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轻量化 YOLO-SGLS 电梯钢丝绳损伤检测算法∗

江　 敏　 李志星　 高雨晴　 杨啸龙

(北京建筑大学机电与车辆工程学院　 北京　 100000)

摘　 要:针对现有电梯钢丝绳表面损伤检测方法所存在的精度不足、计算量过大等缺陷,基于 YOLO11 算法提出一种轻量化

YOLO-SGLS 模型。 首先采用 StarNet 替代 YOLO11 的主干网络,以星型运算提升特征提取和计算性能。 同时,引入大核分离注

意力(LSKA)模块与空间金字塔池化快速( SPPF) 模块融合,利用深度卷积增强模型的特征表达与感知。 此外,用动态卷

积(DynamicConv)改进 Ghost 模块得到 GDC(ghost-dynamic-Conv)模块,并将其于 C3K2 结合,减少计算负担。 最后设计轻量级

共享卷积检没头(LSCD)提高推理速度。 实验使用 Cable
 

Damage 数据集,分训练、验证、测试集,在特定实验环境下,进行消融实

验、泛化实验和对比实验。 实验表明 YOLO-SGLS 模型相比原始基础网络 YOLO11n 的浮点计算量和参数量分别降低了 40%、
36%,准确率提升了 5. 5%,平均精度和召回率只下降了 0. 3%、1. 9%,在泛化能力测试中,100 张新数据集,YOLO-SGLS 正确识

别的图像数为 77 张。 证明了算法的轻量化程度、准确率和鲁棒性均满足电梯钢丝绳损伤检测在实际应用场景中的需求,尤其

适用于资源受限的嵌入式设备。
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Abstract:
 

A
 

lightweight
 

YOLO-SGLS
 

model
 

is
 

proposed
 

based
 

on
 

the
 

YOLO11
 

algorithm
 

to
 

address
 

the
 

shortcomings
 

of
 

existing
 

elevator
 

wire
 

rope
 

surface
 

damage
 

detection
 

methods,
 

such
 

as
 

insufficient
 

accuracy
 

and
 

excessive
 

computational
 

complexity.
 

Firstly,
 

StarNet
 

is
 

used
 

to
 

replace
 

the
 

backbone
 

network
 

of
 

YOLO11,
 

and
 

the
 

star
 

operation
 

is
 

used
 

to
 

improve
 

feature
 

extraction
 

and
 

computational
 

performance.
 

Meanwhile,
 

the
 

LSKA
 

module
 

is
 

integrated
 

with
 

SPPF
 

to
 

enhance
 

the
 

feature
 

expression
 

and
 

perception
 

of
 

the
 

model
 

through
 

deep
 

convolution.
 

In
 

addition,
 

the
 

Ghost
 

module
 

is
 

improved
 

using
 

DynamicConv
 

to
 

obtain
 

the
 

Ghost
 

Dynamic
 

Conv
 

( GDC)
 

module,
 

which
 

is
 

combined
 

with
 

C3K2
 

to
 

reduce
 

computational
 

burden.
 

Finally,
 

an
 

LSCD
 

detection
 

head
 

is
 

designed
 

to
 

improve
 

inference
 

speed.
 

The
 

experiment
 

uses
 

the
 

Cable
 

Damage
 

dataset,
 

which
 

is
 

divided
 

into
 

training,
 

validation,
 

and
 

testing
 

sets.
 

In
 

a
 

specific
 

experimental
 

environment,
 

ablation
 

experiments,
 

generalization
 

experiments,
 

and
 

comparative
 

experiments
 

are
 

conducted.
 

The
 

experiment
 

shows
 

that
 

the
 

YOLO-SGLS
 

model
 

reduces
 

GFLOPs
 

and
 

parameter
 

count
 

by
 

40%
 

and
 

36%
 

respectively
 

compared
 

to
 

the
 

original
 

base
 

network
 

YOLO11,
 

improves
 

accuracy
 

by
 

5. 5%,
 

and
 

only
 

decreases
 

average
 

accuracy
 

and
 

recall
 

by
 

0. 3%
 

and
 

1. 9%.
 

In
 

the
 

generalization
 

ability
 

test,
 

the
 

YOLO-SGLS
 

model
 

correctly
 

recognizes
 

77
 

images
 

out
 

of
 

100
 

new
 

datasets.
 

