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基于融合迁移学习的 IPCNN 串联型
故障电弧检测研究∗

严灵潇　 李　 斌　 舒嘉辉　 张勇志

(辽宁工程技术大学电气与控制工程学院　 葫芦岛　 125105)

摘　 要:针对实际家庭环境中,家用负载故障数据难以采集导致故障样本稀缺,无法满足故障模型的训练要求的问题。 提出了

一种融合迁移学习的改进双通道卷积神经网络(IPCNN)串联型故障电弧检测方法。 首先,搭建家用负载串联型电弧故障实验

平台,获取感性负载和阻性负载在发生串联故障时的一维电压信号,利用格拉姆角场将其转换为二维图像,形成新的图片数据

集并将其送入源域上的双通道卷积神经网络(PCNN)模型中进行训练得到该模型的权重参数。 然后通过迁移学习将源域上已

训练好的权重参数迁移至目标域上的 IPCNN 模型中,加快模型训练时间,节省计算资源。 同时,在 IPCNN 模型中加入了门控循

环单元(GRU)和多头注意力机制( MSA)来提高模型计算效率和表达能力,并且在 IPCNN 模型中舍弃掉 PCNN 模型中的分类

层,使用 L2 正则化支持向量机(L2-SVM)代替 Softmax 层进行分类任务控制模型的复杂度,从而提高模型的泛化能力。 最后,针
对模型中的学习率和神经元个数等超参数难以确定的问题,利用改进后的人工旅鼠算法进行优化,使其网络结构更加合理。 通

过对比实验,该模型对感性负载和阻性负载的平均识别准确率分别为 97%和 97. 75%。 证明所提方法克服了在数据稀缺的情况

下导致模型识别精度低的问题,对于家用负载串联电弧故障的识别具有良好的成效。
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Abstract:
 

In
 

the
 

actual
 

home
 

environment,
 

it
 

is
 

difficult
 

to
 

collect
 

fault
 

data
 

for
 

household
 

loads,
 

resulting
 

in
 

the
 

scarcity
 

of
 

fault
 

samples
 

and
 

the
 

inability
 

to
 

meet
 

the
 

training
 

requirements
 

of
 

the
 

fault
 

model.
 

In
 

this
 

paper,
 

an
 

IPCNN
 

series
 

fault
 

arc
 

detection
 

method
 

based
 

on
 

transfer
 

learning
 

was
 

proposed.
 

Firstly,
 

an
 

experimental
 

platform
 

for
 

series
 

arc
 

faults
 

of
 

household
 

loads
 

was
 

built
 

to
 

obtain
 

the
 

one-dimensional
 

voltage
 

signals
 

of
 

inductive
 

loads
 

and
 

resistive
 

loads
 

in
 

series
 

faults,
 

and
 

converted
 

them
 

into
 

two-dimensional
 

images
 

by
 

using
 

the
 

Gragram
 

angle
 

field
 

to
 

form
 

a
 

new
 

image
 

dataset
 

and
 

send
 

it
 

to
 

the
 

PCNN
 

model
 

on
 

the
 

source
 

domain
 

for
 

training
 

to
 

obtain
 

the
 

weight
 

parameters
 

of
 

the
 

model.
 

Then,
 

the
 

trained
 

weight
 

parameters
 

on
 

the
 

source
 

domain
 

are
 

migrated
 

to
 

the
 

IPCNN
 

model
 

on
 

the
 

target
 

domain
 

through
 

transfer
 

learning,
 

which
 

accelerates
 

the
 

model
 

training
 

time
 

and
 

saves
 

computing
 

resources.
 

At
 

the
 

same
 

time,
 

GRU
 

and
 

MSA
 

are
 

added
 

to
 

the
 

IPCNN
 

model
 

to
 

improve
 

the
 

computational
 

efficiency
 

and
 

expressive
 

ability
 

of
 

the
 

model,
 

and
 

the
 

classification
 

layer
 

in
 

the
 

PCNN
 

model
 

is
 

discarded,
 

and
 

the
 

L2-SVM
 

is
 

used
 

instead
 

of
 

the
 

Softmax
 

layer
 

to
 

control
 

the
 

complexity
 

of
 

the
 

classification
 

task
 

in
 

the
 

IPCNN
 

model,
 

so
 

as
 

to
 

improve
 

the
 

generalization
 

ability
 

of
 

the
 

model.
 

Finally,
 

in
 

order
 

to
 

solve
 

the
 

problem
 

that
 

the
 

learning
 

rate
 

and
 

the
 

number
 

of
 

neurons
 

in
 

the
 

model
 

are
 

difficult
 

to
 

determine,
 

the
 

improved
 

artificial
 

lemming
 

algorithm
 

is
 

used
 

to
 

optimize
 

the
 

network
 

structure
 

more
 

reasonable.
 

Through
 

comparative
 

experiments,
 

the
 

average
 

recognition
 

accuracy
 

of
 

the
 

model
 

for
 

inductive
 

and
 

resistive
 

loads
 

is
 

97%
 

and
 

97. 75%,
 

respectively.
 

It
 

is
 

proved
 

that
 

the
 

proposed
 

method
 

overcomes
 

the
 

problem
 

of
 

low
 

model
 

recognition
 

accuracy
 

in
 

the
 

case
 

of
 

data
 

scarcity,
 

and
 

has
 

good
 

results
 

in
 

the
 

identification
 

of
 

series
 

arc
 

faults
 

of
 

household
 

loads.
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0　 引　 言

　 　 近年来,随着社会用电需求的不断上升,电气安全风

险也显著增加。 根据国家应急管理部消防救援局发布的

数据,住宅火灾在整体火灾事件中占据了重要比例,全年

报告的 8. 3 万起住宅火灾占总火灾数量的 38% [1] 。 这一

数据清楚地表明,家庭用电安全问题亟待重视。 在家庭

环境中,电气故障是引发火灾的主要原因之一。 短路、过
载、接触不良以及不当使用电器等情况都可能导致电气

线路产生电弧,而电弧的温度可以超过 5
 

000
 

℃ ,这大大

提高了火灾发生的可能性[2] 。 因此,随着用电量的增加,
电气安全隐患愈加突出,给家庭和社会的安全构成了严

峻的挑战。
当家用电器发生故障时,可能产生并联电弧、产生串

联电弧等。 但是串联电弧由于其持久性、高温产生和火

灾风险,是家用电器中电弧故障研究的重点。 它可能引

发电器着火、设备损坏,甚至威胁到家庭的安全。 因此,
研究和防范串联电弧故障对提升家用电器的安全性至关

重要。
文献[3] 针对串联电弧故障检测的判据与阈值难

题,在传统电流检测方法的基础上融合电压信息,提出电

压电流能量信息融合的交流电弧故障检测方法,实现多

类型负荷下故障判据构建,相比仅用电流特征检测方法

判据更加简单易于实施。 文献[4]提出了在广义 S 变换

下进行串联电弧时频分析,并且与短时傅里叶变换和小

波变换进行比较,证明 S 变换在提取高频特征方面的优

势,最后利用卷积神经网络进行训练,通过较高的准确率

验证了其方法的有效性。 文献[5]提出了一种基于多特

征融合的故障电弧辨识方法,通过高速相机分析燃弧特

性,结合时域、频域和信号无序度的差异,提取关键特征

量并确定阈值范围,最终满足工程应用的准确性和稳定

性的要求。 文献[6]提出了一种基于电压特征能量的串

联电弧故障检测方法,通过分析故障点电弧电压特征,利
用全域能量幅值和敏感相位域能量相位信息进行故障检

测,并且通过较好的实验结果验证了该方法的有效性。
文献[7]通过时域、频域和小波包能量分析相机和的方

法提取电弧特征,使用随机森林进行特征选择,并将相关

特征输入深度神经网络进行识别,并且通过实验验证该

方法的有效性。 为了实现时序信号向二维图像的转换,
文献[8]将格拉姆角场(Gramian

 

