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摘　 要:针对煤矿井下复杂作业场景中高粉尘、低照度、人机多目标混杂与跨尺度变化等因素导致作业人员与装备的目标检测

效果不佳问题,提出一种基于机器视觉的煤矿多场景关键目标检测方法。 首先,采用 CGNet
 

( context
 

guided
 

network)特征提取

模块、SlimNeck 特征融合模块与 Dyhead 动态检测头对 YOLOv5s 算法进行优化,以构建 YOLOv5s-CSD 网络模型。 其次,基于自

建煤矿数据集,围绕 YOLOv5s-CSD 模型开展消融实验、对比实验与嵌入式检测实验。 实验结果表明,在煤矿井下掘进、支锚、采
煤与辅助运输 4 种复杂作业场景中, YOLOv5s-CSD 的检测精度达 91. 0%,相较于 YOLOv5s 算法提升了 3. 5%,并且其与

YOLOv9s、YOLOv11s、YOLOv12s 等 6 种主流目标检测算法相比,模型复杂度适中且检测精度最高。 在实验测试平台上,
YOLOv5s-CSD 模型对工作人员、支护装置、电机车等 7 类关键目标的实时检测精度均在 90. 0%以上,并且其实时检测速度达

38. 6
 

fps,检测精度高且实时性强,可为煤矿井下复杂环境的视觉动态感知提供技术支撑。
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Abstract:
 

Aiming
 

at
 

the
 

problem
 

of
 

poor
 

target
 

detection
 

of
 

operating
 

personnel
 

and
 

equipment
 

due
 

to
 

high
 

dust,
 

low
 

illumination,
 

human-machine
 

multi-target
 

mixing
 

and
 

cross-scale
 

changes
 

in
 

the
 

complex
 

operation
 

scene
 

of
 

coal
 

mine
 

underground,
 

we
 

propose
 

a
 

multi-scene
 

key
 

target
 

detection
 

method
 

based
 

on
 

machine
 

vision
 

for
 

coal
 

mine.
 

Firstly,
 

the
 

YOLOv5s
 

algorithm
 

is
 

optimised
 

using
 

CGNet
 

(context
 

guided
 

network)
 

feature
 

extraction
 

module,
 

SlimNeck
 

feature
 

fusion
 

module
 

with
 

Dyhead
 

dynamic
 

detection
 

head
 

in
 

order
 

to
 

construct
 

the
 

YOLOv5s-CSD
 

network
 

model.
 

Secondly,
 

based
 

on
 

the
 

self-constructed
 

coal
 

mine
 

dataset,
 

ablation
 

experiments,
 

comparison
 

experiments
 

and
 

embedded
 

detection
 

experiments
 

were
 

carried
 

out
 

around
 

the
 

YOLOv5s-CSD
 

model.
 

The
 

experimental
 

results
 

show
 

that
 

YOLOv5s-CSD
 

achieves
 

a
 

detection
 

accuracy
 

of
 

91. 0%
 

in
 

four
 

complex
 

operation
 

scenarios
 

of
 

underground
 

coal
 

mine
 

tunneling,
 

anchor
 

support,
 

coal
 

mining,
 

and
 

auxiliary
 

transport,
 

which
 

is
 

3. 5%
 

higher
 

than
 

YOLOv5s
 

algorithm,
 

and
 

compared
 

with
 

six
 

mainstream
 

target
 

detection
 

algorithms,
 

such
 

as
 

YOLOv9s,
 

YOLOv11s,
 

and
 

YOLOv12s,
 

it
 

has
 

the
 

moderate
 

model
 

complexity
 

and
 

the
 

highest
 

detection
 

accuracy.
 

On
 

the
 

experimental
 

test
 

platform,
 

the
 

real-time
 

detection
 

accuracy
 

of
 

YOLOv5s-CSD
 

model
 

for
 

seven
 

types
 

of
 

key
 

targets,
 

such
 

as
 

person,
 

support,
 

and
 

electric
 

locomotive,
 

is
 

above
 

90. 0%,
 

and
 

its
 

real-time
 

detection
 

speed
 

is
 

up
 

to
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frames / s,
 

which
 

is
 

high
 

in
 

detection
 

accuracy
 

and
 

real-time,
 

and
 

it
 

can
 

provide
 

technical
 

support
 

for
 

the
 

visual
 

dynamic
 

perception
 

of
 

the
 

complex
 

environment
 

of
 

underground
 

coal
 

mines.
Keywords:complex
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machine
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visual
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0　 引　 言

　 　 煤炭是全球重要的基础能源之一,当前煤炭工业正

转向高质量发展阶段,煤矿智能化感知技术是煤炭工业

高质量发展前提与保障[1-3] 。 煤矿智能感知系统中由于

视觉感知具有直观性、实时性、非接触性等特点,广泛应

用于皮带煤流与异物检测[4] 、作业人员定位[5-6] 、轨道障

碍物识别[7] 等众多领域,其对加快煤矿智能化发展,提升

煤矿安全生产水平具有重要意义。
目前,煤矿井下作业场景中对关键目标视觉感知的

方法主要有传统机器学习与深度学习两种。 传统机器学

习为基于小样本数据在多尺度图像上提取特征向量,再
采用分类器进行学习判别。 华钢等[8] 提出了一种基于

DM642 的多目标运动状态感知系统,并利用多阈值分割

法、帧间差分法与边缘检测法实现了对多种监控目标的

运动状态感知。 王勇[9] 设计了一种基于背景差分法的井

下运动人员检测算法,从而在序列视频中实现对井下工

作人员的高效检测与移动跟踪。 巩固等[10] 提出基于运

动视频的光流场目标视觉识别方法,实现煤矿灾后复杂

环境中救援机器人对障碍物的快速识别定位与实时环境

监测。 然而上述方法会生成大量冗余的建议框,导致学

习效率低下,难以捕捉目标对象的高级语义特征和有效

信息。 相较于传统机器学习算法,深度学习算法能够将

输入图像中的像素数据转化为更高阶、更抽象化的层级

特征,从而更有效的对关键目标对象进行识别与定位,并
逐步成为煤矿视觉感知的重要手段[11-12] 。

基于深度学习的目标检测算法可分为单阶段检测算

法和双阶段检测算法,其中,双阶段检测算法包括 Faster
 

R-CNN[13] 、Mask
 

RCNN[14] 、R-FCN[15] 等,但双阶段检测

算法存在模型参数冗余、算法复杂度高、检测速度慢等缺

陷, 导 致 其 难 以 在 煤 矿 井 下 应 用。 而 以 SSD[16] 、
RetinaNet[17] 、YOLO 系列[18-19] 等为代表的单阶段目标检