It
 

has
 

been
 

proven
 

that
 

the
 

lightweight,
 

accuracy,
 

and
 

robustness
 

of
 

the
 

algorithm
 

meet
 

the
 

requirements
 

of
 

elevator
 

wire
 

rope
 

damage
 

detection
 

in
 

practical
 

application
 

scenarios,
 

especially
 

for
 

embedded
 

devices
 

with
 

limited
 

resources.
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0　 引　 言

　 　 钢丝绳作为关键的工业零部件,具有出色的疲劳强

度、高抗拉强度、稳定的传动特性以及低噪声等特性[1] ,
因此被广泛应用于冶金、矿山、机械和建筑等领域,常见

于汽车起重机、索道、电梯和矿井提升机等设备中。 然

而,鉴于钢丝绳使用频繁,需要长期承受高强度负荷,同
时还会受到硬件的摩擦和环境的腐蚀,其表面出现损伤

难以避免。 现阶段,钢丝绳的损伤检测主要借助超声波、
电磁、声波和 X 射线等物理传感器技术[2-5] 。 虽说这些方

法在提升识别效率上比人工检测更具优势,可还是存在

无法精准区分损伤类别,并且易受外界干扰等难题。
在计算机技术突飞猛进的当下,机器视觉在各类物

体表面缺陷检测领域得以大规模运用。 卷积神经网

络(convolutional
 

neural
 

network,CNN)作为深度学习的重

要应用,凭借其卓越的精度和强大的场景适应性,在目标

检测领域取得了显著的进展[6-7] 。 依托 YOLO 目标检测

算法的缺陷检测技术,借助高分辨率摄像头采集钢丝绳

图像,再融合图像处理,能够迅速且精确地检测出缺

陷[8-11] 。 在过往研究中,毛晓琦[12] 提出运用 MobileNet 算
法对 YOLOv3 进行轻量化处理,以此实现钢丝绳断丝检

测。 陈帅[13] 通过结合结构重参数化的 RepVG 网络对

YOLOv5s 网络加以改进,在自制的钢丝绳表面缺陷数据

集中取得了良好的检测效果。 梁滨等[14] 将深度可分离

卷积与卷积块注意力模块( convolutional
 

block
 

attention
 

module,CBAM)引入 YOLO 框架,减少了模型参数量并提

升了对无用信息的关注度,基于此模型提出了一种曳引

钢丝绳缺陷检测方案。 刘晓磊等[15] 利用高速摄像机对

钢丝绳入井前段进行采样,提出了一种基于 YOLOv5 的

物体表面小缺陷检测模型,并通过迁移学习方法进一步

提升了小样本的精度。 方旭东等[16] 设计了 Swiener 滤波

算法以修复钢丝绳图像中的运动模糊,成功减少了噪声

干扰,并利用 RFC3 轻量化模块与 CBAM-R 注意力机制,
提升了对小断口断丝的检测精度。 李金华等[17] 基于

YOLOv3 算法提出了一种智能钢丝绳检测方法,通过探

伤系统,能够实时监测钢丝绳损伤情况并精确定位。
Girshick[18] 提出了一种新的训练算法解决了 R-CNN 和

SPP-net 的缺陷,使其成为一种新的单阶段训练方式,能
够更新所有网络层,同时无需使用磁盘存储来缓存特征

数据。 随后,Redmon 等[19] 提出的 YOLO 模型通过图像

一次性处理后即能进行目标定位和识别,大大提高了效

率。 Liu 等[20] 则在单发多框检测器( single
 

shot
 

multibox
 

detector,SSD)中引入小型卷积滤波器,进一步提高了准

确性,并满足了实时应用的需求。
综上所述,过往学者们在改进目标检测模型的训练

方式、检测效率与准确性等方面不断探索创新,取得了一

系列成果。 但是当前机器视觉模型在目标检测中仍然存

在计算量大、特征提取能力不足等问题,本文基于最新的

YOLO11 框架提出了 YOLO-SGLS 模型。 首 先, 采 用

StarNet 替代传统的主干网络,通过星型运算提高了特征

提取能力,并优化了计算性能。 StarNet 能够有效地在低

维输入空间中捕获复杂和高维的特征,从而增强了模型

的表达能力。 其次, 在空间金字塔池化快速 ( spatial
 

pyramid
 

pooling-fast,SPPF) 模块的基础上引入大核可分

离注意力(large
 

kernel
 

separable
 

attention,LSKA)模块,结
合深度卷积与空间扩张卷积,增强了模型对长程依赖性

和局部信息的感知能力,进一步提升了特征提取能力。