angular
 

field,GAF)及卷

积神经网络( convolutional
 

neural
 

networks,CNN) 加以结

合,用于提取图像的特征并进行识别归类,该方法实现了

自动提取特征并且分类,避免了人工选择特征困难,并用

仿真和实验证明了其有效性。 文献[9]提出了一种基于

流形结构的多源自适应迁移学习方法,通过可迁移性分

析选择源域,适配边缘和条件分布并引入均衡因子,最终

通过加权因子自适应优化源域分类器有效提高模型的准

确率。 文献[10] 提出了一种多源域迁移学习方法用于

解决滚动轴承故障诊断中的数据稀缺问题,实验结果表

明该方法在目标域数据稀少的情况下能够达到高分类精

度,且通过重叠采样提高了模型识别精度,显著减小了过

拟合并加速了模型收敛。 以上研究仍存在一些局限性,
比如依赖于高质量的数据采集和处理,如果数据质量不

高,会影响故障判断的准确性,还有样本的训练数据不足

导致模型的泛化能力不高,需要人工设置参数等问题。
针对上述问题,本文提出一种改进双通道卷积神经

网络( improved
 

parallelizing
 

convolutional
 

neural
 

network,
IPCNN)和迁移学习策略相结合的串联电弧故障检测方

法,首先,通过 GAF 将一维时序电压信号转化为二维图

像,从而构建出图像数据集。 然后送入源域上的双通道

卷积神经网络( parallelizing
 

convolutional
 

neural
 

network,
PCNN)进行训练,将源域上训练后得到的权重参数共享

给目标域的 IPCNN 模型。 在 IPCNN 模型中引入门控循

环单元(gated
 

recirculation
 

unit,GRU)和多头自注意力机

制( multi-head
 

self-attention
 

mechanism,MSA) 以及 L2 正

则化支持向量机(l2
 

support
 

vector
 

machine,L2-SVM)。 利

用改进后的人工旅鼠算法 ( improved
 

artificial
 

lemming
 

algorithm,IALA)对网络中的超参数进行优化使网络结构

更加合理。 经过实验验证,该方法能够有效地实现对家

用负载串联电弧故障的快速准确诊断。

1　 基于 IPCNN 和迁移学习故障检测理论

1. 1　 PCNN 网络结构

　 　 PCNN 的结构如图 1 所示。 首先,将格拉姆角和

场[11](gramian
 

angular
 

summation
 

fields,GASF) 和格拉姆

角差场(gramian
 

angular
 

difference
 

fields,GADF)两类图像

同时输入到两条并行的 CNN 中。 两条 CNN 分别依次通

过两层卷积操作和池化处理,提取不同层级的特征信息。
随后,特征图被展平成一维向量。 接着,这两组由各自

CNN 提取出的一维特征向量被拼接在一起,实现特征融

合。 融合后的特征向量进一步传入全连接层,经过非线

性映射后用于表达更高层次的语义信息。 最终,这一综

合特征被送入 Softmax 分类层,完成类别预测并输出最终

分类结果[12] 。

1. 2　 IPCNN 网络结构

　 　 由于传统的 PCNN 网络结构较为简单,诊断结果准

确率不高,泛化能力不强等缺点。 因此本文将传统的

PCNN 网络基础进行改进,形成新的 IPCNN 模型。 在

IPCNN 模型中加入 MSA 模块和 GRU 模块。 并且舍弃了
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图 1　 PCNN 模型结构

Fig. 1　 PCNN
 

model
 

structure
 

diagram

传统 PCNN 模型中的分类层,使用 L2-SVM 代替 Softmax
进行分类任务[13] ,还使用 IALA 算法对模型中存在的一

些难以预设的超参数,如学习率和 GRU 层的神经元数进

行优化。
1)

 

多头注意力机制

注意力机制启发于人类的注意力过程,表示允许模

型在处理信息时更加集中[14] 。 多头注意力机制数学模

型如式(1) ~ (3)所示。

Attention(Q,K,V) = Softmax
QKT

dk
( ) V (1)

H i = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)

MultiHead(Q,K,V) = Concat(H1,H2,…,Hn)W
O

(3)
式中: WQ

i 、WK
i 、WV

i 为 Q、K、V 多维向量投影到不同子空

间的参数矩阵; H i 表示第 i 个的输出结果; dk 表示输入

向量的维度; WO 为权重向量。 多头注意力机制结构如

图 2 所示。

图 2　 多头注意力机制

Fig. 2　 Multi-head
 

attention
 

mechanism
 

structure

2)
 

门控循环单元

GRU 是为了有效应对在处理序列数据时长期记忆

面临的困境,以及反向传播过程中出现的梯度问题。
GRU 和 长 短 时 记 忆 网 络 ( long

 

short-term
 

memory
 

networks,LSTM)都依赖于门控机制精确调节信息流动和

更新,以应对长期依赖问题,尽管 LSTM 结构更复杂且参

数更多,而 GRU 通过简化门控结构提高了计算效率,两
者都能在时间序列建模中有效捕捉长期依赖关系[15] ,其
结构如图 3 所示。

图 3　 GRU 结构

Fig. 3　 GRU
 

structure
 

diagram

重置门 rt 公式如式(4)所示。
rt = σ(Wrx t + Urk t -1 + br) (4)
由当前位置输入 x t 与上一位置隐层的 k t -1 输出,先

分别进行线性变换,随后将变换后的结果相加,再接入

sigmoid 函数,得益于 sigmoid 函数的特性,其最终输出值

介于 0 ~ 1 之间,该输出可用来决定保留信息的多寡。
更新门 zt 公式如式(5)所示。
zt = σ(Wzx t + Uzk t -1 + bz) (5)

式中: k t

~
为更新后的值,由重置门 rt ,上一位输出 k t -1 和

这一位置输出 x t 共同决定,如式(6)所示。

k t

~
= tanh(Wcx t,U( rt·k t)) (6)
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更新后的值 k t

~
、更新门 zt ,上一位置输入 k t -1 共同决

定 k t,k t 为当前位置最终输出,如式(7)所示。
k t = zt·k t -1 + (1 - zt)k t

~
(7)

