外热流、热涂层材料、热敏安装位置、单机开关机

状态以及控温策略等,这些因素使得不同数据变化表现

形式中蕴含一定的共性规律。 因此,从数据驱动的角度

建模关系复杂、高维度的遥测数据,是目前国内外研究的

主要方向[9-11] 。
目前基于数据驱动的预测包括点预测(预测某一时

刻序列的具体数值)和概率性预测(某一时刻序列预测

结果的波动范围)两个方面。 遥测数据参数间关系复杂,
数据波动性较大,外部环境变化频繁,单一的点预测仅提

供直观的预测结果,无法体现预测结果的不确定性。 对

比而言,概率性预测方法不仅能提供一个预测值,还可为

每个预测值生成不确定性区间,即预测结果的可能波动

范围[12] ,更适宜于卫星温度遥测序列的预测场景。
概率性预测方法中高斯过程回归( Gaussian

 

process
 

regression,GPR ) [13] 、 隐马尔科夫模型 ( hidden
 

Markov
 

model,HMM) [14] 、贝叶斯回归( Bayesian
 

regression) [15] 和

稀疏回归模型(relevance
 

vector
 

machine,RVM) [16] 等基于

统计机器学习的模型在针对遥测参数的小样本概率性预

测方面具有一定优势,但面对大规模复杂数据时所需计

算代价昂贵,且非线性建模能力受限,预测效果不佳。
随着深度学习技术的发展与计算资源的突破,基于

深度学习的概率性预测在近几年得到了持续关注。 其中

DeepVar(deep
 

variational
 

model) [17] 基于传统的向量自回

归模型( vector
 

autoregressive
 

model,VAR) 与循环神经网

络结合,可以有效捕捉复杂的非线性动态关系,但面对大

规模 数 据 时 难 以 有 效 捕 捉 所 有 时 间 点 的 依 赖 性;
LSTNet[18] 基于长短期记忆网络( long

 

short-term
 

memory,
LSTM)能够有效提取时间序列中的局部特征,但参数较

多,需要大量的训练数据来避免过拟合[19-20] ;Transformer-
MAF( Transformer-based

 

masked
 

autoregressive
 

flow) [21] 能

够在建模时充分考虑数据的长距离依赖关系,通过多头

自注意力机制,可以同时关注多个时间点的信息,提高预

测的准确性,但对于某些局部异常或突变点的预测能力

尚有待提升;TACTiS-2 基于连接函数( Copula)以及注意

力机制,能够有效地建模多变量时间序列的联合分布,但
该模型计算复杂度较高且对于局部异常值的处理能力相

对较弱,可能导致预测结果的不稳定[22] ;TimeGrad[23] 、
ScoreGrad[24] 和 MG-TSD[25] 基于扩散模型,能够通过生成

式过程逐步学习数据的真实概率分布,可有效捕捉复杂

时间序列的长期趋势与短期波动,保证预测的稳定性与

准确性。
上述方法中,DeepVar、LSTNet 和 Transformer-MAF 虽

然在特定场景下展现了其优势,但都存在一定局限性。
相比之下基于扩散模型的方法不仅能够捕捉复杂的时间

依赖性,还能够有效降噪,同时保持稳定性和灵活性,适
应不同的预测任务和数据特征,这使得其能在时间序列

预测中充分发挥优势。 然而,与传统时间序列相比,卫星

温度遥测序列具有更强的不确定性,其复杂性来源于外

部空间环境扰动(如太阳辐射、地球阴影效应)以及内部

系统噪声(如热力学波动、电池充放电等)。 此外,尽管

温度序列中可能存在一定的隐藏周期性(如轨道周期或

运行模式),但受噪声影响周期性呈现波动性与多周期特

性,传统的时序建模方法难以有效提取关键特征。 而且

在噪声水平较高或分布复杂的情况下,基础的扩散模型

难以准确地将噪声从信号中分离,有时甚至会抑制一些

有用的信号特征,导致重要的动态信息被忽视,从而影响

预测精度。
因此,针对以上问题与挑战,本研究提出一种基于多

粒度时频域特征融合的扩散概率模型(TFM-Diff)以降低

噪声干扰, 增强趋势建模, 该模型通过离散余弦变

换(discrete
 

cosine
 

transform,DCT) 提高对遥测数据中频

域变化的敏感度,补充时域特征的不足,并且融合多粒度

模块从多尺度捕捉长期、局部动态变化模式,进而实现对
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温度遥测序列的可靠预测,其预测性能通过实际航天器