为了降低计算负担,引入 GhostConv 模块以替代传统卷

积操作,减少冗余特征的计算,提高了模型的效率和稳定

性。 最后,设计了轻量级共享卷积检测头 ( lightweight
 

shared
 

convolutional
 

detection
 

head,
 

LSCD),通过减少参数

量和计算量,提升了模型的推理速度,使其更适合嵌入式

设备应用。

1　 YOLO11 算法

　 　 电梯钢丝绳在服役过程中极易发生多种形式的损

伤,主要包括断丝、磨损和腐蚀等,这些损伤大都出现在

钢丝绳表面,特别是绳股的股峰部位,如图 1( a) 所示。
然而,钢丝绳的表面形态较为复杂,区别于一般的平面表

面,如图 1(b)和( c)所示,且从灰度分布来看,损伤部位

并不具有明显差异。 传统的图像处理方法结合机器学习

或数学建模往往依赖大量的先验知识。 相比之下,最新

的目标检测算法 YOLO11 能够直接进行损伤特征的自适

应学习,自动分类和识别损伤类型,在实现从数据输入到

结果输出的端到端检测方面,展现出巨大的潜力。
YOLO11 网 络 结 构 大 体 由 4 部 分 构 成, 输 入

端(input)、骨干网络( backbone)、颈部网络( neck) 以及

检测输出端(head),其网络结构如图 2 所示。

2　 YOLO-SGLS 模型

　 　 在电梯钢丝绳损伤检测场景中,当直接将 YOLO11
应用于嵌入式在线监测设备时,遭遇了棘手难题。 由于

该模型本身参数繁多、计算量庞大,而嵌入式设备普遍资

源受限、算力匮乏,导致二者难以适配。 为化解这一矛

盾,本文对 YOLOv11 的网络结构展开深度优化,改进后

的网络命名为 YOLO-SGLS 模型,其结构如图 3 所示。 通

过替换 YOLO11 的主干网络为 StarNet,提升了特征提取

能力,并优化了计算效率。 此外,引入 LSKA 模块增强了

模型的特征表达和感知能力,改进的 Ghost 模块替代了
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图 1　 钢丝绳损失部位图及灰度图、三位灰度图

Fig. 1　 Steel
 

wire
 

rope
 

damage
 

location
 

diagram
 

and
grayscale

 

image,
 

3D
 

grayscale
 

image

　 　 　

C3K2 中的传统卷积操作,从而减少了计算负担,同时提

升了精度。 最后,采用了 LSCD 检测头,进一步提高了推

理速度。
2. 1　 StarNet 网络

　 　 为了降低模型计算量与参数量,同时增强特征提取

能力,本文提出使用 StarNet 替换 YOLO11 原本的主干部

分。 StarNet 网络通过引入星型运算(StarOperation) [21] 具

备了在维度较低的输入空间中获取高维度非线性特征的

能力,以此提升网络的表达与计算效率。 星型运算在输

入特征图中进行元素乘法与求和运算,将输入映射至更

高维非线性特征空间[22] 。 相较于传统矩阵乘法,它对计

算性能的优化效果更加突出。
StarNet 将每层神经网络中的权重矩阵和偏差向量

合并,表示为 {w} =
Q
B

é

ë
êê

ù

û
úú ,其中 Q 代表权重,B 代表偏

差。 同时,扩展输入向量 x =
X
1

é

ë
êê

ù

û
úú 。 由此 StarNet 实现了

星形运算 (wT
1x) × (wT

2x)。 在单输入单输出的场景下,
定义 w1 和 w2,x ∈ R(d+1) ×1,其中 d 为输入通道数。 星型

运算的表达式如下:

图 2　 YOLO11 网络结构

Fig. 2　 YOLO11
 

network
 

structure
 

diagram
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图 3　 YOLO-SGLS 网络结构

Fig. 3　 YOLO-SGLS
 

network
 

structure
 

diagram

　 　 wT
1x × wT

2x = ∑
d+1

i = 1
w i

1x
i( ) × ∑

d+1

j = 1
w j

2x
j( ) =

∑
d+1

i = 1
∑
d+1

j = 1
w i

1w
j
2x

ix j = α(1,1)x
1x1 + … + α(d+1,d+1)x

d+1xd+1

(1)

a( i,j) =
w i

1w
j
2, i = j

w i
1w

j
2 + w j

1w
i
2, i ≠ j{ (2)

式中: i 和 j 用于通道索引; α 代表各项的系数。 星型运

算最终可以展开成
(d + 2)(d + 1)