IPCNN 模型结构如图 4 所示。

图 4　 IPCNN 模型结构

Fig. 4　 The
 

structure
 

diagram
 

of
 

the
 

IPCNN
 

model

1. 3　 迁移学习理论

　 　 迁移学习通过利用预训练模型中的参数,将其应用

于新的任务,从而加快新模型的训练速度,提升学习效

率,同时增强模型的泛化性能。 在实际操作中,基于参数

的迁移学习方法允许源领域和目标领域共享模型参数,
用户只需对神经网络进行适当的调整,就能高效地迁移

到新的应用场景[16] 。 迁移学习原理如图 5 所示。

图 5　 迁移学习原理

Fig. 5　 Transfer
 

learning
 

schematic

特征提取和微调是迁移学习的主要方法,如图 6 所

示。 特征提取利用预训练模型的卷积层为新模型生成特

征,同时保留大部分原有网络架构,尽管这一过程的计算

负担较重。 与此不同,网络微调通过冻结部分层并训练

其余层,充分利用深度网络的泛化能力,降低了设计的复

杂性和训练时间。 本文通过微调 IPCNN 网络来实现这

一目标。
1. 4　 改进人工旅鼠算法

　 　 人工旅鼠优化算法 ( artificial
 

lemming
 

algorithm,
ALA) [17] 是一种新型的元启发式智能优化算法,其灵感

来源于对旅鼠在自然界中的 4 种不同行为,即长途迁徙、
挖洞、觅食和躲避捕食者。 由于模型中存在一些难以预

图 6　 迁移学习的策略

Fig. 6　 Strategies
 

for
 

transfer
 

learning

设的超参数,如学习率和 GRU 层的神经元数量,为了提

升故障识别的准确性[18] ,因此使用 IALA 算法对超参数

进行优化。
1)传统人工旅鼠算法

种群初始化公式如式(8)所示。
Z i,j = LB j + rand × (UB j - LB j)　 i = 1,2,…;N,j = 1,

2,…,Dim (8)
式中:

 

UB j 为第 j 维度的上限; LB j 第 j 维度的下限; rand
为[0,1]区间随机数。

长途迁徙行为如式(9) ~ (12)所示。

Z
➝

i( t + 1) = Z
➝

best( t) + F × BM→ ×

R
➝

× Z
➝

best( t) -Z
➝

i( t)( ) + 1 -R
➝

( ) × Z
➝

i( t) -Z
➝

a( t)( )( )

(9)
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fBM(x;0,1) = 1
2π

× exp - x2

2( ) (10)

F =
1,⌊2 × rand + 1」 = 1
- 1,⌊2 × rand + 1」 = 2{ (11)

R
➝
= 2 × rand(1,Dim) - 1 (12)

式中: Z
➝

i( t + 1) 为第 i 个搜索代理在 t + 1 次迭代时的位

置;
 

Z
➝

best( t) 为当前最优解;F 作为改变搜索方向的标志,

BM→为布朗运动的随机数向量; R
➝

是一个大小为 1 × Dim

的向量, Z
➝

i( t) 为第 i个搜索代理的当前位置,Z
➝

a( t) 为从

总体中随机选择的搜索个体; ⌊2 × rand + 1」 表示向下取

整函数。
挖洞行为如式(13)、(14)所示。

Z
➝

i( t + 1) =Z
➝

i( t) + F × L × Z
➝

best( t) -Z
➝

b( t)( )

(13)

L = rand × 1 + sin
t
2( )( ) (14)

式中:L 是与当前迭代次数相关的随机数; Z
➝

b( t) 为种群

中随机选择的搜索个体。
觅食行为如式(15) ~ (17)所示。

Z
➝

i( t + 1) =Z
➝

best( t) + F × spiral × rand ×Z
➝

i( t)
(15)

spiral = radius × (sin(2 × π × rand) + cos(2 × π ×
rand)) (16)

radius = ∑
Dim

j = 1
( zbest,j( t) - zi,j( t)) 2 (17)

式中: spiral 为觅食过程中随机搜索的螺旋形状。
躲避天敌行为如式(18) ~ (20)所示。

Z
➝

i( t + 1) =Z
➝

best( t) + F × G × Levy(Dim) ×

Z
➝

best( t) -Z
➝

i( t)( ) (18)

G = 2 × 1 - t
Tmax

( ) (19)

Levy(x) = 0. 01 × u × σ

| ν |
1
β

,

σ =
Γ(1 + β) × sin

πβ
2( )

Γ
1 + β

2( ) × β × 2
β - 1

2( )( )
1
β

(20)

式中:G 为旅鼠的逃逸次数;Tmax 最大迭代次数; Levy(x)
表示莱维飞行函数; u、ν 都是[ 0,1] 之间的随机数;β
为 1. 5。

长途迁徙和挖洞为勘探行为,觅食和躲避天敌为开

发行为。 为了保持勘探和开采之间的平衡,设计了一个

能量因子 E( t) ,使其在迭代过程中减少。 当人工旅鼠有

足够的能量时,它们会选择性地迁移或挖洞;否则,它们

就四处觅食,躲避捕食者。 能量因子的公式如下:

E( t) = 4 × arctan 1 - t
Tmax

é

ë
êê

ù

û
úú × ln

1
rand( ) (21)

2)改进人工旅鼠算法

(1)佳点集种群初始化

随机初始化可能使得算法陷入局部最优,降低优化

效果。 为了解决这一问题,本文提出了一种基于佳点集

的初始化方法[19] 。 佳点集通过提供更加均匀和高质量

的种群分布,能够有效覆盖搜索空间,从而确保算法在多

目标优化中能够更全面地探索潜在解,提高解的质量和

多样性,进而提升整体优化效果。 设 GS 是 S 维欧氏空间

中的单位立方体,若 r ∈ GS ,如式(22)所示。
Pn(k) = {({ r(n)

1 ·k},{ r(n)
2 ·k},…,{ r(n)

s ·k}),1 ≤
k ≤ n} (22)
式中:{ r(n)

s ,k } 代表取小数部分, n 表示点数,取 r =
{2cos2πk / p,1 ≤ k ≤ s}(p 是满足(p - 3) / 2 ≥ s 的最小

素数)。 将其映射到搜索空间,公式如下:
Z i( j) = ( jub - jlb){ r( i)

j ·k} + jlb (23)
式中: jub 和 jlb 为第 j 维的上下界。

为验证佳点集初始化的优越性,分别构造二维和三

维空间上 100 个佳点,同时以随机游走方式在二维和三

维空间内取 100 个点,取值范围均为[0,1],图 7( a) 和

(b)所示分别为随机产生的二维、三维初始种群分布。
图 7(c)和(d)所示分别为佳点集产生的二维、三维初始

种群分布。 在相同的初始条件下,佳点集分布更均匀,具
有较好的遍历性和均匀性。

(2)引入混合高斯和柯西变异策略

变异操作是优化算法中常用的一种手段,用于增强

解空间的多样性。 在 ALA 算法中,变异操作可能过于简

单,限制了对解空间的充分探索。 为了解决这一问题,
IALA 算法引入了柯西变异和高斯变异的结合。 柯西变

异能够帮助算法跳出局部最优解,而高斯变异则促进算

法在解空间内进行更细致的搜索。 本文采用的这种混合

变异策略[20] 有效结合了两者的优点,从而提升了算法的

全局搜索能力,其改进公式如式(24)所示。

　 Z
➝

i( t + 1) =Z
➝

i( t) +Z
➝

best( t)(Levy(d) + φ 1Gauss(σ) +
φ 2Cauchy(σ)) (24)
式 中: Gauss(σ) 为 服 从 高 斯 分 布 的 随 机 数,
Cauchy(σ) 为服从柯西分布的随机数,其中 σ ∈ [0,

1],φ 1 = 1 - t
Tmax

,φ 2 = t
Tmax

。
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图 7　 初始种群分布

Fig. 7　 Initial
 

population
 

map

(3)引入自适应切换因子

因为在传统人工旅鼠优化算法的长途迁徙、挖洞、觅
食和躲避天敌等行为中,使用 rand 随机数的随机性太强,
易陷入局部最优。 因此,加入了自适应切换因子 Y[21] ,使
得 IALA 在迭代的后期更加倾向于进行种群间的交流,避
免陷入局部最优。 经过改进后的公式如式(25)所示。