在轨温度数据进行了实验验证与分析。

1　 TFM-Diff 原理与结构

1. 1　 TFM-Diff 模型的整体结构

　 　 本文提出的 TFM-Diff 模型整体结构如图 1 所示。 图

1 中,遥测序列作为输入,首先通过多粒度分解以捕捉数

据在不同时间尺度上的特征。 多粒度分解将输入序列划

分为短期、中期和长期等不同粒度的子序列,从而增强模

型对多层次时间依赖关系的理解。 其次,融合门控循环

单元(gated
 

recurrent
 

unit,GRU) 以及 DCT 的混合结构,

以更准确地识别遥测数据中的时频域动态模式。 具体而

言,每个粒度的子序列分别通过独立的 GRU 单元进行处

理,模型能够同时捕捉短期波动和长期趋势。 通过将提

取到的特征输入 DCT 模块,提升模型对周期性变化的捕

捉能力,以更准确地描述遥测数据的潜在模式。 最终,利
用扩散模型的生成式特性,模型逐步还原出原始数据的真

实分布,生成最终的预测结果。 本文模型的结构设计充分

考虑了多维遥测参数的特性,并融合了多粒度分解、扩散

模型、GRU 以及 DCT 的特征变换优势,实现了多尺度特征

融合的时频域特征建模,以充分捕捉多维遥测参数的长时

间依赖性、短期波动性以及复杂的潜在频域变化,为提升

概率性预测的精度奠定优质的模型基础。

图 1　 卫星温度遥测序列预测模型框架

Fig. 1　 Framework
 

of
 

satellite
 

temperature
 

telemetry
 

sequence
 

prediction
 

model

1. 2　 多粒度分解与时频域特征融合

　 　 1)多粒度分解

不同时间粒度数据反映的信息变化趋势不同,细粒

度的时间序列可以保留更详细的信息,而较大粒度的序

列可以捕捉长期变化的趋势。 因此本文从粒度计算的角

度,引入下采样方法,使用不同尺寸的历史滑动窗口平滑

细粒度数据,将原始遥测数据划分为多粒度数据,进而从

不同粒度序列中获取多元复杂的动态关系。 假设 f 是预

定义的下采样平滑方法,sg 是粒度级别,其中 g 为预定义

滑动窗口大小, X(1) 为细粒度的原始序列, 则 X(g) =
f(X(1) ,sg),其中 X(g) 表示经过下采样后粒度为 g 的序

列。 滑动窗口是非重叠的,并且所获得的粒度 g 的粗粒

度数据被复制 sg 次从而能够在时间线[1,T]上对齐。
2)时序特征提取

遥测数据 X t 经多粒度分解后会获得不同粒度的数

据,将其分别作为 GRU 的输入,实现多粒度时序特征提

取。 GRU 的网络整体结构如图 2 所示。

图 2　 GRU 网络结构

Fig. 2　 GRU
 

network
 

architecture

(1)重置门

由图 2 可知,各粒度的数据输入首先通过“重置门”
控制遗忘或保留某些信息。 具体来说,某一粒度的当前

时间点输入会根据上一时间点的隐藏状态 h t-1 以及重置

门的权重 Wr 和 Ur,通过 Sigmoid 激活函数的输出结果 rt



·192　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

来确定上一时间步的信息遗忘程度,当 rt 结果接近 0 时,
表示遗忘大部分历史信息;当 rt 结果接近 1 时,表示几乎

完全保留上一时间步的状态。 计算公式如下:
rt = σ(Wrx t + Urh t -1 + br) (1)

式中:Wr 表示当前输入对重置门的贡献的权重矩阵;Ur

表示上一时间步对重置门的贡献的权重矩阵;x t 表示某

单一粒度的遥测数据;h t-1 表示上一个时间步的隐藏状

态;br 表示重置门的偏置项。
(2)候选隐藏状态

根据上一时间点的隐藏状态 h t-1、当前粒度的输入 x t

和重置门 rt,通过 tanh 生成候选隐藏状态 h
~

t ,作为当前

时间步的潜在特征。 计算公式如下:

h
~

t = tanh(Wx t + rt☉(Uh t-1) + b) (2)
式中:W 和 U 表示候选隐藏状态的权重矩阵;x t 表示某

单一粒度的遥测数据输入;b 表示候选隐藏状态的偏

置项。
(3)更新门及隐藏状态更新

根据上一时间点的隐藏状态 h t-1、当前粒度的输入 x t

以及更新门的权重矩阵 Wz 和 Uz,通过 Sigmoid 输出 zt 来
控制当前隐藏状态中新旧信息的融合比例,再根据 zt 和

候选隐藏状态 h
~

t 的点积结果获得当前时间步的隐藏状

态 h t,其计算公式如下:
zt = σ(Wzx t + Uzh t -1 + bz) (3)

h t = (1 - zt)☉h
~

t + zt☉h t -1 (4)
式中:Wz、Uz 和 bz 表示更新门的权重矩阵及偏置项;zt 表
示更新门的输出;h t 表示更新后的当前时间步隐藏状态。

通过 GRU 网络特殊的门控机制,可以实现对时间依

赖关系的有效建模。
3)频域信息增强

时间序列的频率信息揭示了隐藏在遥测数据中的重

要模式和特征。 与传统时域特征提取方法不同,频域增

强方法通过扰动数据的频率分量来捕捉原始数据中未被

稳定时域特征所揭示的动态信息。
遥测数据经过多粒度分解和 GRU 时序特征提取后

会获得包含丰富时序特征的隐藏状态序列[ h1,h2,…,
h t],将其作为 DCT 的输入,实现频域特征增强[26] 。 该编

码方法能够深入挖掘和分析遥测数据中的周期性变化特

征,从而提高模型的预测性能和稳定性。
对于隐藏状态序列 X,DCT 的基函数定义如下:

B i( l) = cos
πl
L

i + 1
2( )( ) (5)

式中:l∈{0,1,…,L-1} 表示时间步;i 表示频率索引;L
表示隐藏状态序列的长度。

基于上述基函数,DCT 可以表示为:

f i = ∑ L-1

l = 0
h l·B i( l) (6)

式中:f i 是变换后的频域表示,包含了输入序列 x 中各频

率分量的幅值信息。 对应的逆 DCT 可以表示为:

h l = ∑ L-1

i = 0
f i·B i( l) (7)

通过对频域特征的使用,DCT 能够自然地分离出信

号的主要成分和高频噪声成分,以用于提升模型的整体

性能。
4)多粒度特征融合

遥测数据经过 TFM 时频域特征提取模块后会获得

具有 丰 富 时 频 域 特 征 的 隐 藏 状 态 f t, 将 其 作 为

SENet(squeeze-and-excitation
 

network) 层的输入,以完成

特征融合,主要步骤如下:
(1)将 TFM 提取到的多粒度特征向量进行拼接操

作,一个粒度作为一个特征通道,共 3 个特征通道。
T = Fconcat(x l,xm,xs ) (8)

式中:T 为 H×W×C 的三维张量,C 设置为 3;x l、xm、xs 分

别表示长期、中期、短期粒度特征。
(2)对 T 进行 Sequeeze 操作,即对 T 中每个通道的

粒度特征进行全局平均池化,在单粒度的空间维度 H×W
上进行压缩,获得每个粒度特征对应的全局信息。

zc = Fsq( tc) = 1
W × H∑W

i = 1∑
H

j = 1
tc( i,j) (9)

式中:tc 为 T 中通道 C 上的特征值;zc 表示得到的全局特

征值。
(3)进行 Excitation 操作,将上一步得到的 z 通过一

个全连接层,再将得到结果输入到 ReLU 激活函数中,随
后再通过一个全连接层,最后再通过 Sigmoid 激活函数生

成的 s 即为多粒度特征的权重向量。
s = Fex( z,W) = σ(W2δ(W1z)) (10)

式中:δ 表示 ReLU 激活函数;σ 表示 Sigmoid 激活函数;
W1 的维度为

 

(C×r) ×C;W2 的维度为 C×(C×r);r 表示缩

放参数,本文设置为 3。
(4)将单粒度特征的权重和单粒度特征向量按通道

逐元素相乘得到加权后的 t~ c 。
t~ c = Fscale(uc,sc) = scuc (11)

式中: sc 为 c 粒度特征的权重向量; uc 为 c 粒度的特

征向量。
(5)将分配权重后的多粒度特征进行拼接,最终得

到按通道加权的输出 T
~

。

T
~ = [ t~ 1,t~ 2,t~ 3] (12)
通过上述步骤,SENet 可较好地识别出 T 中需重点

关注的粒度特征,并进行自适应加权融合,可实现短期波

动与长期趋势的有效建模。
1. 3　 去噪扩散概率模型

　 　 多维序列经过多粒度特征融合后会获得具有丰富时

频域特征的隐藏状态序列 f t,作为扩散模型的输入,利用
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其反向过程生成未来时刻遥测温度的条件概率分布,如
式(13)所示。

qχ(x0
t0:T | x0

1:t0-1,c1:T) = 􀰒 T

t = t0
qχ(x0

t | x0
1:t -1,c1:T)