测算法以其模型简单、泛化能力强、检测速度快等优势,
更适用于煤矿井下采煤、掘进、辅助运输、支锚等作业场

景,以满足轻量化、实时性、高精度等需求。 Xue 等[20] 提

出一种 ResNet18-YOLOv3 煤矸石检测算法,以解决人工

煤矸分选劳动强度大、分选效率低等问题,实现煤矸石分

选机器人对煤矸石的实时精准分选。 李飞等[21] 以

YOLOv4 为基线模型,通过引入 MobileNetv3 网络、空间域

注意力机制构建了轻量级 ECSMv3_YOLOv4 检测模型,
提升了煤矿井下输送带纵向撕裂状态的检测精度。 Zhao

等[22] 提出了一种融合 C3-Dense 模块、解耦头部、ECIoU
损失函数和加权双向特征金字塔网络的多目标检测与跟

踪算法,解决了煤矿掘进工作面运动模糊、多目标混合等

恶劣环境因素造成的关键目标对象实时感知问题,实现

了对关键目标对象的实时精准感知。 Pan 等[23] 提出一种

融合 GhostNet 卷积模块、 参数整流线性单元激活函

数(rectified
 

linear
 

unit,RELU) 的 YOLOv5s 目标检测算

法,以解决煤矿综采工作面液压支架的相对位置检测难

题。 Yang 等[24] 提出了一种融合 InceptionNeXt 块、新空

间金字塔池( new
 

spatial
 

pyramid
 

pooling,NSPP)模块、基
于特殊任务的上下文解耦检测头( TSCODE) 的 YOLO-
Region 区域障碍物检测方法,解决了煤矿井下无人驾驶

电机车因障碍物检测不准确所引起的频繁启停问题。 王

宏伟等[25] 以 YOLOv7-tiny 为基线模型,通过引入自适应

图像增强(image
 

adaptive,IA)模块和注意力机制 SimAM
构建 IA-SimAM-YOLOv7-tiny 模型,以解决煤矿复杂环境

中的锚护孔位定位难题,实现了机载式锚杆钻机的精准

锚固作业。 薛小勇等[26] 在 YOLOv8n 检测算法的基础

上,通过引入 DSConv 模块、极化自注意力机制与 4 层检

测输出模块,以解决采掘工作面的小目标检测难题;Xu
等[27]提出一种融合 t 特征提取模块 C2f-FasterNe 与注意

力模块 SimAM 的 YOLO-CFS 煤流识别算法,实现了煤矿

输送带的节能控制并提升了煤流识别精度。 张婧等[28]

针对煤矿工作面喷雾除尘场景下的模糊目标检测难题,
提出一种基于 SAC-YOLOv9 的安全帽识别算法,利用监

督空洞卷积获取不同尺度的感受野,并最终提高煤矿复

杂作业背景中的安全帽识别精度。
近年来,国内外众多研究机构和学者提出了多种研

究方法,提高了煤矿井下视觉感知能力,但受煤矿井下复

杂环境影响,多场景视觉感知仍存在以下问题。 1)由于

煤矿井下复杂工作面存在高粉尘浓度、低光照强度的恶

劣环境因素,造成关键目标成像出现颜色纹理信息缺失、
轮廓边缘模糊的问题,不利于检测模型对关键目标复杂

特征信息的学习与提取;2)煤矿井下移动终端的存储资

源有限,传统检测模型通过自顶向下与自低向上传递信

息时重复计算中间特征图,导致模型参数量和计算量大

幅增加,不利于轻量化检测模型的部署;3)煤矿井下复杂

工作环境中采煤机、掘进机与电机车在工作过程中位置

多变且作业姿态各异,传统检测模型的检测头存在多尺

度特征感知与表达能力不足问题,导致各关键目标的分

类与定位损失急剧上升。
为解决上述难题,实现煤矿井下采煤、掘进、支锚、辅
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助运输等多种复杂作业场景中关键装备与作业人员的实

时监测。 根据煤矿井下关键目标的特性与研究现状,提
出了一种基于机器视觉的煤矿多场景关键目标检测算

法(YOLOv5s-CSD)。
1)

 

采用特征提取模块( CGNet) [29] 替换原 YOLOv5s
算法主干网络中的普通卷积模块,利用其局部-全局的残

差学习机制与上下文引导策略,增强主干网络对作业人

员、支护装置、电机车( person、support、E-locomotive)等目

标关键特征信息的学习与提取能力。
2)

 

引入颈部特征融合模块( SlimNeck) [30] 对原算法

颈 部 网 络 的 特 征 融 合 方 式 进 行 优 化, 通 过

GSConv
 

(grouped
 

sparse
 

convolution) 模块的通道混洗策

略与 VoVGSCSP
 

( VOVNet-GSConv) 模块的一次聚合策

略,降低检测模型参数量和计算量,并提高模型对关键目

标的检测精度。
3)

 