2
种不同的项目组

合(式(1))。 隐藏维度会随着叠加层数以递归形式扩大

至接近无穷大。 式(3)为星型运算迭代公式, Sn 为第 n
次迭代的输出。

S1 = ∑
d+1

i = 1
∑
d+1

j = 1
w i

(1,1)w
j
(1,2) x

ix j

S2 = WT
2,1S1 × WT

2,2S1

S3 = WT
3,1S2 × WT

3,2S2

︙
Sn = WT

n,1Sn-1 × WT
l,2Sn-1 (3)

星型运算通过多层叠加,能逐步递增隐藏维度,递归

形成高维特征表示,大幅提升网络能力。 多次迭代后,其
输出维度呈指数级增加,不断拓展特征空间。 基于此,仅
需叠加几层星型运算,潜在维度就能指数级放大。 叠加

StarBlock 形成 StarNet,如图 4 所示。 StarNet 的简洁结构

大大降低了计算成本,很适合解决本文所提问题。 具体

做法是,叠加 4 个 StarBlock 替换 YOLO11n 主干网络中的

对应阶段,通过星形运算实现低维高效的特征融合。
2. 2　 LSKA 模块

　 　 YOLO11 的空间金字塔池化融合结构是将特征融合

模块加入空间金字塔池化(SPP)模块的得到的。 该模块

会针对输入特征图进行不同尺度的池化操作,然后通过
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图 4　 StarNet 结构

Fig. 4　 StarNet
 

structure
 

diagram

卷积来融合这些池化结果以生成特征图。 这种方式使模

块在进行特征提取时具备一定的自适应能力。 然而,实
验表明,当它应用于小目标钢丝绳损伤检测时,SPPF 会

提取过多的局部信息使得全局信息遭到损失,要平衡局

部与全局信息获取需对模块进行改进。 为此,引入了大

核注意力( large
 

kernel
 

attention,LKA)的可分离版本,即
LSKA,LSKA 通过标准深度卷积( depthwise

 

convolution,
DW-Conv)获取局部信息,再借助深度膨胀卷积( depth-
wise

 

dilated
 

convolution,DW-D-Conv) 来模拟长程依赖关

系。 与 LKA 的区别在于 LSKA 将二维卷积核分解为级联

的垂直一维和水平一维卷积核,这种分解方法极大降低

了参数量和计算量,同时增强了模型对重要特征的关注

能力,从而提升了整体性能[23] 。 LKA 的结构如图 5( a)
所示,而 LSKA 的结构如图 5(b)所示。

因此,本文将 LSKA 引入 SPPF,提出了一种名为

SPPF-LSKA 的新模块。 如图 5( c)所示,SPPF 融合后的

特征图,经级联的垂直一维和水平一维卷积及深度膨胀

卷积,获取上下文信息并实现长程依赖。 随后,输出注意

力图,再将其与输入特征相乘,自适应细化特征,提升表

达与感知能力。 而且一维内核的设计不会使模型计算量

增加。 LSKA 模块的输出如下:

xc = ∑
H,W

IC(2d-1) ×1∗ ∑
H,W

IC1×(2d-1) ﹡ FC( ) (4)

ZC = ∑
H,W

IC k
d[ ] ×1

∗ ∑
H,W

IC
1 × k

d[ ]
﹡ XC( ) (5)

AC = I1 ×1∗ZC (6)
TC = AC 􀱋 FC (7)

图 5　 LKA 结构,LSKA 结构和 SPPF-LSKA 结构

Fig. 5　 LKA
 

structure
 

diagram,
 

LSKA
 

structure
 

diagram
 

and
SPPF-LSKA

 

structure
 

diagram

式中:﹡和􀱋分别代表卷积和哈达玛乘积;d 代表膨胀

率; xc 代表内核大小 (2d - 1) × (2d - 1) 的深度卷积的

输出,通过将大小为 k × k 的核与输入特征图进行卷积得

到的深度卷积的输出 ZC ,对其使用 1×1 卷积得到注意力

图 AC。 F 中的各个通道 C 都与核 I中的对应通道进行卷

积。 LSKA 的输出 TC 是注意力图 AC 和输入特征图 FC 的

哈达玛乘积。 这种改进不仅优化了多尺度特征的提级,
还通过改进特征融合机制增强了模型对不同缺陷的检测

适应性,从而能够高效识别不同尺寸和类型的钢丝绳

损伤[24] 。
2. 3　 改进的 Ghost 模块

　 　 Han 等[25] 提出的 Ghost 模块是一种通过减少参数数

量和计算负载来提高模型效率的技术。 这是通过使用更

少的卷积核来实现的,通常是原来的 1 / 2,同时保持甚至

增强特征图表达能力。
假设输入特征的高、宽和通道数分别为 h、w 和 c ,输

出特征的高度和宽度为 H 和 W ,卷积核的大小为 k ,卷
积核的数量为 n ,线性变换卷积核大小为 d ,变换数量为

s 。 普通卷积与 Ghost 模块的计算量和参数量之比[26]
 

