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Abstract: Aiming at the problem of poor target detection of operating personnel and equipment due to high dust, low illumination,
human-machine multi-target mixing and cross-scale changes in the complex operation scene of coal mine underground, we propose a
multi-scene key target detection method based on machine vision for coal mine. Firstly, the YOLOvSs algorithm is optimised using
CGNet ( context guided network ) feature extraction module, SlimNeck feature fusion module with Dyhead dynamic detection head in
order to construct the YOLOvS5s-CSD network model. Secondly, based on the self-constructed coal mine dataset, ablation experiments,
comparison experiments and embedded detection experiments were carried out around the YOLOvS5s-CSD model. The experimental results
show that YOLOv5s-CSD achieves a detection accuracy of 91.0% in four complex operation scenarios of underground coal mine
tunneling, anchor support, coal mining, and auxiliary transport, which is 3. 5% higher than YOLOvSs algorithm, and compared with six
mainstream target detection algorithms, such as YOLOv9s, YOLOvlls, and YOLOvI2s, it has the moderate model complexity and the
highest detection accuracy. On the experimental test platform, the real-time detection accuracy of YOLOvS5s-CSD model for seven types

of key targets, such as person, support, and electric locomotive, is above 90.0%, and its real-time detection speed is up to
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38. 6 frames/s, which is high in detection accuracy and real-time, and it can provide technical support for the visual dynamic perception

of the complex environment of underground coal mines.

Keywords : complex operational scenarios; machine vision; target detection; YOLO; visual dynamic perception
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RlIPSUZEPIE Bzl NG UE AETEE S Y (BN
Horh— e i 1~ = (7) B

W(F)=m(F) - F (7)
K. w() BARFEBEREG 7(F)=m (m(7,(F) - F) -
F)o
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DT, 35 OpenCV FH AG-Ail T8 A X)W 42 A1 ik
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jumbolter ) . F ¥ =X & #T 44 L ( handling jumbolter, H-
jumbolter) | P A E ( support ) 5 L WL % ( electric
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Fig. 8 Coal mine multi-scenario dataset calibration

3.2 RININEE
ASCWFFEIET AutoDL = R 55 #5 %F YOLOvSs-CSD K
WAL AT T8 il S 36 5 6 L S5, I35 T NIVIDA Jetson
Xavier NX 583 hl A HF BB EFXF YOLOvSs-CSD e #5275
PR D SRR 28 it A S SIE S 2ot R ol i s o A2

JOU] B SR FHAR [R50 S A B B, B 28—
SHAT iRk s = N TR 0.937; fis A EHME R SF R
640x640 pixcels; 17 K /N A 32 IR 2F 2T KH 0. 015 4L
FERIHARKCH 0.000 5; Y2k EEARKECH 300 ; EARSLK:
WEEECE W 1 R,

R1 ZHRRRERESY

Table 1 Configuration parameters of the experimental environment

Configuration parameters

Configuration content

AutoDL cloud server platform

NIVIDA Jetson Xavier NX

Ubuntu 20. 04 0S

Operating system

Ubuntu 20. 04 0S

GPU RTX 3090 (24 GB) 384-core NVIDIA Volta™
CPU Intel (R) Xeon(R) Platinum 8255C 6-core NVIDIA Carmel ARM ® v8.2
Algorithm language Python 3. 8 Python 3. 8
Accelerator Cuda 11.3 CUDA 11.4

Algorithm framework Pytorch 1. 11.0

PyTorch 1. 11.0

3.3 SKEMIERR
e H ARG 3k e RS/ B 3R ( precision, P) |
BE R (recall, R) | 46 K 2 ( average precision,
AP) PRI BE 1A ( mean average precision, mAP) |
SR 5 HFNIE 18 5B (floating point operations per
second , FLOPs ) /N PFAr H bn A il S0 B A i PR B, v
PR.P, 5 P, HAAXWA(S) ~ (1) FR,
TP
p=—
(TP + FP)
TP
R=—
(TP + FN)

(8)

(9)

Pw=j¥«RmR (10)

Pap =3 Py (11)
S TP WIERHNE WIS FP O KA E 2 PN
WIERHVE R G123 P,, 9 P(R) LRI B DT 475 e
{5 43 VBRI M P K505 1 20 F 49K RS
BEH
3.4 HEASKH

HBRAE 3 35U 5w 46 080 0 4 2 AR
AR SCHE T IR A 20 5 5 52 00 P LT 0 S 3
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SERAERANE 9 FIFK 2 fr7R . Modal A & YOLOvSs HyE
MR Modal E A SCHT £ 9 YOLOvSs-CSD i I A5
7 Modal B % Modal D 43512k 3 TR A 5K W& 2t 7 A 1T %)
e ALY

HE 9 5FE 2 Al il % B A mAP@O0. 5 ML rEi%
270 )5 B AL WESOF BT EER A, H mAP@ 0. 5 A
M 87.5% I F+ % 88. 1%, H &l 10 AT UL, 7€ % Jn h; A
CGNet i5 , SR A M, M7 B 75 2 2 GUFRIE R
B2 B BV B v 80 S 0 R 9 T EL R A A A
.