采用动态检测头(Dyhead) [31] 替换原算法的耦合

检测头,利用其多维感知注意力模块以增强检测头的信

息感知与表达能力,以提升检测网络在煤矿复杂背景中

对关键检测目标的分类与定位精度。

1　 煤矿多场景关键目标检测方法

1. 1　 整体架构

　 　 由于煤矿井下采煤、掘进、支锚与辅助运输等作业场

景存在高粉尘、低照度、人机多元素混杂分布以及目标跨

尺度变化等复杂煤矿环境[32-33] ,导致针对关键装备与作

业人员的检测过程中常出现误检、漏检及检测精度低等

问题,极大地影响了煤矿井下的安全高效生产。 为解决

上述问题,本文提出一种基于机器视觉的煤矿多场景关

键目标检测方法,该方法的整体架构如图 1 所示。 煤矿

关键目标检测方法主要分为数据样本采集、检测网络构

建与嵌入式平台测试 3 个部分。 首先,利用煤矿井下的

工业计算机调用多台矿用本安型防爆摄像头对采煤、掘
进、支锚与辅助运输 4 种作业场景进行全时段、全方位的

视频数据采集,并将其整理转化为煤矿复杂作业场景数

据集,用于后续的网络训练与测试;其次,将数据集输入

到所构建的 YOLOv5-CSD 检测模型中,并利用特征提取、
特征融合与检测输出 3 个子网的迭代训练进行学习并重

构视觉数据中多样化的特征信息;最后,将训练完成的检

测网络迁移部署到实验测试平台,以实现对煤矿井下作

业场景中作业人员、支护装置、电机车等关键(支护架、机
载锚杆钻机、作业人员等)目标的实时监测。
1. 2　 YOLOv5s-CSD 模型

　 　 YOLOv5 系列算法是 Ultralytics 公司所推出的 YOLO
系列算法的基础版本,其稳定性突出,后续 YOLOv8、
YOLOv11 与 YOLOv12 检测模型也均以其为基线模型进

行改进。 YOLOv5 根据不同的宽度因子和深度因子可划

分为 n、s、m、l、x
 

5 种大小不同的目标检测模型,其中,
YOLOv5s 是 5 种模型中的轻量化版本,适用于资源受限

的计算环境。 该模型主要由 3 部分组成,分别为主干网

络(backbone)、颈部网络( neck)和检测头( head),其中,
主干网络通过卷积层和轻量化的 CSP 模块逐层提取图

图 1　 基于机器视觉的煤矿多场景关键目标检测方法整体架构

Fig. 1　 Overall
 

architecture
 

of
 

machine
 

vision-based
 

multi-scene
 

key
 

target
 

detection
 

method
 

for
 

coal
 

mine
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像的多尺度特征;颈部网络采用 FPN+PAN 结构双向融

合不同层级的特征;Head 通过 3 个检测特征层输出目标

检测结果。 由于煤矿井下移动终端的存储资源有限,且
对检测模型的稳定性具有较高要求,因此,本文选用兼具

稳定性与轻量化特点的 YOLOv5s 模型作为基线模型,采
用 CGNet 主干特征提取模块、SlimNeck 颈部特征融合模

块与 Dyhead 动态检测头 3 种优化策略以提升 YOLOv5s
算法的检测性能,并最终构建出 YOLOv5s-CSD 检测模

型。 YOLOv5s-CSD 检测模型的整体架构如图 2 所示。
1) 特征提取模块优化, 采用 CGNet 模块替换原

YOLOv5s 算法主干网络中的卷积模块 CBS,从而利用其

局部残差学习(local
 

residual
 

learning,LRL)与全局残差学

习(global
 

residual
 

learning,GRL)方式将目标局部特征与

周围环境特征相关联,以得到联合特征信息,并通过上下

文引导策略对联合特征进行加权融合,进一步增强主干

网络的特征表达能力。
2) 特征融合网络优化,采用 SlimNeck 中的 GSConv

模块与结合了 GSConv 和 CSP(cross-stage
 

partial
 

network)
结构的 VoVGSCSP 模块分别代替颈部中的 Conv 模块和

C3 模 块, 从 而 利 用 GSConv 将 标 准 卷 积 ( standard
 

convolution, SC ) 与 深 度 可 分 离 ( depthwise
 

separable
 

convolution,DSC)所提取的特征信息进行通道混洗,以降

低空间维度压缩和通道维度扩展所造成的部分语义信息

损失,并通过 VoVGSCSP 的一次聚合策略实现多层级特

征图的跨阶段融合,以提升颈部网络的特征融合能力。
3)检测输出模块优化,采用 Dyhead 替换原 YOLOv5s

算法的耦合检测头,并利用 Dyhead 中的尺度感知注意力

模块、空间感知注意力模块和任务感知注意力模块增强

检测头的多维信息感知能力,以提升网络在煤矿复杂背

景中对关键检测目标的分类与定位精度。

图 2　 YOLOv5s-CSD 整体架构

Fig. 2　 Overall
 

architecture
 

of
 

YOLOv5s-CSD

2　 YOLOv5s-CSD 模型优化策略

2. 1　 CGNet 特征提取模块

　 　 针对煤矿复杂工况条件所导致的目标颜色纹理信息

缺失、轮廓边缘模糊、特征复杂度上升等问题,仅凭借原

YOLOv5s 主干网络中堆叠的普通卷积块,难以在煤矿复

杂背景中对目标的关键特征信息进行有效提取。 为解决

上述 问 题, 本 文 采 用 CGNet 特 征 提 取 模 块 替 换 原

YOLOv5s 主干网络中的 CBS,以凭借其局部-全局的残差

学习机制与上下文引导策略,实现对图像局部与全局特

征的关联学习并增强对目标关键特征信息的表达能力。
CGNet 特征提取模块的整体架构如图 3 所示,其主

要由 3×3
 

Conv 模块、CGblock(context
 

guided
 

block)模块、
1×1

 

Conv 模块和 Upsample 模块构成,其整体运算步骤可

分为 3 个阶段。
1)通过堆叠 3 个 3×3

 

Conv 的标准卷积层充分提取

目标特征并将特征图分辨率下采样至原来的 1 / 2,以逐

步降低图像的空间维度并提升计算效率;
2)利用两组相同数量的 CGblock 模块,对输入图像
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图 3　 CGNet 结构框架

Fig. 3　 Structural
 

framework
 

of
 

CGNet

进行连续两次下采样并将其与上一层输入特征结合,以
利用特征重用方法在保留低层次细节特征的同时进一步

提取高层次的抽象特征信息;
3)采用 1×1

 

Conv 与 Upsample 模块分别从通道维度

与空间维度对所有的特征图进行整合,以实现对图像增

强特征信息的全方位重建。
此外,如图 4 所示,CGblock 是 CGNet 的核心组成部

　 　 　 　