rs
和 rc 的计算如式(8)、(9)所示。

rs =
h × w × c × H × W × n

n
s

× H × W × k × k × c + (s - 1) × n
s

× H × W × d × d
=

c × k × k
1
s

× c × k × k + ( s - 1)
s

× d × d
≈ s (8)

rc =
n × c × k × k

n
s

× c × k × k + ( s - 1) × n
s

× d × d
≈
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s × c
s + c - 1

≈ s (9)

由式(8)、(9)可知,Ghost 模块计算量和参数量都约

是普通卷积的 1 / s。
动态卷积(DynamicConv)属于特定的动态感知器,目

的在于契合计算约束。 它由 K 个共享卷积核组成,这些

大小、维度相同的卷积核通过注意力权重{ π_k( x),π_
k}动态聚合。 通过挤压与激励方法算出卷积核的注意

力,再经全局平均池化和全连接层,生成归一化的注意力

权重。 由此,动态卷积能够依据输入,动态地选择并聚合

卷积核,提升模型的表达能力。
如果在 Ghost 模块中引入动态卷积,可以借助动态

卷积相较普通卷积更强的特征表达能力,既能解决普通

卷积特征提取的局限,又能保持 Ghost 模块低参数量与

计算复杂度的优势。 改进后的 Ghost 模块 Ghost 动态卷

积(ghost-dynamic
 

convolution,GDC)如图 6 所示。
GDC 模块通过线性操作以低成本的方式解决特征

冗余的问题,避免信息丢失,在小目标检测中,主干网络

　 　 　 　

图 6　 GDC 模块

Fig. 6　 GDC
 

module

负责特征提取,丢失冗余信息会严重影响特征学习。 所

以本文采用 GDC 模块替代原始 C3k2 模块中的 Conv 模

块,既能削减模型计算量,还能稳定保证精度。
YOLO11 的 C3K2 模块使用常规卷积模块连接

Bottleneck 模块。 尽管 Bottleneck 模块能够更好地融合不

同尺度的信息,但整体的计算强度仍然很高,还加深了网

络的深度。 因此,本文提出用 GDC 模块替换 C3K2 和

C3K 中原有的 Bottleneck 模块,生成 C3K2-GDC 和 C3K-
GDC 模块,从而完成了与 C3K2 模块的融合,C3K2-GDC、
C3K-GDC 与 GDC 模块结构如图 7 所示。

图 7　 C3K2-GDC 结构,C3K-GDC 结构和 GDC 结构

Fig. 7　 C3K2-GDC
 

structure
 

diagram,
 

C3K-GDC
 

structure
 

diagram
 

and
 

GDC
 

structure
 

diagram

2. 4　 LSCD
　 　 YOLO11 的检测头采用主流的解耦头结构,将分类

和检测分支分开。 每个分支由两个 3 × 3 卷积层和一个

1×1 卷积层组成。 这种结构的参数数量比较大,在嵌入

式设备的资源受限情景中会限制 YOLO11 性能发挥。 为

此,本文引入了 LSCD 检测头,在降低参数和计算复杂度

的同时,提高识别速度,保持识别精度[27] 。
LSCD 检测头的结构如图 8 所示。 首先使用 3 个

1×1 卷积层分别对输入特征层进行通道调整,调整后

的通道数为中间层通道数,记作 chide。 接着,所有特

征层由共享的 3× 3 卷积核模块提取特征,最后,分离

回归分支与分类分支。 回归分支用 1 × 1 卷积预测边

界框坐标偏移。 经 Scale 层调整尺度以应对目标大小

不一的情况;分类分支则用另一个 1×1 卷积预测类别

概率,两分支卷积层权重独立,便于模型分别学习定

位与分类。

图 8　 LSCD 模块

Fig. 8　 LSCD
 

module
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共享权重设计显著减少了冗余参数,使得 LSCD 检

测头在资源受限的场景中尤为适用[28] 。 这种设计可以

同时处理不同尺度的特征,进而显著提高模型的运行速

度。 将 LSCD 应用于电梯钢丝绳损伤检测中,能大幅提

升检测速度和模型整体适用性。

3　 实验分析与讨论

3. 1　 实验数据集

　 　 为验证本文提出的 YOLO-SGLS 的成效,本文使用了

RoboflowCable 数据集,经过数据增强并重新标记制作了

一个新数据集———Cable
 

Damage。 数据集中包括断丝、磨
损和腐蚀三种常见钢丝绳缺陷,共有 13

 

