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Design of low offset and high swing rate rail to rail operational amplifier

Tao Jinlong Shen Ruiting Chen Hongmei
(Institute of VLSI Design, Hefei University of Technology, Hefei 230601, China)

Abstract: With the advancement of electronic device fabrication processes and the reduction of chip operating voltages, the performance
requirements for rail to rail operational amplifiers have become increasingly stringent, particularly in critical parameters such as offset
voltage and slew rate. This paper presents a low-offset, high slew rate rail to rail op-amp design. By cascading a high-gain low-
bandwidth amplifier with a low-gain high-bandwidth architecture, constant transconductance is maintained across the rail to rail common-
mode voltage range through current distribution principles. The output stage utilizes a feedforward Class AB push-pull amplifier to
achieve rail to rail output with enhanced driving capability. A dedicated slew rate enhancement circuit is implemented to address the
insufficient output slew rate under large input signals, thereby improving transient response and extending operational bandwidth.
Additionally, to mitigate offset caused by process variations, a digital fuse trimming technique is incorporated at the input stage for load
calibration. Operational stability is ensured through nested Miller compensation. Post-layout simulation results demonstrate that under a
2.2~5.5 V supply voltage with 1 k) and 100 pF load conditions, the op-amp achieves a gain-bandwidth product of 10 MHz, an open-
loop gain of 145 dB, a phase margin of 62°, a slew rate of 11 V/us, and a maximum offset voltage of 70 wV. Compared to conventional
rail-to-rail op-amp designs, this architecture effectively reduces offset voltage through trimming technology and significantly enhances
slew rate via dedicated enhancement circuitry, enabling the proposed design to drive heavy loads with high precision under constrained
power consumption while maintaining superior performance metrics.
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Fig. 1 Basic structure diagram of rail to

rail operational amplifier

S B v LR A TR SR R L AR R R RE 2
SRR AR — R FH 22 73 il A 548 5 R B vo B0 a2 0k
A B R A i, 38 4 20— R A & SR IE A 454 ;
M2 R AT AB ZEHESL i HH 2, X Fh 5 H AL RE RS 42
1B TR O AR | i BE S BT HRL TR s L

2 AN K SREAEEIEZIT

ARSCBET AR IR ] | e 323 B0 B0z S HOR S Y 4
FORE AN 18] 2 s o %H % 32 22 i DL R JLASER A AR
T S A 90 R B oAb & R-R e -k S
& ( complementary mental-oxide-semiconductor, CMOS ) #
IIXFEERE B ARG I S B A A\ R s S E E
22 AGE B T X R A TR BB 0 . [A) 97 4
FHAE ARG 25 (G RIS  E 5 A S — 2 A 2250 %, S
XSSO AR S e PR RE SR o R B T
L PN T 2 Y = DO B N N DL ]
NREE, HH ORI T AB HERR A, AR A B



. 266 - S 1[I I IV = 3

539 &

i R ACR 1652 Bias OO % BB B i S RE L 7R
ARAMETT I, AL R i S U AN A A B £
UL, B LB B SR ™ A R . BEAh,
P 5 F Sl LI B oA R LA % 9 2R
L, A G R AT A T

S|
| iRl
TR
y V] Vot
| Vump’ ]
, ] V.
|
[0:7]
- me || B
L] A g

PR ZUNGEN e )

Fig.2  Overall circuit structure
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Fig.3 Nested Miller compensation structure
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Fig. 6 Output stage circuit
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Py
52 G
$ga

B ez
Fig. 11 Fuse repair circuit

PERIERE T Dy SRR HE 22 B T IR, A
T AN 22 e AR R A R 8 A I s R O T LS
RS AN 22058 STt 22 75 TR, DA A 1 2 9 H T o 75
THER . BiEl a5, PR T 22 et . B ASaR K
Dyse oy BOAEHLP, =5 A5 T i S AT T T
RIF 1 My, 8 22300 K i T s T, s 22 RS W
X P A R R T b A R A, DL U 22 RS, K
I Doypen » 177 B N i F JRAE BT A R
HUR 2R3 o BEIE, D wons v 9 1K HRLSF Bl HE A8 220K
25 Zoit— BHELR Doy B 05 ML, 6 P 22
TEIBCHL