分,其利用局部与全局的残差学习方式,将局部目标特征

和周围环境特征整合为联合特征,并通过重新加权方式

对上下文的联合特征信息进行融合输出,以增强模型的

特征表达能力。 其中,CGblock 使用了两种类型的剩余

连接,即局部残差学习 LRL 与全局残差学习 GRL,二者

分别利用联合特征提取器 f jio ( ∗) 和全局特征提取

器 fglo(∗)对输入特征与提炼特征进行拼接。

图 4　 CGblock 结构框架

Fig. 4　 Structural
 

framework
 

of
 

CGblock

　 　 CGblock 具体运行步骤如下。
1)利用 1×1

 

Conv 调整图像特征维度并进行初步特

征提取。
2)将局部特征提取器 f loc( ∗)实例化为一个 3×3 的

标准卷积层,并从相邻特征向量中学习局部特征,以捕捉

到图像局部区域的特征信息;同时将周围上下文提取器

fsur(∗)实例化为一个 3×3 的空洞卷积层,从而获得更广

泛的周围区域特征信息。
3)采用联合特征提取器 f jio(∗)对 f loc(∗)和fsur(∗)

输出的局部特征和周围上下文特征信息进行拼接,并通

过批量归一化模块( batch
 

normalization
 

layer,BN) [34] 与

PReLU 激活函数[35] 处理后输出。
4)利用全局特征提取器 fglo ( ∗) 中的全局平均池

化(global
 

average
 

pooling,GAP)操作和两层全连接( fully
 

connected,FC)操作捕捉输入联合特征中的上下文信息

与非线性关系,并通过点积运算实现对联合特征信息的

加权融合与输出。

2. 2　 SlimNeck 特征融合网络

　 　 由于原 YOLOv5s 颈部网络所采用的路径聚合网

络(path
 

aggregation
 

network,PANet) 结构[36] 虽然能够通

过自底向上与自顶向下路径传递信息,但跨阶段融合信

息能力不足,且煤矿井下移动终端的存储资源有限,从而

对检测模型的参数量与复杂度提出了更高的要求。 为解

决上述问题,本文采用 SlimNeck 网络对颈部的特征融合

方式进行优化,并通过 GSConv 模块的通道混洗策略与

VoVGSCSP 模块的一次聚合策略降低语义特征信息损

失,并实现多层级特征图的跨阶段融合。 其中,GSConv
的整体架构如图 5 所示。



　 第 7 期 基于机器视觉的煤矿多场景关键目标检测方法研究 ·217　　 ·

1)通过对输入特征图进行标准卷积操作,得到通道

数为 C2 / 2 的特征图,普通卷积计算量计算公式如式(1)
所示。

GFLOPs = W × H × K × K × C in × Cout (1)
式中:W 和 H 分别为特征图宽度和高度;K 为卷积核大

小; C in 和 Cout 分别为输入和输出特征通道数;
2)通过对上一操作得到的特征图进行深度可分离卷

积操作,得到另一个通道数为 C2 / 2 的特征图,深度可分

离卷积计算量的计算公式如式(2)所示。
GFLOPs = W × H × K × K × 1 × Cout (2)
3)将 SC 部分的特征图和 DSC 部分的特征图按通道

数进行拼接,然后通过通道混洗操作输出一定通道数的

目标特征图,GSConv 卷积的计算公式如式(3)所示。

GFLOPs2 = W × H × K × K × 1 ×
Cout

2
(C in + 1)

(3)

图 5　 GSConv 结构框架

Fig. 5　 Structural
 

framework
 

of
 

GSConv

　 　 VoVGSCSP 模块主要由 SC 模块、GSbottleneck 模块、
Concat 模块组成,其能将不同阶段的特征图信息进行有

效融合提升颈部网络特征融合能力,VoVGSCSP 的整体

结构如图 6 所示。
1)通过对输入的特征图进行标准卷积操作,得到通

道数为 C1 / 2 的特征图。
2)利用 GSbottleneck 模块对 C1 / 2 特征图进行优化

梯度处理,其利用标准卷积分支与双重 GSConv 分支分别

对特征图进行处理,并通过加法操作对两条分支输出的

特征图进行聚合,以得到通道数为 C2 的特征图。
3)将输入部分经过标准卷积操作后的特征图与

GSbottleneck 部分的特征图按通道数进行拼接,然后通过

标准卷积操作输出通道数为 C2 的目标特征图。
2. 3　 Dyhead 检测头

　 　 由于煤矿井下复杂工作环境中采煤机、掘进机与电

机车(辅助运输电机车) 位置多变且作业姿态各异,而
YOLOv5s 中原检测头表达能力和多尺度特征检测能力不

足,无法有效降低关键目标的定位损失与分类损失。 为

图 6　 VoVGSCSP 结构框架

Fig. 6　 Structural
 

framework
 

of
 

VoVGSCSP

解决上述问题,本文采用头部 Dyhead 改进:采用一种具
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有多维感知能力的动态检测头 Dyhead 替换原检测头,有
效解决了原检测头表达与检测能力不足的问题。 Dyhead
是一种具有多维感知能力的全新检测头,特征图自上而

下依次通过尺度感知注意力模块(πL)、空间感知注意力

模块(πS)和任务感知注意力模块(πC)完成对特征图的

感知。 其具体计算步骤如图 7 所示。

图 7　 Dyhead 结构框架

Fig. 7　 Structural
 

framework
 

of
 

Dyhead

　 　 1)张量重塑

首先,特征金字塔经缩放后的特征图可以表示为一

个四维张量 F∈RL×H×W×C,定义 S =H×W,将特征图重塑为

三维张量 F∈RL×S×C;其中 L 表示金字塔中的层数;H、W
和 C 分别表示特征图的高度、宽度和通道数;

2)尺度感知

在尺度感知注意力模块(πL) 中:首先,特征图通过

平均池化操作减少特征图尺寸降低计算量;其次,通过卷

积操作提取特征;之后,通过 Rule 激活函数加快模型训

练速度并减少梯度消失的可能性; 最后, 通过 Hard
 

sigmoid 激活函数拟合数据进行特征学习后与原特征图

融合。 尺度感知注意力计算公式如式(4)所示。

πL(F)·F = σ( f( 1
SC∑

S,C
F))·F (4)