(13)
式中: x0

1:t0-1 为区间[1,t0 -1]的原始温度遥测数据;c1: T

表示时间戳 1:T 的协变量,其由时间依赖信息以及训练

集时间频率的滞后特征组成,在整个编码过程中均是已

知的。
作为新兴的生成模型,扩散模型包含前向扩散与反

向扩散两个过程,如图 3 所示。

图 3　 前向扩散及反向扩散过程

Fig. 3　 Forward
 

and
 

backward
 

diffusion
 

processes

图 3 中,在前向扩散过程中,模型逐步对输入数据添

加高斯噪声,逐渐破坏原始数据;反向扩散过程中,隐藏

状态 f t 作为条件信息用来建模未来时刻每一步的条件概

率分布 pθ(x
n-1
t0:T | xn

t0:T,f t -1) ,并通过反方向的不断迭代采

样求得目标数据 x0
t0:T 的概率分布 pθ(x

0
t0:T) 。 因此经训练

后的扩散模型在反向过程中能够指导性地从噪声中生成

符合目标数据的概率分布。
网络训练完成后,结合采样噪声 xN

T+1 ~ N(0,1)和更

新隐藏状态 f t,经逐步迭代后,最终可以得到下一时间戳

的遥测温度 x0
T+1。 此采样路径重复多次以考虑不同可能

的未来场景从而估计不确定性,在每个路径结束时,获得

相应的目标温度值。 根据需要,可以选择不同分位数下

的目标温度值作为经验分位数,以构建相应置信度下的

预测区间。

2　 基于 TFM-Diff 的温度遥测概率性预测

　 　 本文使用 E 来表示原始观测数据。 遥测时序数据表

示为 E = [ed1 ,…,edt ,…,edT] ,t 来表示时间戳 t∈[1,T],
且 edt ∈ RD,d ∈ [1,D] ,D 表示 E 的维度。 具体地说,研
究任务是在给定历史上下文的固定窗口的情况下,对时

间序列 [edt0 ,…,edT] 的未来时间步长的条件分布进行建

模。 从数学上,本文考虑的问题可以表述如下:

qx(e
d
t0:T | {ed1:t0-1}) = 􀰒 T

t = t0
qx(e

d
t | {ed1:t -1}) (14)

预测过程以及滑动窗口机制操作如图 4 所示。

图 4　 预测过程及滑动窗口机制

Fig. 4　 Prediction
 

process
 

and
 

sliding
 

window
 

mechanism

图 4(a)中,遥测序列数据作为模型的输入数据,图 4
(b)中,序列的前 d 个点被视为输入,并且 d+1 被标记为

预测目标。 预测值可以表示为:

Ŷ t + = k(et,et -1,…,et - ) (15)

式中: Ŷ t + 是接下来 小时内的预测对象;k 表示在历史数

据上训练的最终模型; et 表示被预测时刻的数据; et - 是

被预测时刻之前 小时内的数据。
概率性预测流程如图 5 所示。 图 5 中,多维温度遥

测序列首先经过多粒度分解来保留数据不同时间尺度上

的特征。 为了优化计算效率,长期、中期和短期粒度的分

解和特征提取过程采用了并行计算策略。 每个时间尺度

的数据分别经过 GRU 单元以及 DCT 的混合结构,实现

时频域动态模式建模,其次通过多粒度特征融合实现了

对短期波动与长期趋势的有效建模,最终,模型经过多次

采样路径构建预测分布,实现对预测区间的估计和不确

定性的量化。

3　 实验设置与结果

3. 1　 数据集描述

　 　 本文的实验验证数据集来源于国内实际航天器的温

度遥测序列,其通过安装在卫星关键部件上的高精度温

度传感器进行采集。 传感器信号经星载测控单元进行数

模转换,且采样周期严格遵循星上时序控制器的 16
 

s 基

准时钟同步,并通过遥测信道下传至地面站。 原始数据

在地面站完成校验,并依据卫星分系统架构将 16 个温度

参数划分为单 / 多维序列。 原始数据集包含的 16 个温度

遥测参数的每个维度对应一个独立的单机温度参数。 由

于不同设备单机属于不同的测控单元以及传感器集群,
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图 5　 概率性预测流程