222 张图片。 数

据集按 87%、9%、4%的比例,分为训练集、验证集与测试

集,分别含 11
 

569 张、1
 

102 张、551 张图片。 训练集用于

训练模型,让模型通过不断调整自身参数以最小化损失

函数,而验证集用来评估模型在不同超参数设置下的性

能表现,辅助判断模型是否存在过拟合或欠拟合,进而对

模型进行优化调整,测试集旨在对训练和优化后的模型

进行最终评估,以其测试结果衡量模型在实际电梯钢丝

绳缺陷检测场景中的可用性与可靠性。 3 种缺陷类型如

图 9 所示。

图 9　 数据集中 3 种损坏类型

Fig. 9　 Three
 

types
 

of
 

corruption
 

in
 

the
 

dataset

3. 2　 实验配置

　 　 实验环境如表 1 所示,训练模型时,设定基本参数如

下:迭代 300 次,每批次数据量为 16。 将输入图像统一调

　 　 　

整为 640×640 尺寸后做归一化处理。 在优化器的选择

上,采用了随机梯度下降(SGD),并搭配线性学习率调度

策略。 其中,初始学习率设为 0. 01,最终学习率逐步降

至 0. 000
 

1。 为了加快训练进程,将 warm_epochs 设置为

3. 0,动量参数设置为 0. 8,同时把权重衰减系数设定为

0. 000
 

5。
表 1　 实验环境

Table
 

1　 Experimental
 

environment
名称 环境参数

操作系统 Windows
 

10
 

64 位

CPU Intel(R)
 

Xeon(R)
 

Platinum
 

8352V
GPU RTX

 

4090(24
 

GB)
内存 90

 

GB
Python 3. 10(ubuntu22. 04)

Pythorch 2. 10
Cuda 12. 1

3. 3　 评价指标

　 　 当前,目标检测模型的计算效率和存储效率主要通

过参 数 量、 千 亿 次 浮 点 运 算 量 (( giga
 

floating-point
 

operations
 

per
 

second,GFLOPs)和帧率来衡量。 参数量指

的是模型中可训练参数的总量,这些参数涵盖了神经网

络中的权重和偏置等。 参数量越大,模型理论上的表达

能力可能越强,但同时也意味着更大的资源需求。 千亿

次浮点运算量则反映了模型在进行一次前向传播或训练

迭代时,大致需要执行的浮点运算次数。 它是衡量模型

计算复杂度的重要指标。 帧率代表模型每秒能够处理的

图像帧数。 较高的帧率意味着模型能够在单位时间内处

理更多的图像,实时性更强。
而模型的精确度通常通过精确率( Precision) 来评

判,计算公式如式(10)所示。

Precision = TP
TP + FP

(10)

式中:TP 为真正例,即正确预测为正例的样本数;FP 为

假正例。 TP 不变的情况下,FP 随着 Precision 的增大减

少,即模型误报情况减少。
表 2　 消融实验

Table
 

2　 Ablation
 

experiment

试验 StarNet SPPF-LSKA C3K2-GDC LSCD
浮点运算量 /

GFLOPs
参数量 /

( ×106 )
mAP@ 0. 5 / % 帧率 / fps Precision / % Recall / %

1 × × × × 6. 3 2. 58 79. 5 909 80. 3 74. 5
2 √ × × × 5. 0 1. 94 78. 1 833 83. 6 70. 8
3 × √ × × 6. 5 2. 85 79. 3 556 82. 8 72. 4
4 × × √ × 5. 4 2. 22 79. 2 416 84. 6 71. 2
5 × × × √ 5. 6 2. 42 80. 5 909 86 73. 2
6 √ √ × × 5. 0 2. 01 76. 7 769 81 70. 1
7 √ × √ √ 3. 8 1. 59 77. 4 833 82. 6 71. 1
8 √ √ √ √ 3. 8 1. 66 79. 2 833 85. 8 72. 6

　 　 注:√使用该算法;×不使用该算法
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　 　 召回率(recall)的计算公式如式(11)所示。

Recall = TP
TP + FN

(11)

式中:FN(False
 

Negative)为假负例,它随着 Recall 的增大

而减少,模型将正例误判为负例的情况变少,即模型漏报

情况减少。
平均精度均值(mAP)的计算公式如式(12)所示。

mAP = 1
N ∑

N

i = 1
AP i (12)