式中: πL(·) 表示应用于 L 维度的注意函数;σ(·) 为

Hard
 

sigmoid 函数; f(·) 是类似 1×1 卷积的线性函数;
3)空间感知

在空间感知注意力模块(πS)中,首先,通过 Index 快

速访问与操作输入张量;之后,通过可变形卷积使注意力

学习变得稀疏;最后,在相同的空间位置聚合跨级别的特

征得到特征图的偏移量值以及特征图偏移量的权值项。
空间感知注意力计算公式如式(5)所示。

πS(F)·F = 1
L ∑ L

l = 1∑
K

k = 1
w l,k·F( l;pk + Δpk;c)·Δmk

(5)
式中: πS(·) 表示应用于 S 维度的注意函数;K 代表稀疏

采样位置的数量; pk + Δpk 是通过自学习的空间偏移量

Δpk 聚焦于判别区域的移位位置; Δmk 是位置 pk 处的自

学习重要性标量;
4)任务感知

在任务感知注意力模块(πC)中,首先,特征图通过

平均池化操作降低维数与计算量;其次,通过 FC 全连

接层对提取的特征整合与分类;然后,通过 Rule 激活函

数加快模型训练速度;再者,再通过一次 FC 全连接层

对提取的特征进一步整合分类;之后,通过 Normalize 标

准化层提高模型性能与泛化能力;最后,根据不同任务

输出不同的信道值。 任务感知注意力计算公式如

式(6)所示。
πC(F)·F = max(α1(F)·FC + β1(F),α2(F)·FC +

β2(F)) (6)
式中: πC(·) 表示应用于 C 维度的注意函数; FC 为第 C
个通道的特征切片; σ、β 为可学习的参数;

5)检测输出

检测头进行对象分类、中心回归和边框回归等操作。
其中一般的注意力公式如式(7)所示。

W(F) = π(F)·F (7)
式中: π(·) 表示注意函数; π(F) = πC(πS(πL(F)·F)·
F)。

3　 实验与分析

3. 1　 煤矿井下多场景数据集构建

　 　 由于煤矿井下作业环境与地面环境不同,传统公共

数据集无法体现煤矿井下的复杂作业环境,故本实验所
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采用的数据集源自淮南新集煤矿、顾桥煤矿与张集煤矿

不同时段掘进、支锚、采煤与辅助运输 4 种作业场景的现

场监控视频。 通过 OpenCV 中的抽帧操作对监控视频进

行处理,以制作包含 3
 

000 张图像的煤矿复杂作业场景数

据集,并按照 7 ∶ 2 ∶ 1 的比例将数据集划分为训练集、验证

集与测试集。 如图 8 所示,采用 Labelimg 软件对 4 种作业

场景中包括工作人员( person)、掘进机截割头( roadhead
 

cutting
 

head, R-cutting)、 采煤机截割头 ( shearer
 

cutting
 

head,S-cutting)、机载式锚杆钻机( airborne
 

jumbolter,A-
jumbolter)、 手 持 式 锚 杆 钻 机 ( handling

 

jumbolter, H-
jumbolter)、 支 护 装 置 ( support ) 与 电 机 车 ( electric

 

locomotive,E-locomotive)的 7 种关键目标进行标定。

图 8　 煤矿多场景数据集标定

Fig. 8　 Coal
 

mine
 

multi-scenario
 

dataset
 

calibration

3. 2　 实验环境

　 　 本文研究基于 AutoDL 云服务器对 YOLOv5s-CSD 检

测模型进行消融实验与对比实验,并基于 NIVIDA
 

Jetson
 

Xavier
 

NX 视觉控制板开展针对 YOLOv5s-CSD 检测模型

的视觉感知终端嵌入式实验。 实验过程中遵循控制变量

原则,即采用相同的超参数与环境配置。 模型的统一超

参数如下:初始化动量因子为 0. 937;输入图像尺寸为

640×640
 

pixcels;批量大小为 32;初始学习率为 0. 01;权
重衰减系数为 0. 000 5;训练总迭代次数为 300;具体实验

环境配置如表 1 所示。

表 1　 实验环境配置参数

Table
 

1　 Configuration
 

parameters
 

of
 

the
 

experimental
 

environment

Configuration
 

content
Configuration

 

parameters
AutoDL

 

cloud
 

server
 

platform NIVIDA
 

Jetson
 

Xavier
 

NX
Operating

 

system Ubuntu
 

20. 04
 

OS Ubuntu
 

20. 04
 

OS
GPU RTX

 

3090
 

(24
 

GB) 384-core
 

NVIDIA
 

VoltaTM

CPU Intel(R)
 

Xeon(R)
 

Platinum
 

8255C 6-core
 

NVIDIA
 

Carmel
 

ARM 􀅺 v8. 2
Algorithm

 

language Python
 

3. 8 Python
 

3. 8
Accelerator Cuda

 

11. 3 CUDA
 

11. 4
Algorithm

 

framework Pytorch
 

1. 11. 0 PyTorch
 

1. 11. 0

3. 3　 实验评价指标

　 　 在目标检测算法中常用检测准确率( precision,P)、
召回率 ( recall, R)、 平均检测精度 ( average

 

precision,
AP)、平均检测精度均值( mean

 

average
 

precision,mAP)、
参数量与每秒浮点运算次数( floating

 

point
 

operations
 

per
 

second,FLOPs)作为评价指标检测算法模型的性能,其中

P、R、PAP 与 PmAP 计算公式如式(8) ~ (11)所示。

P = TP
(TP + FP)

(8)

R = TP
(TP + FN)

(9)

PAP = ∫1

0
P(R)dR (10)

PmAP = 1
n ∑ n

i = 1
PAPi (11)

式中:TP 为正类判定为正类;FP 为负类判定为正类;FN
为正类判定为负类;PAP 为 P(R)曲线的积分即平均精度

值;n 为目标类别数;PAPi 为第 i 种类别的平均检测精

度值。
3. 4　 消融实验

　 　 为验证 3 项优化策略对检测模型性能的增益效果,
本文基于相同的数据集与实验环境开展消融实验研究,
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实验结果如图 9 和表 2 所示。 Modal
 