Y = rand() × (1 - t
Tmax

) (25)

(4)高斯检测机制

该机制通过对个体当前位置进行变异,生成一个新

的位置,然后比较这两个位置的适应度。 根据式( 26)
和(27)可知,如果新的适应度值较小,则更新个体的位

置。 这一策略旨在增强旅鼠算法跳出局部最优解的

能力[22] 。

Zm =Z
➝

i( t) +Z
➝

i( t) × N(0,1) (26)

Z
➝

i( t + 1) =
Zm,f(Zm) < f(Z

➝
i( t))

Z
➝

i( t),f(Zm) > f(Z
➝

i( t))

ì

î

í

ïï

ïï

(27)

式中:
 

N ∈ (0,1);Zm 为种群变异后的位置。
改进人工旅鼠算法流程如图 8 所示。
3)

 

IALA 性能测试

为了对比测试蜣螂优化算法( dung
 

beetle
 

optimizer,
DBO)、 鲸 鱼 优 化 算 法 ( whale

 

optimization
 

algorithm,
WOA)、 鹈鹕优化算法 ( pelican

 

optimization
 

algorithm,
POA)、麻雀优化算法 ( sparrow

 

search
 

algorithm, SSA)、
ALA 和 IALA 算法的性能,设置种群大小为 20,最大迭代

次数为 1
 

000,并选取了 CEC2005 中的 4 个标准测试函数

进行实验,包括单峰函数 F1 和 F3,以及多峰函数 F6 和

F7。 为了减少随机误差的影响,每个算法执行了 10 次独

立实验,并记录了每次运行的最优解、平均解及标准差。
通过平均值和标准差的大小可以评估算法的精度和稳定

性。 根据所得数据绘制适应度曲线,测试函数如表 1 所

示,测试函数适应度曲线如图 9 ~ 12 所示,数据结果如表

2 所示。
表 1　 标准测试函数

Table
 

1　 The
 

standard
 

test
 

function
函数名称 函数 搜索范围

F1 f1(x) = ∑
n

i = 1
x2
i [ -100,100]

F3 f3(x) = ∑
n

i = 1
(∑

i

j = 1
x j)

2 [ -100,100]

F6 f6(x) = ∑
n

i = 1
- xisin | xi |( ) ) [ -500,500]

F7 f7 x( ) = ∑
n

i = 1
[(x2

i - 10cos(2πxi)) + 10] [ -5. 12,5. 12]
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图 8　 改进人工旅鼠算法流程

Fig. 8　 Improve
 

the
 

algorithm
 

process
 

for
 

artificial
 

voles.

图 9　 函数 F1 收敛曲线

Fig. 9　 Convergence
 

curve
 

of
 

function
 

F1

图 10　 函数 F3 收敛曲线

Fig. 10　 Convergence
 

curve
 

of
 

function
 

F3

图 11　 F6 收敛曲线

Fig. 11　 Convergence
 

curve
 

of
 

function
 

F6

图 12　 F7 收敛曲线

Fig. 12　 Convergence
 

curve
 

of
 

function
 

F7



　 第 11 期 基于融合迁移学习的 IPCNN 串联型故障电弧检测研究 ·265　　 ·

表 2　 不同算法测试函数寻优结果对比

Table
 

2　 Comparison
 

of
 

the
 

optimization
 

results
 

of
 

different
 

algorithm
 

test
 

functions
函数名 指标 IALA ALA WOA DBO POA SSA

F1
最优值 6. 495

 

5×10-240 2. 313
 

1×10-142 3. 346
 

6×10-204 7. 0987×10-167 3. 415×10-121 8. 832
 

2×10-113

平均值 1. 112×10-228 5. 892
 

5×10-127 5. 488
 

9×10-200 5. 985
 

7×10-104 8. 534
 

9×10-104 1. 553
 

9×10-93

标准差 0 2. 4711×10-126 0 3. 278
 

5×10-103 1. 778
 

6×10-104 8. 4315×10-93

F3
最优值 1. 332

 

2×10-168 7. 915
 

7×10-131 2. 713
 

6×10-112 6. 983
 

2×10-158 4. 690
 

9×10-121 1. 072
 

3×10-103

平均值 1. 330
 

7×10-145 8. 139
 

3×10-114 2. 106
 

6×10-70 2. 645
 

7×10-89 7. 233
 

8×10-100 1. 249
 

7×10-82

标准差 7. 269
 

7×10-145 2. 652
 

7×10-113 1. 153
 

8×10-69 1. 446
 

5×10-88 3. 951
 

8×10-99 6. 513
 

2×10-82

F6
最优值 0 1. 805

 

6×10-7 2. 528
 

1×10-4 1. 711
 

3×10-28 6. 682
 

1×10-7 1. 880
 

8×10-10

平均值 1. 848
 

9×10-32 9. 057
 

9×10-2 9. 085
 

3×10-2 4. 277
 

1×10-23 9. 452
 

3×10-2 3. 565
 

2×10-5

标准差 2. 546
 

2×10-32 1. 382
 

1×10-1 1. 551
 

5×10-1 1. 972
 

3×10-22 1. 455
 

8×10-1 6. 432
 

2×10-5

F7
最优值 1. 377

 

7×10-7 6. 421
 

6×10-7 6. 727
 

5×10-6 2. 436
 

9×10-5 2. 318
 

2×10-5 1. 685
 

7×10-5

平均值 2. 294
 

9×10-5 1. 003
 

8×10-4 1. 336
 

2×10-4 1. 635
 

8×10-3 1. 877
 

1×10-4 1. 641
 

8×10-4

标准差 2. 623
 

9×10-6 9. 112
 

3×10-5 9. 782
 

6×10-5 1. 576
 

1×10-3 1. 595
 

6×10-4 1. 735
 

8×10-4

　 　 结合表 2 和图 9 ~ 12 测试函数收敛曲线,可以看出,
在 6 种优化算法中,不管在单峰测试函数 F1 和 F3 还是

多峰测试函数 F6 和 F7 中,IALA 算法的寻优结果都比其

他 5 种算法更加接近理论值。 验证了多策略融合改进的

人工旅鼠算法具有更快的收敛速度、更好的稳定性和鲁

棒性以及更协调的全局搜索能力。
1. 5　 基于 IPCNN 和迁移学习网络结构

　 　 首先,通过 GAF 将一维的电压时序信号转化为图片

形式,构成新的图片数据集。 在源域上使用 PCNN 模型

进行训练得到该模型的权重参数,同时在目标域上使用

将 PCNN 模型改进后的 IPCNN 模型。
其次,在 IPCNN 模型中加入了 GRU、MSA 以及 L2-

SVM 模块。 GRU 可以解决 PCNN 在处理长序列是遇到

的梯度消失和梯度爆炸问题,提高了模型的计算效率。

而 MSA 模块能够有效地捕捉输入数据的全局依赖关系,
并且提高模型的表达能力。 IPCNN 模型中还使用 L2-
SVM 模块替换掉 Softmax,是因为 Softmax 作为一种概率