式中:mAP 是所有类别平均精度( average
 

precision,AP)
的平均值。 AP 用于衡量识别单一类别的准确性,而

mAP 则综合了所有类别的 AP,用于评估模型的整体性

能。 mAP 值的提高意味着精确率-召回率(PR)曲线下方

的面积增大,从而反映出模型在各类别上的综合表现有

所提升。 mAP@ 0. 5 是在交并比( IoU) 阈值为 0. 5 时计

算的 mAP。
3. 4　 消融实验

　 　 采用消融实验验证法对 StarNet 模块、SPPF-LSKA 模

块、C3K2-GDC 模块以及 LSCD 模块改进在钢丝绳表面损

伤识别上的优势,实验结果如表 2 所示。 由实验结果可

知,各模块对模型优化成效显著。 引入 StarNet 模块,浮
点运算量降低约 20. 6%,参数量减少约 24. 8%,精确率升

至 83. 6%,在轻量化同时提升检测效果;SPPF-LSKA 模

块虽使浮点运算量略增,但 mAP @ 0. 5 达 79. 3%,精确

率、召回率均改善,增强了特征提取能力;C3K2-GDC 模

块轻量化突出,浮点运算量降至 5. 4
 

GFLOPs,参数量减

至 2. 22×106,检测精度与召回率维持良好;LSCD 模块在

轻量化基础上,mAP @ 0. 5 提至 80. 5%,精确率、召回率

显著提升。 模块组合效果亦佳,StarNet 与 SPPF-LSKA 结

合展现了轻量化的协同作用;StarNet 与 C3K2-GDC 结合

强化了轻量化与检测表现;四者结合时,浮点运算量为

3. 8
 

GFLOPs,参数量为 1. 66×106,mAP @ 0. 5 达 79. 2%,
达成模型轻量化与性能提升的平衡,各模块及组合优化

效果明显。
3. 5　 泛化能力与鲁棒性评估

　 　 在目标检测领域,模型泛化能力体现于模型在新数

据集上的识别表现,鲁棒性体现为不同场景下模型的稳

定性,常通过模型对不同角度和复杂背景图片的识别能

力衡量。 为评估本文模型的泛化能力与鲁棒性,选取

100 张未参与训练的涵盖不同角度的钢丝绳损伤图像,
用本文模型检测,结果如表 3 所示。
　 　 从表 3 的实验结果可以看出,本文模型在新数据集

上的识别准确率最高,泛化能力与鲁棒性能最强。 部分

识别效果的对比展示如图 10 所示,包括倾斜和水平角度

的对比(图 10 ( a) 和( b))、图片模糊时的缺陷检测对

比(图 10 ( c )) 以 及 多 根 钢 丝 绳 缺 陷 检 测 的 对

比(图 10(d))。
表 3　 泛化实验

Table
 

3　 Generalization
 

experiment
试验 正确识别 / 张

YOLO11n 70
YOLO11n+

 

Starnet 59
YOLO11n+

 

LSKA 64
YOLO11n+

 

GDC 67
YOLO11n+

 

LSCD 79
YOLO11n+

 

Starnet+
 

LSKA 70
YOLO11n+

 

Starnet+
 

GDC
 

+
 

LSCD 71
YOLO-SGLS 77

图 10　 新数据集识别效果
 

Fig. 10　 New
 

dataset
 

recognition
 

effect
 

image

　 　 模型对不同拍摄视角下的钢丝绳缺陷均可精准检

测,标注框与损伤区域高度贴合,说明模型的多尺度特征

提取模块可突破视角限制,通过动态捕捉空间维度特征

差异,适配多种复杂工况。
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3. 6　 对照实验及分析

　 　 为全方位评估本文模型的优化成效,本文挑选多个

极具代表性的目标检测模型,与改进后的模型展开对比

分析。 在一阶段目标检测模型方面,选取了广泛应用的

YOLOv5n、YOLOv8n,以及经典的 SSD 模型。 针对 SSD,
还特别考量了其采用不同骨干网络时的性能差异,即分

别基于 VGG 和 Mobilenet 的版本。 为实现多维度对比,
还纳入了双阶段检测的经典之作 Faster-RCNN。 为探究

不同骨干网络对其性能的影响,本文测试了使用 VGG 和

Resnet 骨干网络的 Faster
 

RCNN 模型。 同时,为紧跟目标

检测领域的前沿技术趋势,加入了基于 DETR 架构的高

效单阶段检测模型 RT-DETR-R18 和 STD-DETR。
在整个实验过程中,始终严格把控实验条件,确保各

模型在相同环境下进行测试。 选用
 

Cable
 

Damage
 

数据

集,从精确度、参数量以及计算量等关键指标,全面评估

各个模型在边缘设备上部署后的性能表现。 详细实验结

果如表 4 所示,以便直观对比分析各模型的优劣。
　 　 从实验结果看,在 mAP @ 0. 5 指标上,YOLO-SGLS
算法以 79. 2% 的成绩,仅次于 STD-DETR 的 82. 5% 和