A 是 YOLOv5s 的基

线模型,Modal
 

E 是本文所提出的 YOLOv5s-CSD 检测模

型,Modal
 

B 至 Modal
 

D 分别为 3 项优化策略独立作用的

检测模型。
由图 9 与表 2 可见,模型 B 的 mAP@ 0. 5 曲线在迭

代 270 轮后逐步收敛并超过模型 A,且 mAP @ 0. 5 值也

由 87. 5% 上升至 88. 1%。 由图 10 可见,在添加应用

CGNet 模块后,与模型 A 相比,模型 B 在多层级特征提取

的各阶段对目标的检测轮廓更加清晰且特征激活点显著

增加。
结果表明,CGNet 模块凭借其联合局部和周围复杂

环境特征,并将全局上下文应用于通道重新加权联合特

征后,有效增强了检测模型的多层级特征提取能力,使得

模型 B 提取到了更为丰富的低层形状与高层语义特征信

息,有利于促进后续的特征融合操作。

图 9　 消融实验 mAP@ 0. 5 曲线

Fig. 9　 The
 

mAP@ 0. 5
 

curves
 

of
 

ablation
 

experiment

表 2　 消融实验具体结果分析

Table
 

2　 Results
 

of
 

ablation
 

experiments

模型 优化方法
AP@ 0. 5 / %

R1 R2 R3 R4 R5 R6 R7
mAP@ 0. 5 / % 参数量 / ( ×106 )

A YOLOv5s 88. 6 89. 1 87. 9 80. 9 82. 9 90. 4 92. 7 87. 5 6. 70
B YOLOv5s-CGNet 86. 6 90. 7 93. 7 82. 4 81. 1 91. 4 90. 8 88. 1 1. 50
C YOLOv5s-SlimNeck 88. 3 90. 6 91. 8 82. 7 82. 8 92. 1 91. 4 88. 5 5. 58
D YOLOv5s-Dyhead 90. 1 90. 2 91. 6 84. 4 83. 9 92. 7 95. 7 89. 8 11. 74
E YOLOv5s-CSD 90. 5 93. 1 96. 6 84. 1 84. 6 92. 2 95. 5 91. 0 10. 04

　 　 注释:
 

R1-(person);
 

R2-(R-cutting);
 

R3-(S-cutting);
 

R4-(A-jumbolter);
 

R5-(H-jumbolter);
 

R6-(support);
 

R7-(E-locomotive)

图 10　 主干特征提取模块的输出特征

Fig. 10　 Output
 

feature
 

map
 

of
 

the
 

backbone
 

feature
 

extraction
 

module

　 　 由图 9 与表 2 可见,模型 C 在迭代 100 轮后 mAP@
0. 5 值逐步收敛并超过模型 A,在采用 GSConv 卷积模块

与 VoVGSCSP 模块分别代替颈部中的 Conv 和 C3 层后,
模型的参数量由 6. 7×106 降低至 5. 58×106,同比下降了

16. 72%,同时,mAP@ 0. 5 值也由 87. 5%上升至 88. 5%。
由图 11 颈部模块输出的特征图可知,模型 C 在多层级特

征融合后,各阶段对目标的特征激活点显著增加且检测

轮廓更加清晰。 该结果表明,SlimNeck 模块凭借 GSConv

的通道混洗与 VoVGSCSP 的跨阶段网络模块,能够提升

不同阶段特征图的信息融合能力并且降低网络模型的参

数量与复杂度。
由图 9 和表 2 可知,采用动态检测头 Dyhead 替换原

检测头后,模型 D 在迭代 50 轮后 mAP@ 0. 5 值超过模型

A 并逐步拉开与模型 A 的差距;且 mAP @ 0. 5 值也由

87. 5%上升至 89. 8%,提升了 2. 3%。 由图 12 与 13 可

知,Dyhead 检测头能够在煤矿采煤机、掘进机与电机车
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图 11　 颈部特征融合模块的输出特征

Fig. 11　 Output
 

feature
 

map
 

of
 

the
 

neck
 

feature
 

fusion
 

module

位置多变且作业姿态各异的复杂环境中使模型 D 的定位

损失 与 分 类 损 失 显 著 低 于 模 型 A。 该 结 果 表 明,
YOLOv5s-CSD 检测模型采用头部 Dyhead 改进模块能够

增强模型在煤矿井下的多维感知能力,有效降低检测模

型的定位损失与分类损失,提高模型检测精度。

图 12　 定位损失的曲线

Fig. 12　 Positioning
 

loss
 

curve

3. 5　 对比实验

　 　 为了进一步验证 YOLOv5s-CSD 检测模型在煤矿井

下多作业场景复杂环境中检测性能的优越性,本文选取

了模型参数量与计算量相近的 YOLOv5s、YOLOv7-tiny、
YOLOv8s、YOLOv9s、YOLOv11s、YOLOv12s

 

6 种目标检测

主流算法与 YOLOv5s-CSD 开展对比试验,实验结果如图

14 和表 3 所示。
由图 14 可知,在迭代收敛速度方面,YOLOv5s-CSD、

YOLOv12s、YOLOv11s、YOLOv8s、YOLOv5s 算法对应曲线

的收敛速度接近且高于 YOLOv7-tiny 和 YOLOv9s 算法曲

线,7 种算法曲线均在迭代 160 轮左右后逐渐趋于稳态。
在检测精度方面,YOLOv5s-CSD 所对应的 mAP @ 0. 5 曲

线在迭代 25 轮后,与 YOLOv12s 所对应的 mAP@ 0. 5 曲

图 13　 分类损失的曲线

Fig. 13　 Classification
 

loss
 

curve

图 14　 对比实验 mAP@ 0. 5 曲线

Fig. 14　 The
 

mAP@ 0. 5
 

curves
 

of
 

comparison
 

experiment

线接近,并逐步攀升高于其他 5 种算法,并且在第 250 轮

迭代后,5 条曲线均逐渐收敛趋于稳态;其中,YOLOv5s-
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CSD 的 mAP@ 0. 5 稳态峰值最高且在 90% ~ 91%之间浮