方法可能受到异常值的干扰,而 L2-SVM 中通过引入 L2
正则化来控制模型的复杂度、减少过拟合的风险,优化模

型在数据处理时的泛化能力。
最后,由于模型中存在一些难以预设的超参数,如学

习率和 GRU 层的神经元数,因此使用融合多策略的

IALA 算法对这些超参数进行优化,使 IPCNN 融合迁移

学习策略组成的网络结构模型更加合理,提高模型的故

障识别准确率。 并且通过迁移学习策略将源域上的

PCNN 参数权重共享给目标域上的 IPCNN 模型,加快

IPCNN 模型的训练时间,节约计算资源。

图 13　 融合迁移学习策略的 IPCNN 网络结构

Fig. 13　 Diagram
 

of
 

the
 

IPCNN
 

network
 

with
 

transfer
 

learning
 

strategies

2　 基于 IPCNN 和迁移学习网络诊断方法

2. 1　 数据预处理

　 　 由于 IPCNN 模型的输入接收的是二维图像,因此利

用 GAF 可以将一维故障电压数据转换为二维图像。
GAF 可以实现将时间序列变换成图像,可以生成 GASF
和 GADF 两类图像,转换过程如图 14 所示。

时间序列为 X = {x1,x2,…,xg,…,xm},其中 m 表示

时间点的总数, g为时间点, g∈ [1,m] 。 将时间序列采
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图 14　 图片数据集生成过程

Fig. 14　 The
 

process
 

of
 

generating
 

an
 

image
 

dataset

用归一化处理方式缩放为 [ - 1, 1] 范围内的 x~ g , 如

式(28)所示。

x~g =
(xg - min(X)) + (xg - min(X))

max(X) - min(X)
(28)

对时间序列进行极坐标变换,可以将时序电压数据

转换为向量形式,过程如式(29)所示。

ϕl = arccos(x
~

i)

- 1 ≤x
~

i ≤ 1,x
~

i ∈X
~

c = b
N

　 b = 1,2,…,m

ì

î

í

ï
ïï

ï
ïï

(29)

式中:b 为时间戳; ϕl 表示相角; c 表示极径; X􀮨为标准化

后的 X 。
GAF 运用两种独特的且带有惩罚项的内积形式,如

式(30)和(31)所示。
〈x i,x j〉 = cos(ϕi + ϕ j) (30)
〈x i,x j〉 = sin(ϕi - ϕ j) (31)
由上述公式可以定义 GASF 与 GADF,如式 ( 32)

和(33)所示。

GGASF =

cos(ϕ1 + ϕ1) … cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) … cos(ϕ2 + ϕn)

︙ ︙
cos(ϕn + ϕ1) … cos(ϕn + ϕn)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(32)

GGADF =

sin(ϕ1 - ϕ1) … sin(ϕ1 - ϕn)
sin(ϕ2 - ϕ1) … sin(ϕ2 - ϕn)

︙ ︙
sin(ϕn - ϕ1) … sin(ϕn - ϕn)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(33)

2. 2　 源域数据集训练

　 　 在源域上训练和测试的数据集是参考文献[23] 的

串联电弧故障数据集。 将该数据集中的一维故障电弧数

据经过 GAF 转化为二维特征图。 因为在正常工作下 4
种负载的电压波形并无太大区别,所以本文取电磁炉的

正常工作状态下的数据为类别 1,数据划分如表 3 所示。
将 GADF-CNN、 GASF-CNN、 GASF-AT-CNN

 

3 个模型与

PCNN 模型在源域上进行训练识别, 识别准确率如

图 15 ~18 所示。 由图 15 ~ 18 可知,GADF-CNN 的识别准

确率最低只有 83%,而 PCNN 模型识别准确率达到 88%。
因为与其他 3 个模型相比 PCNN 模型识别效果最好,所
以选择 PCNN 模型作为源域上的最佳模型进行训练,后
续将其训练好的权重参数共享给目标域上的 IPCNN 模

型,使其 IPCNN 模型训练时间更短,节省计算资源。

表 3　 源域数据划分

Table
 

3　 Source
 

domain
 

data
 

partitioning
负载名称 负载类型 状态 类别 训练集 测试集

电磁炉 阻性 正常 1 320 80
电磁炉 阻性 故障 2 320 80
小太阳 阻性 故障 3 320 80
电风扇 感性 故障 4 320 80
洗衣机 感性 故障 5 320 80

图 15　 GADF-CNN 模型混淆矩阵

Fig. 15　 GADF-CNN
 

model
 

confusion
 

matrix

2. 3　 目标域数据集训练

　 　 1)实验平台

串联电弧故障实验平台如图 19 所示。 该平台的核
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图 16　 GASF-CNN 模型混淆矩阵