RT-DETR-R18 的 79. 7%, 领 先 于 RT-DETR-R18 的

79. 7%以及其他传统算法,展现出较高的检测精度。 参

数量方面,本文算法仅 1. 66 × 106,远低于 Faster-RCNN
(VGG)的 137. 17× 106、Faster-RCNN( ResNet) 的 28. 53 ×

106 等算法,相比轻量级的 YOLOv5n 和 SSD( MobileNet)
也更低,模型极为轻量化。 在计算复杂度指标上,浮点运

算量为 3. 8
 

GFLOPS,数据表现十分突出,远低于 Faster-
RCNN( ResNet) 的 941. 4、RT-DETR-R18 的 110. 0 等,相
较于 YOLOv8n 和 YOLO _ BF 同样更低。 综合来说,
YOLO-SGLS 在保证较高检测精度的同时,兼具模型轻量

化与低计算复杂度特性,在资源受限环境中具有显著优

势,能有效满足实际应用需求。
表 4　 对照实验

Table
 

4　 Controlled
 

experiment
模型 mAP@ 0. 5/ % 参数量 / (×106) 浮点运算量 / GFLOPs

YOLOv5n 59. 0 1. 98 4. 5
YOLOv8n 55. 6 3. 23 8. 7
YOLO_BF 62. 3 2. 74 8. 0

SSD(VGG) 65. 8 26. 49 62. 7
SSD(Mobilenet) 63. 6 6. 20 1. 8

Faster-RCNN(VGG) 71. 2 137. 2 370. 2
Faster-RCNN(Resnet) 75. 3 28. 5 941. 4

RT-DETR-R18 79. 7 31. 96 110. 0
STD-DETR 82. 5 41. 38 124. 4

YOLO-SGLS 79. 2 1. 66 3. 8

　 　 为更直观呈现 YOLO-SGLS 算法与其他主流目标检

测算法检测效果差异,将不同钢丝绳外观、角度、背景环

境、光照条件的检测结果进行对比如图 11 ( a) ~ ( h)
所示。

图 11　 检测效果对比

Fig. 11　 Comparison
 

chart
 

of
 

detection
 

effect
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　 　 相较于其他主流目标检测算法存在漏检、误报的情

况,YOLO-SGLS 具备出色的环境鲁棒性。 无论处于背景

干扰、光照波动的复杂环境,或是面对钢丝绳外观形态、
拍摄角度的变化,均能稳定输出高精度检测结果。

4　 结　 论

　 　 本文提出 YOLO-SGLS 模型,通过引入创新的模块

设计和优化策略,有效提升了钢丝绳表面缺陷检测的

精度与效率。 首先,StarNet 替代传统主干网络,通过星

型运算显著增强了特征提取能力,优化了计算性能;其
次,在 SPPF 模块基础上引入 LSKA 模块,改善了长程

依赖性与局部信息的处理,进一步提升了特征感知能

力;同时,通过引入 GhostConv 模块,减少了冗余特征的

计算负担,提高了模型的效率与稳定性;最后,设计了

轻量级共享卷积检测头 LSCD,降低了计算和参数量,
提升了推理速度。

实验表明 YOLO-SGLS 模型相比原始基础网络

YOLO11n 的浮点运算量和参数量分别降低了 40%、
36%,模型大小仅为 1. 66 × 106,准确率提升 5. 5%,达到

85. 8%,平均精度和召回率只下降了 0. 3%、1. 9%,在轻

量化的同时,最大程度上降低了模型的漏检率。 在泛化

能力测试中,100 张新数据集,YOLO-SGLS 正确识别的图

像数为 77 张高于 YOLO11n 的 70 张。 验证了算法的轻

量化程度、准确率和鲁棒性均满足电梯钢丝绳损伤检测

在实际应用场景中的需求,在未来的工作中,将在电梯钢

丝绳在线监测的嵌入式设备中植入 YOLO-SGLS 算法,对
其落地部署进行研究。
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