动,而 YOLOv5s 的 mAP@ 0. 5 稳态峰值最低且在 86% ~
88%之间。

表 3　 对比实验结果分析

Table
 

3　 Results
 

of
 

comparative
 

experiments
 

on
 

target
 

detection

模型
AP@ 0. 5 / %

R1 R2 R3 R4 R5 R6 R7
mAP@ 0. 5 / %

参数量 /

( ×106 )
浮点数 /
GFLOPs

YOLOv5s 88. 6 89. 1 87. 9 80. 9 82. 9 90. 4 92. 7 87. 5 6. 70 15. 8
YOLOv7-tiny 89. 8 90. 3 90. 9 83. 4 82. 8 90. 1 86. 9 87. 7 5. 75 13. 2

YOLOv8s 88. 8 94. 0 89. 9 79. 9 84. 6 93. 3 90. 5 88. 7 10. 62 28. 5
YOLOv9s 92. 3 82. 5 90. 8 84. 6 84. 7 94. 7 94. 5 89. 1 9. 33 39. 8

YOLOv11s 91. 3 87. 8 94. 5 84. 4 84. 3 95. 1 89. 4 89. 6 9. 43 21. 6
YOLOv12s 90. 3 92. 8 94. 9 83. 2 85. 0 90. 3 95. 1 90. 2 9. 26 21. 5

YOLOv5s-CSD 90. 5 93. 1 96. 6 84. 1 84. 6 92. 2 95. 5 91. 0 10. 04 15. 7

　 　 注释:
 

R1-(person);
 

R2-(R-cutting);
 

R3-(S-cutting);
 

R4-(A-jumbolter);
 

R5-(H-jumbolter);
 

R6-(support);
 

R7-(E-locomotive)

　 　 由表 3 可知,对于 person、support 和 E-locomotive 等 7
类关键目标的检测精度方面,YOLOv5s 对 support 与 E-
locomotive 的检测精度均高于 90. 0%,而对 A-jumbolter 与
H-jumbolter 的检测精度较低,相应的 AP @ 0. 5 值仅为

80. 9%与 82. 9%;YOLOv5s-CSD 对于 person、R-cutting、S-
cutting、support、E-locomotive 的 5 类关键目标检测精度均

高于 90. 0%,尤其是对 S-cutting 与 E-locomotive 的检测精

度在 5 种算法最高且分别达 96. 6%与 95. 5%;YOLOv5s-
CSD 对 于 A-jumbolter 与 H-jumbolter 的 检 测 精 度 与

YOLOv9s、YOLOv11s、YOLOv12s 相接近,并且高于其他 3
种算法,尤其是相较于 YOLOv5s 算法,其对二者的检测

精度 分 别 提 升 了 3. 2% 与 1. 7%; YOLOv7-tiny 对 H-
jumbolter 与 support 的检测精度与 YOLOv5s 相接近,而对

person、 R-cutting 与 S-cutting 的 检 测 精 度 略 高 于

YOLOv5s, 分 别 为 89. 8%、 90. 3% 与 90. 9%, 但 对 E-
locomotive 的检测精度低于其余 6 类算法,相应的 AP @
0. 5 值仅为 86. 9%;YOLOv8s 对 R-cutting 与 support 的检

测精度最高,分别为 94%与 93. 3%,而对 A-jumbolter 的

检测精度在 7 种算法中最低,相应的 AP @ 0. 5 值仅为

79. 9%; YOLOv9s 对 于 person、 S-cutting、 support 与 E-
locomotive 检测精度均高于 90%,但对 R-cutting 的检测精

度在 7 种算法中最低,相应的 AP @ 0. 5 值仅为 82. 5%。
YOLOv11s 对于 S-cutting 与 support 的检测精度最高,分
别为 94. 5%与 95. 1%,但对 E-locomotive 的检测精度与

YOLOv7-tiny 相接近,相应的 AP@ 0. 5 值仅为 89. 4%,低
于其他 5 种算法。 YOLOv12s 对于 H-jumbolter 的检测精

度最高,略高于 YOLOv5s-CSD,但对其他 6 种关键目标的

检测精度均低于 YOLOv5s-CSD。
对于 mAP@ 0. 5 数值方面,YOLOv5s-CSD 明显高于

其他 6 种算法,相应的 mAP @ 0. 5 值为 91. 0%,分别比

YOLOv5s、YOLOv7-tiny、 YOLOv8s、 YOLOv9s、 YOLOv11s、
YOLOv12s 高 3. 5%、 3. 3%、 2. 3%、 1. 9%、 1. 4%、 0. 8%。

在模型复杂度方面,对于参数量, YOLOv8s、 YOLOv9s、
YOLOv11s、YOLOv12s、YOLOv5s-CSD 的参数量想接近,
分别为 10. 62 × 106、 9. 33 × 106、 9. 43 × 106、 9. 26 × 106、
10. 04×106;YOLOv5s 与 YOLOv7-tiny 均处于较低水平,
分别为 6. 70×106 和 5. 57×106。 对于计算量,YOLOv8s、
YOLOv9s、YOLOv11s、YOLOv12s 仍处于较高水平,分别

为 28. 5
 

GFLOPs、 39. 8
 

GFLOPs、 21. 6
 

GFLOPs、
21. 5

 

GFLOPs; YOLOv5s-CSD、 YOLOv5s 与 YOLOv7-tiny
均处于较低水平,分别为 15. 7

 

GFLOPs、15. 8
 

GFLOPs、
13. 2

 

GFLOPs。 由上述分析可见,YOLOv5s-CSD 由于融

合了 CGNet、SlimNeck 与
 

Dyhead
 

3 种优化策略,导致其参

数量较高,但计算量较低,整体模型复杂度适中,并且得

益于 3 种优化策略对检测性能的提升,使其对巷道复杂

环境的适应性更强且鲁棒性更高。 YOLOv8s、YOLOv9s、
YOLOv11s、YOLOv12s 的参数量与计算量均较高,模型架

构复杂且冗余信息较多,不利于后续在边缘计算设备上

的嵌入式应用。 YOLOv5s 与 YOLOv7-tiny 两种算法的模

型复杂度较低,但由于检测性能较差,使二者也难以适应

煤矿复杂工况条件。 综上分析可知,YOLOv5s-CSD 算法

模型的参数量和计算量适中且 mAP@ 0. 5 值为 91. 0%明

显高于其他算法,综合检测性能最佳。 因此 YOLOv5s-
CSD 更适合作为实验测试平台的检测网络,以实现对煤

矿井下掘进、支锚、采煤与辅助运输多场景复杂作业中关

键目标的精准识别与定位。
3. 6　 嵌入式检测实验

　 　 为进一步检验 YOLOv5s-CSD 的实时检测性能,采用

8 段包含煤矿井下掘进、支锚、采煤与辅助运输 4 种复杂

作业场景的实际生产视频片段作为测试视频,并将训练

后的 YOLOv5s-CSD 迁移部署到实验测试平台的视觉边

缘计算控制板内,以测试其对 8 段视频片段种中 person、
support、E-locomotive 等(支护架、机载锚杆钻机、掘进机

截割头、采煤机截割头、手持锚杆钻机、作业人员与电机
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车)7 种关键目标的实时检测效果。
　 　 YOLOv5s-SCD 的性能测试结果如表 4 所示,通过