Fig. 5　 Probabilistic
 

forecasting
 

process

时间戳并不完全同步,因此原始数据集在来源上已预先

划分为单维、4 维以及 6 维,具有独立的采样逻辑。 本文

仅选取多维序列作为实验样本。
原始数据时间持续范围为 2. 5 年,采样率为 16

 

s,而
卫星温度遥测数据的变化较为缓慢,原始数据存在一定

的数据冗余,会造成计算资源的浪费。 从实际应用的角

度来看,温度预测任务通常关注较长时间尺度的变化趋

势而非秒级波动。 加之对原始数据的分析,卫星实际的

温度遥测数据的变化主要呈现分钟级别的趋势和伪周期

特性。 通过对比不同采样率(如 1、2、4、8
 

min 等)下的数

据质量及可视化效果,4
 

min 的采样率能够在保留数据关

键特征的同时,显著减少数据量并提高模型训练效率。
因此,本文实验以 4 min 为单位整合建立了数据集Ⅰ、Ⅱ、
Ⅲ、Ⅳ,详细信息如表 1 所示。 各数据集内训练集和测试

集均以 3 ∶ 1 的比例进行划分。
　 　 表 1 中数据集Ⅰ、Ⅲ中数据维度为 6,Ⅱ、Ⅳ中数据维

度为 4,每个数据集中样本量即包含精确时间戳的多维

数据记录总数,数据间隔都是 4 分钟,数据类型统一为

float 类型。 由于篇幅有限,本文仅给出卫星温度遥测数

据集Ⅰ、Ⅱ的可视化图,如图 6 所示。

表 1　 数据集统计

Table
 

1　 Dataset
 

statistics
数据集 维度 样本量 采样率 / min 数据类型

Ⅰ 6 44
 

360 4 float
Ⅱ 4 44

 

352 4 float
Ⅲ 6 58

 

132 4 float
Ⅳ 4 58

 

136 4 float

图 6　 卫星温度遥测数据集可视化

Fig. 6　 Satellite
 

temperature
 

telemetry
 

dataset
 

visualization

　 　 图 6 为整体的温度遥测曲线变化,为了更清晰的呈

现局部特点,图 6 的两幅子图为温度遥测的细节图,并在

细节图中用不同的点标记方式呈现不同的温度遥测曲

线。 从图 6 可以看出,该航天器的在轨温度遥测从长期

趋势看,具有较为复杂的包络和趋势变化,且细节图表示

温度遥测存在一定的波动性、短期数据变化连续且呈现

出明显的伪周期变化。
3. 2　 实验环境及评估指标

　 　 (1)
 

实验设置,实验使用英特尔酷睿 i9 第 14 代

14900K
 

CPU 和 NVIDIA
 

GeForce
 

RTX
 

4090
 

显卡进行深

度学习计算和模拟训练。 实验使用的软件配置环境为以

“ pytorch
 

1. 11. 3 ”、 “ glounts
 

0. 9. 6 ” 为 后 端 的

“Python3. 9. 12”。
(2)

 

评估指标,为有效评估概率性预测算法的精度,
本文 使 用 的 指 标 主 要 有 连 续 排 序 概 率 评 分 总

和(continuous
 

ranked
 

probability
 

score
 

sum, CRPS-sum)、
归一化偏差总和( normalized

 

deviation
 

sum,ND-sum)、归
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一化均方根误差总和( normalized
 

root
 

mean
 

square
 

error
 

sum,NRMSE-sum)。 CRPS-sum 是将
 

CRPS
 

扩展到多变

量时间序列,通过对各维度的样本求和并排序以获得分

位数,上述指标的具体计算方式如式(16) ~ (19)所示。

CRPS(F,x) = ∫
R
(F( z) - I{x ≤ z}) 2dz (16)

式中:I
 

{x≤z}为指示函数,当 x≤z 时值为 1,否则为 0。

CRPS -sum = E t[CRPS(F -1
sum,∑ i

 x i
t)] (17)

式中: F -1
sum 是通过在各维度上求和并排序得到的分位数。

ND -sum = ∑ D

i = 1

∑ T

t = 1
ŷ i
t - y i

t

∑ T

t = 1
| y i

t |
(18)

NRMSE -sum =

1
T ∑ T

t = 1
( ŷ t - y t)

2

1
T ∑ T

t = 1
| y t |

(19)