Fig. 16　 GASF-CNN
 

model
 

confusion
 

matrix

图 17　 GASF-AT-CNN 模型混淆矩阵

Fig. 17　 GASF-AT-CNN
 

model
 

confusion
 

matrix

心组件包括电源、开关、故障电弧发生器、负载、示波器、
电压探头和电流互感器。 其中故障电弧发生器的主体主

要包含动触头、静触头、步进电机和绝缘底座几个部分组

成。 静触头被牢固地安装在绝缘底座上的固定支架上,
保持稳定不动;而动触头则固定在滑轨上的支架上,并由

步进电机精确控制其前后移动。 正常工作时,两个触头

紧紧贴合,因此,可以把电弧当成导线;当发生故障时,两
个触头逐渐分开,随着两个触头的接触电阻不断增大,当
极间电压把两触头之间的空气击穿时,故障电弧就产生

了。 通过 DHO4808 示波器进行信号采集。 故障电弧发

生器如图 20 所示。 为确保数据的准确性,示波器的采样

图 18　 PCNN 模型混淆矩阵

Fig. 18　 PCNN
 

model
 

confusion
 

matrix

频率被设置为 10
 

kHz。

图 19　 实验平台

Fig. 19　 Diagram
 

of
 

the
 

experimental
 

platform

图 20　 故障电弧发生器实物

Fig. 20　 Actual
 

image
 

of
 

fault
 

arc
 

generator



·268　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

2)实验方案

根据现代家庭对电器的实际需求、季节性、多功能性

方面的广泛应用以及广泛的适用性等方面的考虑,最终

选取电磁炉、小太阳、洗衣机和电风扇作为实验的典型负

载。 对每种负载进行 8 次实验,累计进行 32 组实验,实
验条件如表 4 所示。

表 4　 实验条件

Table
 

4　 Experimental
 

conditions
组别 负载电器 负载类型 采样频率 / kHz
1 ~ 8 电磁炉 阻性 10

9 ~ 16 小太阳 阻性 10
17 ~ 24 电风扇 感性 10
25 ~ 32 洗衣机 感性 10

　 　 3)实验分析

本文对在 10
 

kHz 采样频率下的感性负载(如洗衣机

和电风扇)及阻性负载(如小太阳和电磁炉)的电压信号

进行分析,结果如图 21 ~ 24 所示。 采样时间间隔设定为

0. 1
 

ms,涵盖了故障发生前后的共计 8 个周期,故障前的

4 个周期与故障后的 4 个周期。
从图 21 和 22 可以看出,电磁炉和小太阳在正常工

作状态下,其电源端与负载端的电压波形一致,此时线路

为纯导体,电压分压接近于 0。 然而,在发生故障时,电
源端与负载端的电压幅值出现明显下降,电流也随之减

小,电弧能量降低。 由于电弧等效电阻的增加,线路电压

发生了突变,并伴随尖峰现象,明显偏离了正常状态下的

波形。

图 21　 电磁炉

Fig. 21　 Induction

从图 23 和 24 可以看出,在正常运行状态下,电源端

与负载端的电压波形几乎完全重合,呈现出典型的标准

正弦波形。 然而,一旦发生故障,负载端的电压会因电弧

故障的影响略微下降,同时线路电压由于电弧引起的等

效电阻分压效应发生剧烈突变,形成马鞍形的波形。 在

波形的平坦区域,还可以观察到明显的毛刺现象。 当电

图 22　 小太阳

Fig. 22　 Small
 

solar
 

electric
 

heater

压过零时,电弧熄灭,线路电压迅速降至 0;而当电压上

升至燃弧电压时,线路电压则会迅速出现突变,产生尖峰

波动。

图 23　 洗衣机

Fig. 23　 Washer

图 24　 电风扇

Fig. 24　 Electric
 

fan

经过源域数据集训练筛选,确定了最佳的训练网络

模型后,将 PCNN 模型的权重参数迁移到目标域中的

IPCNN 模型中进行训练集中。 为了验证本文所提迁移学

习方法在数据集稀缺上的优势,通过串联电弧故障实验
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平台采集的 100 组实验数据进行故障识别,因为 4 个负

载在正常工作下波形没有太大区别,所以取电磁炉在正

常工作下的数据为类别 1,数据划分如表 5 所示,图 25 和

26 所示为电磁炉负载迁移前后的模型混淆矩阵图,电磁

炉负载在未进行迁移学习的 IPCNN 模型故障识别率为

95%,在进行迁移学习后的故障识别率为 97. 5%,提高了

2. 5%。 为了验证模型的复杂度和计算效率以及模型的

泛化能力,增加在不同负载下的 IPCNN 模型在进行迁移

学习和未进行迁移学习的可学习参数与训练时间对比实

验,如表 6 所示。
表 5　 目标域数据划分

Table
 

5　 Target
 

domain
 

data
 

division
负载名称 负载类型 状态 类别 训练集 测试集

电磁炉 阻性 正常 1 80 20
电磁炉 阻性 故障 2 80 20
小太阳 阻性 故障 3 80 20
电风扇 感性 故障 4 80 20
洗衣机 感性 故障 5 80 20

图 25　 迁移前模型混淆矩阵

Fig. 25　 Pre-migration
 

model
 

confusion
 

matrix

图 26　 迁移后模型混淆矩阵

Fig. 26　 Post-migration
 

model
 

confusion
 

matrix

　 　 由表 6 可知,对于阻性负载而言,未使用迁移学习策

略的 IPCNN 模型的可学习参数、平均训练时间和平均识

别准确率分别为 6. 6×106、645
 

s 和 94. 5%,使用迁移学习

策略的 IPCNN 模型的可学习参数、平均训练时间和平均

识别准确率分别为 5. 5×106、520
 

s 和 97. 75%,可学习参

数降低 1. 1×106,训练时间减少了 125
 

s,识别准确率增加

了 3%左右。 对于感性负载而言,未使用迁移学习策略的

IPCNN 模型的可学习参数、平均训练时间和平均识别准

确率分别为 6. 6×106、651
 

s 和 92. 5%,使用迁移学习策略

的 IPCNN 模型的可学习参数、平均训练时间和平均识别

准确率分别为 5. 5×106、524
 

s 和 97%,可学习参数降低

1. 1×106,训练时间减少了 127
 

s,识别准确率增加了 5%
左右。 综上,通过在不同负载条件下的可学习参数、训练

时间和识别准确率的实验可以说明该模型具有较好的鲁

棒性和泛化能力,对于家用负载串联电弧故障识别具有

良好的成效。

表 6　 不同负载条件下迁移前后模型对比

Table
 

6　 Comparison
 

of
 

models
 

before
 

and
 

after
 

migration
 

under
 

different
 

load
 

conditions

负载电器

迁移前 迁移后

IPCNN 模型

准确率 / %
IPCNN 模型

训练时间 / s
IPCNN 模型可学习

参数总数 / ( ×106 )
IPCNN 模型

准确率 / %
IPCNN 模型

训练时间 / s
IPCNN 模型可学习

参数总数 / ( ×106 )
电磁炉 95 644 6. 6 97. 5 521 5. 5
小太阳 94 647 6. 6 98 520 5. 5
电风扇 93 650 6. 6 97 524 5. 5
洗衣机 92 652 6. 6 97 524 5. 5

3　 结　 论

　 　 针对实际家庭环境中,家用负载故障数据难以采集

导致故障样本稀缺,无法满足故障模型的海量训练要求

的问题,本文针对此问题提出了一种 IPCNN 和迁移学习

策略结合的串联电弧故障检测方法。 首先,引入 GAF 将

一维数据转换为二维图片,最大的程度保留信号中的特



·270　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

征信息。 其次,将 PCNN 模型改进为 IPCNN 模型。 在

IPCNN 模型中加入了 GRU、MSA 以及 L2-SVM 模块来提

高模型的训练速度和准确率。 对于模型中的学习率和神

经元个数等超参数难以确定的问题,利用 IALA 算法进

行优化。 然后,将迁移学习融合进 IPCNN 模型中,并且

对比迁移前后模型的训练时间、可学习参数以及准确率

可知,该模型对于感性负载的平均识别准确率提高了

5%,训练时间减少了 127
 

s 左右,可学习参数降低了

1. 1×106。 对于阻性负载来说平均识别率提高了 3%,训
练时间减少了 125

 

s,可学习参数同样降低了 1. 1 × 106。
因此,该方法克服了在数据稀缺的情况下导致识别精度

低的问题,对于串联电弧故障的识别具有良好的成效。
但由于家用负载种类繁多且实验条件有限,无法一一进

行实验,只能选择典型的阻性负载和感性负载进行实验。
在今后的研究中可以考虑设置更多的家用负载进行验证

该方法的可行性与准确性。

参考文献

[ 1 ]　 丁锐,陈羽,孙伶雁,等. 基于邻波电流差与随机性的

交流串联电弧故障识别[ J].
 

电力系统保护与控制,
 

2023,
 

51(8):
 

169-178.
DING

 

R,
 

CHEN
 

Y,
 

SUN
 

L
 

Y,
 

et
 

al.
 

AC
 

series
 

arc
 

fault
 

identification
 

based
 

on
 

adjacent
 

wave
 

current
 

difference
 

and
 

randomness [ J ].
 

Power
 

System
 

Protection
 

and
 

Control,
 

2023,
 

51(8):
 

169-178.
[ 2 ]　 江永鑫,陈丽安,郭梦倩,等.

 

基于改进 CEEMD 和 RF
的低压串联故障电弧识别方法[ J]. 电力系统保护与

控制,2024,
 

52
 

(1):
 

97-108.
JIANG

 

Y
 

X,
 

CHEN
 

L
 

AN,
 

GUO
 

M
 

Q,
 

et
 

al.
 

Low-
voltage

 

series
 

fault
 

arc
 

identification
 

method
 

based
 

on
 

improved
 

CEEMD
 

and
 

RF[ J].
 