4 HBFESURKER

ALV T HI 0. 18 wm BCD T2, HAR A i i 12
RS B S R R E W& 12 fs 1% 3R
FHOBUH T8 12 BT 30 K P A 52 4 [R] 1 32 5 R 3%
RBUE U R b IER S G5 5 32 i P A~z iy T
YIRS, RIS — By B S vf el %, XD BT ANA
B R BRI D) E , 3 3 B T s RO ARG T
BLJE  BEAR R S S s, R IE SR 5] 1 10 4



-270 - B IR SRR R

39 &

PAD, 21 ALK 890 wmx495 wm,

K12z A

Fig. 12 Overall layout of operational amplifier

B35 i Specture 15 ELAS T B I AT T 05 ELIGE
HL B 3L S R 100 pF, SR H B R 1 kQ, 7 HL YR L R
N2.23.3.4.5F55V, SR R-40 C .27 C.
80 °C 1 125 C B, WA T2 A T B 35 7 e FAH A7
AT B, A BES R NE 13 R, 515 B4 R 4
AR 8 TR 2206 V8 B 0038 BRI 28 A PR AT 48 35 4
5 T AR A L M RE ARG B /0 B 4> B 152 dB
10. 1 MHz.62°,
180
160
140
120
100
80
60

W25/dB

10210 10° 10' 10 10° 10* 10° 10° 107
P /Hz
(a) WEATUR 1k 2

(a) Amplitude frequency characteristiccurves

AR/

102107 10° 10" 10* 10° 10* 10° 10° 107
B#/Hz
(b) AHATRE P 1 22

(b) Phase frequency characteristic curves

B3 WREARE R A IR i 2
Fig. 13 Amplitude frequency characteristic and

phase frequency characteristic curves

32 SRR 8 B B 7 3 2% R R BB X, IR AR A
i 0 2 v, BIBTERAE 5 FIM V), B 0 BB ERAS 5B,
FESER AR 100 pF, R BHN 1 kQ B, XHE R
AT AN ] L IR L R R R B 1 2 T M AT
Ja i EAG ., HAG 25 R K 14 i, LRiER SR+

MBS 11,8 V/ps, FHAEFRE/IME SR-H 11.2 Vs,
51 -

>
==
®
1
0
I ! |
1 2
i ) /s
(a) SR+ %
(a) SR+curve
5
ns
3 —
3

)/ s
(b) SR—HH£R
(b) SR-curve

Kl 14 ERPRSEhZ

Fig. 14 Transient simulation curve of slew rate

W32 FOR AN 25 BT 18 25 57 S R 2K, #E 9] 17) 3
F2 V,p/2 U VIR T 52 R I 05 2L 100 S REAS 205
BRI, FESEME 1S i, ke RERFEER
-828 FI+803 WV, MiARIHER KN 70 WV, IE AR AT
B 15 fi K, B+, 05 mV B, 7] LISt iz 5
TR R R A TIETE

Jas 22 ¥ B 015 B RAN P 16 TR, 2450 AR E 5
HEAMBIRRT | o 22 a5 (5 SRRy s T, TE0E
2R G E T R TS RN L TR RS 5
JJE T BT 2, i S S T A ) P B, DT D DB
IR LB TRIT



5 6 3]

(FSETEE S PRGBS ON ibI aa - 271 -

0 -1.0 0.8 0.6 -0

702 0 02 04 06 08 10
PV Y
B 15 SRS EL

Fig. 15 Monte Carlo simulation results

|
ﬁA@ﬁﬁﬂg}J i i
Jriaf o ——L !
AN R :
B2 —:—v—|—¢—, :

|

|

|

1

|

|

[

|
w4 —
BwEmL |

I
Ba—frfe -
I
T

|
|
|
| |
| |
| |
| |
I I
| |
t t
| |
1 1
| |
| |
[ I

EStz N

Kl 16 i 2z im0 B £

Fig. 16  Simulation curve of fuse repair and adjustment mode
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Table 2 Comparison of the four OTAs

S AR SCERL 17 SCER[ 18] SCRR[19]

AR HL /Y 2.2~5.5 3.3 1.2 5
T2/uW 0.18 0.18 0.18 0.18
UIFE/ mW 8 2.4 0.76 4.5
gk 2/ pF 100 5 100 100
142547 5B/ MHz 10 50 3.3 1. 66
AR EE/ (°) 60 50 61.1 56
FrERHE i/ dB 145 100 110 137
R/ (Veus™) 11 60 3.2 1.6
PR/ wV 70 - - 264

FOM,/( MHz-pF-pA™") 0.88  0.34 0.52  0.18
FOM,/[ (V-ps™) -pF-pA™']  0.55 0. 41 0.51 0.18
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