式中: ŷ t 表示第 t 个时间步的预测值;y t 表示第 t 个时间

步的实际值;T 是时间步的总数;D 表示时间序列的

维度。
针对 CRPS-sum、 ND-sum、 NRMSE-sum 三个评价指

标,其值越接近 0(但通常为非 0 正数),表明真实值与预

测值之间的误差越小,模型的预测精度越高。 3 个评估

指标中 CRPS-sum 为评估概率性预测算法的核心指标,
考核预测区间的有效性,也是目前研究领域内进行概率

性预测研究的首要指标。 而 ND-sum、NRMSE-sum 则主

要用于点预测算法性能的评估,仅评估预测均值与真实

值的误差,本文在实验部分也同时对这两个指标进行了

计算,以为研究学者提供更多的信息参考。
3. 3　 预测结果与分析

　 　 1)基线实验

为验证本文提出模型的有效性,对其在 4 个卫星遥

测数据集上均进行了训练和预测实验,并将预测结果与

目前主流且具有优势的 DeepVAR、LSTNet、Transformer-
MAF、TimeGrad 和 MG-TSD 五种深度学习时序预测方法

进行对比。 实验中本文提出模型所涉及的参数设置具体

如表 2 所示。
表 2　 模型训练超参数表

Table
 

2　 Model
 

training
 

hyperparameter
参数 数值

Epochs 30
Batch

 

size 128
Diffusion

 

Steps 100
Learning

 

Rate 0. 000
 

01
粗细粒度划分窗口大小 1 ∶ 4

GRU-layers 4
GRU-cells 40

embedding_dimension 5

　 　 4 个数据集实验的定量结果如表 3 所示。
表 3　 模型对比实验结果

Table
 

3　 The
 

experimental
 

results
 

of
 

the
 

model
 

comparison
数据集 指标 本文 TACTIS-2 MG-TSD ScoreGrad TimeGrad Transformer-MAF LSTNet DeepVAR

Ⅰ
CRPS-sum 0. 009

 

44 0. 013
 

709 0. 013
 

069 0. 015
 

44 0. 015
 

70 0. 013
 

36 0. 017
 

54 0. 020
 

97
ND-sum 0. 013

 

17 0. 014
 

037 0. 016
 

705 0. 018
 

37 0. 019
 

42 0. 018
 

46 0. 017
 

87 0. 027
 

09
NRMSE-sum 0. 017

 

36 0. 017
 

583 0. 017
 

74 0. 021
 

72 0. 023
 

39 0. 021
 

16 0. 019
 

18 0. 033
 

90

Ⅱ
CRPS-sum 0. 047

 

07 0. 067
 

31 0. 063
 

043 0. 055
 

39 0. 057
 

51 0. 083
 

92 0. 079
 

25 0. 069
 

61
ND-sum 0. 061

 

69 0. 069
 

77 0. 081
 

136 0. 086
 

02 0. 092
 

13 0. 098
 

67 0. 079
 

25 0. 086
 

69
NRMSE-sum 0. 075

 

96 0. 099
 

35 0. 100
 

78 0. 109
 

51 0. 103
 

28 0. 125
 

18 0. 089
 

26 0. 109
 

52

Ⅲ
CRPS-sum 0. 009

 

25 0. 010
 

82 0. 011
 

00 0. 013
 

75 0. 019
 

00 0. 016
 

41 0. 032
 

52 0. 020
 

42
ND-sum 0. 008

 

26 0. 014
 

02 0. 015
 

55 0. 014
 

93 0. 023
 

57 0. 019
 

99 0. 032
 

52 0. 032
 

26
NRMSE-sum 0. 010

 

99 0. 015
 

58 0. 017
 

98 0. 025
 

80 0. 028
 

37 0. 026
 

34 0. 039
 

38 0. 039
 

36

Ⅳ
CRPS-sum 0. 015

 

41 0. 016
 

93 0. 016
 

87 0. 017
 

33 0. 016
 

38 0. 018
 

79 0. 016
 

44 0. 028
 

12
ND-sum 0. 018

 

82 0. 025
 

39 0. 024
 

49 0. 024
 

97 0. 023
 

79 0. 021
 

74 0. 024
 

17 0. 028
 

12
NRMSE-sum 0. 025

 