Power
 

System
 

Protection
 

and
 

Control,
 

2024,
 

52(1):
 

97-108.
[ 3 ]　 王俊法,胡伟,王玮,等. 电压电流能量信息融合的低

压交流电弧故障检测 [ J]. 电子测量与仪器学报,
 

2024,
 

38(3):55-66.
WANG

 

J
 

F,
 

HU
 

W,
 

WANG
 

W,
 

et
 

al.
 

Low-voltage
 

AC
 

arc
 

fault
 

detection
 

using
 

voltage
 

and
 

current
 

energy
 

information
 

fusion [ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,
 

38(3):55-66.
[ 4 ]　 张蓬鹤,秦译为,宋如楠,等. 广义 S 变换下串联故障

电弧的时频分析及识别研究[ J]. 电网技术,
 

2024,
 

48(7):
 

2995-3003.
ZHANG

 

P
 

H,
 

QIN
 

Y
 

W,
 

SONG
 

R
 

N,
 

et
 

al.
 

Research
 

on
 

time-frequency
 

analysis
 

and
 

identification
 

of
 

series
 

fault
 

arcs
 

under
 

generalized
 

S-transform [ J].
 

Power
 

System
 

Technology,
 

2024,
 

48(7):
 

2995-3003.

[ 5 ]　 何志鹏,李伟林,邓云坤,等. 低压交流串联故障电弧

辨识方法 [ J ]. 电工技术学报,
 

2023,
 

38
 

( 10 ):
 

2806-2817.
HE

 

ZH
 

P,
 

LI
 

W
 

L,
 

DENG
 

Y
 

K,
 

et
 

al.
 

Arc
 

identification
 

method
 

for
 

low
 

voltage
 

AC
 

series
 

faults[J].
 

Transactions
 

of
 

China
 

Electrotechnical
 

Society,
 

2023,
 

38
 

( 10 ):
 

2806-2817.
[ 6 ]　 王玮,徐丙垠,邹国锋,等. 基于电压特征能量的低压

交流串联电弧故障检测方法[ J]. 电力系统保护与控

制,
 

2023,
 

51
 

(19):
 

81-93.
WANG

 

W,
 

XU
 

B
 

Y,
 

ZOU
 

G
 

F,
 

et
 

al.
 

Low
 

voltage
 

AC
 

series
 

arc
 

fault
 

detection
 

method
 

based
 

on
 

voltage
 

characteristic
 

energy [ J].
 

Power
 

System
 

Protection
 

and
 

Control,
 

2023,
 

51(19):
 

81-93.
[ 7 ]　 ZHANG

 

S,
 

QU
 

N,
 

ZHENG
 

T,
 

et
 

al.
 

Series
 

arc
 

fault
 

detection
 

based
 

on
 

wavelet
 

compression
 

reconstruction
 

data
 

enhancement
 

and
 

deep
 

residual
 

network[ J].
 

IEEE
 

Transactions
 

on
 

Instrumentation
 

and
 

Measurement,
 

2022,
 

71:
 

1-9.
[ 8 ]　 郑炜,林瑞全,王俊,等. 基于 GAF 与卷积神经网络的

电能质量扰动分类[J].
 

电力系统保护与控制,
 

2021,
 

49(11):
 

97-104.
ZHENG

 

W,
 

LIN
 

R
 

Q,
 

WANG
 

J,
 

et
 

al.
 

Power
 

quality
 

disturbance
 

classification
 

based
 

on
 

GAF
 

and
 

Convolutional
 

neural
 

network [ J ].
 

Power
 

System
 

Protection
 

and
 

Control,
 

2021,
 

49(11):
 

97-104.
[ 9 ]　 史玉皓,田建艳,刘军军,等. 基于流形结构的多源自

适应迁移学习算法及应用研究 [ J]. 控制与决策,
 

2023,
 

38
 

(3):
 

797-804.
SHI

 

Y
 

H,
 

TIAN
 

J
 

Y,
 

LIU
 

J
 

J,
 

et
 

al.
 

Multi-source
 

adaptive
 

transfer
 

Learning
 

algorithm
 

based
 

on
 

manifold
 

structure
 

and
 

its
 

application
 

[ J].
 

Control
 

and
 

Decision,
 

2023,
 

38
 

(3):
 

797-804.
[10]　 陈保家,陈学力,肖文荣,等. 小样本下滚动轴承故障

的多源域迁移诊断方法[ J]. 电子测量与仪器学报,
 

2022,
 

36
 

(2):
 

219-228.
CHEN

 

B
 

J,
 

CHEN
 

X
 

L,
 

XIAO
 

W
 

R,
 

et
 

al.
 

Multi-source
 

domain
 

migration
 

diagnosis
 

method
 

for
 

rolling
 

bearing
 

fault
 

under
 

small
 

sample [ J ]. Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2022,
 

36
 

( 2 ):
 

219-228.
[11]　 WANG

 

Z,
 

OATES
 

T.
 

Imaging
 

time-series
 

to
 

improve
 

classification
 

and
 

imputation [ C ]. Proceedings
 

of
 

the
 

Twenty-Fourth
 

International
 

Joint
 

Conference
 

on
 

Artificial
 

Intelligence,2015:
 

3939-3945.



　 第 11 期 基于融合迁移学习的 IPCNN 串联型故障电弧检测研究 ·271　　 ·

[12]　 陈昌川,王新立,朱嘉琪,等. 基于卷积神经网络的岩

渣分类算法及其 FPGA 加速 [ J]. 传感技术学报,
 

2024,
 

37
 

(1):
 

80-88.
CHEN

 

CH
 

CH,
 

WANG
 

X
 

L,
 

ZHU
 

J
 

Q,
 

et
 

al.
 

Rock
 

slag
 

classification
 

algorithm
 

based
 

on
 

convolutional
 

neural
 

network
 

and
 

its
 

FPGA
 

acceleration
 

[J].
 

Chinese
 

Journal
 

of
 

Sensing
 

Technology,
 

2024,
 

37
 

(1):
 

80-88.
[13]　 殷芙萍,江秋语.

 

基于神经网络的大数据分析方法[J].
软件导刊,

 

2020,
 

19
 

(9):
 

39-42.
YIN

 

F
 

P, JIANG
 

Q
 

Y
 

Neural
 

network-based
 

big
 

data
 

analysis
 

methods [ J].
 

Software
 

Guide,
 

2020,
 

19 ( 9):
 

39-42.
[14]　 白玛洛赛,群诺,尼玛扎西. CINO 双通道结合多头注

意力机制藏文情感分类方法 [ J]. 电子设计工程,
 

2024,
 

32(3):
 

1-6.
PEMA

 

L
 

S,
 

QUN
 

N,
 

NI
 

M
 

ZH
 

X.
 

CINO
 

dual
 

channel
 

combined
 

with
 

multiple
 

attention
 

mechanism
 

for
 

Tibetan
 

emotion
 

classification [ J ].
 

Electronic
 

Design
 

Engineering,
 

2024,
 

32(3):
 

1-6.
[15]　 桑海峰,刘玉龙,刘泉恺. 基于混合注意力机制的多信

息行人 过 街 意 图 预 测 [ J ]. 控 制 与 决 策,
 

2024,
 

39
 

(12):
 

3946-3954.
SANG

 

H
 

F,
 

LIU
 

Y
 

L,
 

LIU
 

Q
 

K.
 

Multi-information
 

Pedestrian
 

crossing
 

intention
 

prediction
 

based
 

on
 

mixed
 

attention
 

mechanism [ J].
 