TensorRT-FP16 引擎加速后, 当数据样本批量 ( Batch
 

size)设定为 32 时,NVIDIA
 

Jetson
 

Xavier
 

NX 控制板的

GPU 可获得最高利用率。 YOLOv5s-CSD 对测试集图像

的前处理时间最短,为 0. 4
 

ms,单图推理时间适中,且其

实时检测速度为 38. 6
 

fps,接近于 YOLOv11s,略低于

YOLOv12s、YOLOv5s、 YOLOv7-tiny,但高于 YOLOv8s 与

YOLOv9s 的实时检测速度。 由煤矿监控视频实时监测帧

率标准可知,实时检测要求检测速度不低于 24
 

fps。 因

此,YOLOv5s-CSD 在视觉感知终端上可以辅助实验测试

平台实现对煤矿井下多作业场景复杂环境中关键目标的

实时检测。 实验测试平台如图 15 所示。 本文通过实验

测试 平 台 对 YOLOv5s ~ YOLOv12s
 

6 种 ( YOLOv5s ~
YOLOv9s

 

4 种) YOLO 系列经典检测算法与 YOLOv5s-
　 　 　

CSD 算法进行了对比测试,进一步验证检测算法的优越

性与可靠性。

图 15　 实验测试平台

Fig. 15　 Experimental
 

platform
 

for
 

test
 

robot

图 16　 对比测试结果

Fig. 16　 Visual
 

presentation
 

of
 

test
 

results
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表 4　 YOLOv5s-SCD 的性能测试结果

Table
 

4　 Performance
 

test
 

results
 

of
 

YOLOv5s-SCD
模型 参数量 / ( ×106 ) 浮点数 / GFLOPs 实时检测速度 / fps 前处理 / ms 单图推理时间 / ms

YOLOv5s 6. 70 15. 8 47. 6 0. 8 19. 3
YOLOv7-tiny 5. 75 13. 2 48. 3 1. 0 18. 7

YOLOv8s 10. 62 28. 5 35. 5 1. 7 25. 3
YOLOv9s 9. 33 39. 8 28. 4 0. 5 33. 6

YOLOv11s 9. 43 21. 6 41. 1 1. 6 21. 3
YOLOv12s 9. 26 21. 5 44. 1 1. 5 20. 0

YOLOv5s-CSD 10. 04 15. 7 38. 6 0. 4 24. 8

　 　 由 图 16 可 知, 对 于 高 尘 雾 的 采 煤 作 业 场 景,
YOLOv7-tiny ~ YOLOv5s-CSD

 

6 种检测算法对 S-cutting 检

测精度均高于 90%,并且 YOLOv5s-CSD 对 S-cutting 检测

精度最高,达 96%,而 YOLOv5s 对 S-cutting 检测精度最

低,仅为 82%。 对于低照度的掘进作业场景,YOLOv5s-
CSD 对 R-cutting 的检测精度最高,达 92%,而 YOLOv5s、
YOLOv7-tiny、YOLOv8s、YOLOv11s

 

4 种算法对 R-cutting
检测效果较差,均低于 90%。 对于人机混杂分布的支锚

作业场景,YOLOv5s-CSD 对 support、person、A-jumbolter、
H-jumbolter

 

4 类关键目标的检测精度高于其他 6 种算

法,YOLOv5s~ YOLOv12s
 

4 种算法对 support 的检测效果

差,均低于 90%, 并且 YOLOv7-tiny 与 YOLOv8s 对 A-
jumbolter 存在漏检情况。 对于存在小目标尺度的辅助运

输作业场景,YOLOv5s-CSD 对 E-locomotive 检测精度最

高,达 94%。 因此,综合上述分析可见,在实验测试平台

上,YOLOv5s-CSD 对 person ~ E-locomotive
 

7 类关键目标

的检测精度均在 90. 0%以上,且不存在漏检与误检情况,
综合检测性能最佳,更适用于煤矿井下多种复杂作业场

景的关键目标识别与定位任务。

4　 结　 论

　 　 针对煤矿井下掘进、支锚、采煤与辅助运输等多场景

复杂工矿与恶劣环境因素所导致的关键装备与作业人员

等关键目标检测效果不佳的问题,本文提出了一种基于

机器视觉的煤矿多场景关键目标检测算法( YOLOv5s-
CSD)。 首先,利用 CGNet 模块的局部与全局残差学习机

制以及上下文引导策略增强主干网络的特征提取能力;
利用 SlimNeck 模块的通道混洗与一次聚合策略提升颈

部网络的特征融合能力;凭借 Dyhead 模块增强检测头的

多维信息感知能力以降低了检测模型的定位损失与分类

损失。 其次, 基于自建的煤矿多目标场景数据集与

AutoDL 云服务器开展消融实验和对比实验, 验证了

YOLOv5s-CSD 的优越性能。 最后,将 YOLOv5s-CSD 迁移

部署到实验测试平台中,检测其在实际多场景复杂工矿

下的检测性能,实验表明,其能够实现对煤矿井下多场景

复杂作业环境中关键目标的精准检测。 然而通过普通可

见光相机采集煤矿数据集时容易受到尘雾、黑暗环境干

扰,导致数据集质量降低,今后考虑将普通 RGB 相机与

红外热成像相机相融合采集煤矿数据集,避免井下恶劣

环境对数据采集的影响,同时将继续探索煤矿井下的目

标检测算法。
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