33 0. 026
 

56 0. 027
 

09 0. 026
 

35 0. 026
 

91 0. 029
 

47 0. 025
 

95 0. 030
 

93

　 　 由表 3 的实验结果可知,针对本文验证的主要指标

CRPS-sum,其综合反映预测均值与预测区间的性能,本
文提出的模型性能均为最优。 针对数据集Ⅰ、Ⅱ、Ⅲ、Ⅳ,
相对于对比模型中的最优方法,本文提出的模型,其

CRPS-sum 指 标 提 升 分 别 为 27. 77%、 18. 15%、
14. 51%、6. 26%。

指标 ND-sum 和 NRMSE-sum 主要用于衡量预测均

值的误差,其可用于评估点预测算法的性能。 针对数据

集Ⅰ、Ⅱ、Ⅲ、Ⅳ,相对于对比模型中的最优方法,本文提

出的模型 ND-sum 指标分别提升了 6. 17%、 11. 58%、
41. 08%、13. 43%,NRMSE-sum 指标分别提升了 2. 14%、
14. 90%、29. 46%、2. 39%。

DeepVar 和 LSTNet 在 4 个数据集上的表现较为不

错,DeepVar 在传统的 VAR 模型基础上进行了优化,结合

循环神经网络( recurrent
 

neural
 

network,RNN) 提升了捕

捉时序数据非线性动态关系的能力;LSTNet 结合 CNN 和



·196　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

LSTM,能够有效提取时序特征和局部依赖;Transformer-
MAF 通过多头注意力机制进一步提升了模型对长距离

依赖的建模能力,预测性能也得到了一定的提升。 这 3
种方法都是基于深度学习模型实现对多维数据长期时序

依赖关系的建模,提升非线性建模能力,以此生成与原始

样本相似的样本。 但它们缺乏针对短期波动的建模能

力,因此存在一定缺陷。 TACTiS-2 近年被逐渐应用并且

取得 了 非 常 不 错 的 效 果, 它 通 过 Copula 理 论 和

Transformer
 

架构,简化了分布参数的计算复杂度,使其从

阶乘级降低到线性级,显著提升了模型的训练效率和性

能。 但其对局部异常值的处理能力较弱,所以预测结果

的稳定性得不到保障。 TimeGrad、ScoreGrad 和 MG-TSD
均是基于扩散模型的概率性预测方法,它们通过生成式

过程逐步学习数据的真实概率分布,有效地捕捉时间序

列的长期趋势与短期波动。 然而在温度遥测数据集上,
这两种方法的预测精度显著受限,主要原因在于遥测数

据存在更强的不确定性,在噪声水平较高且分布复杂的

情况下,仅考虑时域的扩散模型难以精准分离噪声与有

效信号;此外,模型在去噪过程中可能会抑制有用的信号

特征,导致关键动态信息丢失,从而影响预测精度。 本文

提出的 TFM-Diff 在这些方面要优于其他模型。 其首先

通过离散余弦变换提高对数据中频域变化的敏感度,补
充时域特征的不足,并且融合多粒度模块从多尺度捕捉

长期、局部动态变化模式,进而实现对卫星遥测数据的可

靠预测。 实验结果表明,本文提出的模型在预测均值与

预测区间综合性能上表现更优。
本文模型对于数据集Ⅰ的预测结果如图 7(a)所示,

考虑到结果对比的清晰性,将本文提出方法与最优对比

方法进行对比,即 MG-TSD 方法,如图 7(b)所示。
图 7 中,曲线表示预测中值,浅、深绿色部分分别表

示 50%和 90%的预测值置信区间。 其中 50%置信区间

的边界用虚线表示,90%置信区间的边界用实线表示。
图 7 中遥测参数序列不仅有长期的趋势变化,而且在局

部也存在短期的不规则波动的情况。 根据预测中值点所

构成的曲线可知本文提出的模型对温度遥测数据的变化

趋势拟合得很好,而且模型的预测区间更接近真实值,能
够在覆盖宽度尽量小的情况下保证区间覆盖率。

而且根据《 GJB
 

2703A-2006 卫星热控系统通用规

范》等专业文件,卫星温度遥测序列预测的实际精度需求

主要取决于以下两个方面。
(1)卫星任务的安全性与可靠性要求

卫星在轨运行期间,温度是影响单机、分系统乃至整

星性能的关键因素。 预测精度直接关系到对异常情况的

检测能力和故障预警的及时性。 例如,某些关键部件(如

蓄电池、推进器、有效载荷等)对温度的敏感度较高,预测

误差过大可能导致误判或漏判,进而影响卫星任务的执

行。 因此,在涉及卫星安全性和可靠性的场景中,预测精

度通常要求较高,误差范围需控制在 2℃ 以内,以确保对