Control
 

and
 

Decision,
 

2024,
 

39
 

(12):
 

3946-3954.
[16]　 吕游,封烁,郑茜,等. 基于 LeNet5like 的迁移学习风电

机组叶片覆冰故障诊断研究 [ J]. 仪器仪表学报,
 

2024,
 

45
 

(3):
 

128-143.
LYU

 

Y,
 

FENG
 

SH,
 

ZHENG
 

Q,
 

et
 

al.
 

Research
 

on
 

fault
 

diagnosis
 

of
 

blade
 

icing
 

of
 

wind
 

turbine
 

based
 

on
 

LeNet5like[J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2024,
 

45
 

(3):
 

128-143.
[17]　 XIAO

 

Y,
 

CUI
 

H,
 

KHURMA
 

R
 

A,
 

et
 

al.
 

Artificial
 

lemming
 

algorithm:
 

A
 

novel
 

bionic
 

meta-heuristic
 

technique
 

for
 

solving
 

real-world
 

engineering
 

optimization
 

problems [ J ].
 

Artificial
 

Intelligence
 

Review,
 

2025,
 

58(3):
 

84.
[18]　 谭增强,牛拥军,李元昊,等. 基于麻雀算法和深度极

限学习机的 NOx 预测研究[ J]. 中国电机工程学报,
2022,42

 

(S1):187-192.
TAN

 

Z
 

Q,
 

NIU
 

Y
 

J,
 

LI
 

Y
 

H,
 

et
 

al.
 

NOx
 prediction

 

based
 

on
 

sparrow
 

algorithm
 

and
 

deep
 

extreme
 

learning
 

machine [ J].
 

Journal
 

of
 

Electrical
 

Engineering,
 

2012,
42

 

(S1):187-192.

[19]　 LIAN
 

J,
 

HUI
 

G,
 

MA
 

L,
 

et
 

al.
 

Parrot
 

optimizer:
 

Algorithm
 

and
 

applications
 

to
 

medical
 

problems [ J ].
 

Computers
 

in
 

Biology
 

and
 

Medicine,
 

2024,172:
 

108064.
[20]　 沈安宁. 基于高斯柯西变异自适应差分进化算法的热

电联产经济排放调度研究[D]. 镇江:江苏大学,2022:
22-23.
SHE

 

AN
 

N.
 

Research
 

on
 

combined
 

heat
 

and
 

power
 

economic
 

emission
 

dispatch
 

based
 

on
 

self-adapative
 

differential
 

evolution
 

with
 

Gaussian-Cauchy
 

mutation
 

[D].
 

Zhenjiang:
 

Jiangsu
 

University,2022:22-23.
[21]　 付华,许桐,邵靖宇. 基于水波进化和动态莱维飞行的

爬行动物搜索算法[ J]. 控制与决策,
 

2024,
 

39
 

(1):
 

59-68.
FU

 

H,
 

XU
 

T,
 

SHAO
 

J
 

Y.
 

Reptile
 

search
 

algorithm
 

based
 

on
 

water
 

wave
 

evolution
 

and
 

dynamic
 

Levy
 

flight [ J ].
 

Control
 

and
 

Decision,
 

2024,
 

39
 

(1):
 

59-68.
[22]　 李斌,郭自强,高鹏. 改进北方苍鹰算法在光伏阵列中

应用研究[ J]. 电子测量与仪器学报,2023,37 ( 7):
131-139.
LI

 

B,
 

GUO
 

Z
 

Q,
 

GAO
 

P.
 

Application
 

of
 

improved
 

northern
 

goshawk
 

optimization
 

algorithm
 

in
 

photovoltaic
 

array [ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,37(7):
 

131-139.
[23]　 GUO

 

F
 

Y,
 

GAO
 

H
 

X,
 

WANG
 

Z
 

Y,
 

et
 

al.
 

Detection
 

and
 

line
 

selection
 

of
 

series
 

arc
 

fault
 

in
 

multi-load
 

circuit[J].
 

IEEE
 

Transactions
 

on
 

Plasma
 

Science,
 

2019,
 

47( 11):
 

5089-5098.

作者简介
　 　 严灵潇,2023 年于沈阳工业大学获得

学士学位,现为辽宁工程技术大学硕士研究

生,主要研究方向为电接触理论及应用、智
能电器与智能电网技术。
E-mail:

 

1932528609@ qq. com
Yan

 

Lingxiao
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Shenyang
 

University
 

of
 

Technology
 

in
 

2023.
 

Now
 

he
 

is
 

a
 

M. Sc.
 

candidate
 

at
 

Liaoning
 

Technical
 

University.
 

His
 

main
 

research
 

interests
 

include
 

electrical
 

contact
 

theory
 

and
 

application,
 

intelligent
 

electrical
 

appliances
 

and
 

smart
 

grid
 

technology.
李斌(通信作者),分别在 2003 年、2006

年和 2012 年于辽宁工程技术大学获得学士

学位、硕士学位和博士学位,现为辽宁工程

技术大学副教授,主要研究方向为电接触理

论及应用、智能电器与智能电网技术。
E-mail:

 

25992816@ qq. com
Li

 

Bin
 

( Corresponding
 

author )
 

received
 

his
 

B. Sc.
 



·272　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

degree,
 

M. Sc.
 

degree,
 

and
 

Ph. D.
 

degree
 

all
 

from
 

Liaoning
 

Technical
 

University
 

in
 

2003,
 

2006,
 

and
 

2012,
 

respectively.
 

Now
 

he
 

is
 

an
 

associate
 

professor
 

in
 

Liaoning
 

Technical
 

University.
 

His
 

main
 

research
 

interests
 

include
 

electrical
 

contact
 

theory
 

and
 

application,
 

intelligent
 

appliances
 

and
 

smart
 

grid
 

technology.
舒嘉辉,2023 年于辽宁工程技术大学

获得学士学位,现为辽宁工程技术大学硕士

研究生,主要研究方向为电接触理论及应

用、智能电器与智能电网技术。
E-mail:

 

1043069285@ qq. com
Shu

 

Jiahui
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Liaoning
 

Technical
 

University
 

in
 

2023.
 

Now
 

he
 

is
 

a
 

M. Sc.
 

candidate
 

in
 

Liaoning
 

Technical
 

University.
 

His
 

main
 

research
　 　 　

interests
 

include
 

electrical
 

contact
 

theory
 

and
 

application,
 

intelligent
 

appliances
 

and
 

smart
 

grid
 

technology.
张勇志, 分别在 2003 年、 2006 年 和

2020 年于辽宁工程技术大学获得学士学

位,硕士学位和博士学位,现为辽宁工程技

术大学副教授,主要研究方向为电接触理论

及应用、智能电器与智能电网技术。
E-mail:

 

28150097@ qq. com
Zhang

 

Yongzhi
 

received
 

his
 

B. Sc.
 

degree,
 

M. Sc.
 

degere
 

and
 

Ph. D.
 

degree
 

all
 

from
 

Liaoning
 

Technical
 

University
 

in
 

2003,
 

2006
 

and
 

2020,
 

respectively.
 

Now
 

he
 

is
 

an
 

associate
 

professor
 

at
 

Liaoning
 

Technical
 

University.
 

His
 

main
 

research
 

interests
 

include
 

electrical
 

contact
 

theory
 

and
 

application,
 

smart
 

appliances
 

and
 

smart
 

grid
 

technology.