潜在风险的精准识别。
(2)热控系统优化设计的工程需求

在卫星热控系统的优化设计中,温度预测不仅用于

异常检测,还需要为热控策略的调整提供数据支撑。 预

测误差过大会导致热控策略的设计过于保守,增加系统

能耗;或过于激进,影响卫星在复杂环境下的稳定性。 因

此,在热控系统优化场景中,预测误差通常希望控制在

3℃以内,以在保证系统稳定性的同时实现能耗的优化。
综上所述,实际应用中对预测精度的要求:点预测误

差控制在 3℃ 以内,具体需求根据部件敏感度和任务类

型而定。 本研究提出模型的预测精度不仅可满足工程领

域的要求,且对于模型研究,其预测性能(连续排序概率

评分总和指标提升 6. 26% ~ 27. 77%) 达到了更高的要

求,95%置信区间的概率性预测结果显示误差大概控制

在 3℃以内(图 7(a)),为卫星温度遥测预测提供了更为

精确和可靠的解决方案。
2)消融实验

为了深入理解模型中各个组件对整体性能的贡献,
进行了消融实验。 限于篇幅,以数据集Ⅰ为例对未来 90
个时刻的数据进行预测,其他数据集的实验结果类似,不
再一一列举。 数据集Ⅰ具备典型的时序特征和噪声特

性,能够有效验证模型在不同结构下的性能差异。 通过

不断移除模型中的不同部分以进行结果的计算,用于验

证的模型分别为去掉多粒度结构、去掉时频域融合结构、
GRU+Diffusion 以及本文模型。

表 4 为不同评价指标 CRPS-sum、ND-sum 和 NRMSE-
sum 评估不同模型结构的预测性能。

表 4　 消融实验结果

Table
 

4　 Ablation
 

test
 

results
采样频率 CRPS-sum ND-sum NRMSE-sum

去掉多粒度结构 0. 011
 

4 0. 015
 

7 0. 017
 

6
去掉时频域融合结构 0. 012

 

8 0. 016
 

1 0. 019
 

8
GRU+Diffusion 0. 018

 

2 0. 024
 

7 0. 029
 

9
本文模型 0. 009

 

4 0. 013
 

7 0. 017
 

3

　 　 由表 4 可知,多粒度结构和时频域融合模块对算法

带来的贡献程度不同,两者结合的时候预测效果最好。
移除多粒度结构后,模型在所有指标上的性能都有所下

降。 多粒度结构的主要功能是使模型能够进行多尺度的

特征提取,兼顾长期以及短期的动态时间依赖关系。 移

除该模块后,模型在对遥测数据进行预测时难以准确捕

获短期波动的变化模式,导致其预测结果倾向于长期趋

势,误差增大。 引入时频域融合结构的目的是使模型能

够同时捕捉数据的时域和频域特征,增强其对复杂数据

模式的识别能力,改善其对噪声和异常的鲁棒性,同时提
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图 7　 数据集Ⅰ预测结果

Fig. 7　 Prediction
 

result
 

of
 

dataset
 

Ⅰ

高预测准确性和模型的泛化能力。 去除该模块后,可以

看到模型整体性能相比移除多粒度结构有更明显下降,
说明时频域融合模块通过捕捉复杂的潜在频域变换,改
进了时序分析的不足,对于温度遥测序列的预测效果

更优。 综合以上实验结果与分析,验证了对于温度遥

测序列的概率性预测,本文设计的优化结构的有效性

与优势。

4　 结　 论

　 　 针对卫星多维温度序列受复杂噪声干扰且呈现长短

期趋势变化情况下的概率性预测的需求与挑战,本文提

出了 TFM-Diff 模型,多维温度序列经过多粒度分解划分

为子序列,再通过 GRU 单元和 DCT 的混合结构实现时
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频域特征提取,并由多粒度融合模块进行特征融合,最终

通过去噪扩散模型挖掘潜在分布模式,构建预测区间。
本文提出的模型在卫星温度遥测数据的特征挖掘以及捕

获复杂的潜在频域变化的能力上有明显提升。 通过在国

内航天器真实遥测数据集上的实验,验证了本文提出的

模型在概率性预测任务上具有更优的表现,可为卫星故

障预警、健康管理提供重要的信息支撑。
在后续研究工作中将考虑不确定区间的自适应调整

策略以进一步提高不确定性建模能力,使其能够更好地

满足概率性预测任务的需求,并结合更多的温度遥测序

列验证方法的实际应用能力。
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