S5 CONet B G FLIE A Jm) 38 i 1Bl &2 44
IBERFE , 0 42 sy T SCW T3l T 5T ARG A
fEJG AT 8 8 T R AR A 1) 22 2 R ARRAE SR AR ), (845
R B PEEE] T O w2 IR S w2 SRR S

%39 &
100.0
90.0 |- e S
80.0 -
70.0 -
92.0
g A gt
= 90.0
—&— Model A
9 50.0 3\ —Q—MZdZIB
< Sss.0 —A—Model C
E 400} 2 M;g :i % —v—Model D
£ —e—Model E
30.0 | .
200 - M 260 20 280 290 300
100 epochs
0.0 1 1 1 1 1
0 50 100 150 200 250 300
epochs

K9 JHREhSE mAP@O. 5 ik

B AR TR 5 S RS B A A Fig. 9 The mAP@ 0. 5 curves of ablation experiment
F2 HELIWEMKLERSN
Table 2 Results of ablation experiments

. o AP@0. 5/% j

A URIW:S - 0 0 ” s 6 mAP@0.5/%  ZHiE/(x10°)
A YOLOvS5s 88.6 89.1 87.9 80.9 82.9 90. 4 92.7 87.5 6.70
B YOLOv5s-CGNet 86. 6 90.7 93.7 82.4 81.1 91.4 90. 8 88. 1 1.50
C YOLOvS5s-SlimNeck 88.3 90. 6 91.8 82.7 82.8 92.1 91.4 88.5 5.58
D YOLOv5s-Dyhead 90. 1 90.2 91.6 84.4 83.9 92.7 95.7 89.8 11.74
E YOLOv5s-CSD 90.5 93.1 96. 6 84.1 84.6 92.2 95.5 91.0 10. 04

R R1-(person) ; R2- (R cumng) R3-(S-cutting) ; R4-( A-jumbolter) ; R5-( H-jumbolter) ; R6-(support) ; R7-( E-locomotive )

(a) Model A

1
oyt

(b) Model B

B0 R aEf OB i) g AR5 il

Fig. 10 Output feature map of the backbone feature extraction module

9 532 a0l R C 723548 100 )5 mAP@
0.5 A WSO BT AL A 76K GSConv 4 AU B
5 VoVGSCSP i35 # H iY) Conv F1 C3 25,
RIS 6. 7x10° FEARE 5. 58%10°, [Al L R RE T
16. 72% , [Ali , mAP@ 0. 5 {Eti i 87.5% LTI % 88. 5%,
A 11 SER LA A RRIE AT 0 B C e 2 2y
TERLA 25 B B B AR B RRAE S0 At 3508 i A )
R INGEM, L5 H R | SlimNeck B AL GSConv

FYIEE TR RS VoVGSCSP Ay 5 By B I 48 45 | ik
AN[E] By BEARRAE 0 £ B
B 5,

HH &L 9 FIER 2 AT, Sk B KGI Sk Dyhead 546 i
Kl sk 5 B D 7EIEMR 50 585 mAP@ 0. 5 {1 A4l
A BRI S5 A 2205 H mAP@ 0.5 {1 h
87.5% " F+ & 89.8% , & F T 2.3%, K 12 5 13 7]
A1, Dyhead #6103k & % 78 07 SR AL 98 EHL 5 AL 4

U251
REJIIF HLFEAR M 45 B AL 9 2
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(a) Model A

(b) Model C

BT SURRRFAE Rl AR A i R AIE

Fig. 11

I #2272 AR B4 S 2 A« 5 h AR D e for
PR KRB B EMTBR A, xR R,
YOLOv5s-CSD Al 74 >R 41 3k #8 Dyhead M A5 e fig
SRR RIAE IR T 1) 22 2RI RE 7, A8 A5 ARG ) A
R S 30K 5 o3 A | Bt e RS RS
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—=— Model A
—e— Model D
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Fig. 12 Positioning loss curve

3.5 Xftbxie

Jg 7 i BAE YOLOvVSs-CSD A6 5 % 7 B St
T 2AE 5 22 A BT R I B ) AR B | AR SCBE R
TR SR 5 R AT B YOLOvSs , YOLOv7-tiny
YOLOv8s . YOLOv9s . YOLOv11s YOLOvI2s 6 Fft F 4746l
FIRFIES YOLOvSs-CSD FF Xt Hu i, Sz 56 45 5 fn &
14 FIZ 3 Fis,

F L 14 AT AR AU S4GH B2 J 1T, YOLOVSs-CSD
YOLOvI2s .YOLOvI1ls  YOLOv8s  YOLOvSs &y i il 2k
PSR B 3253 LR T YOLOv7-tiny I YOLOV9s 5432 i
2,7 R I e R 160 A A R B WA TR,
TER IS B )7 1), YOLOvSs-CSD FIF % 7 1) mAP@ 0. 5 ff
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Output feature map of the neck feature fusion module
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Fig. 13 Classification loss curve
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Fig. 14 The mAP@O0. 5 curves of comparison experiment
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CSD ) mAP@ 0. 5 F& 25 06 {H F% = HL7E 90% ~91% 2 [6] 17
3, 1M YOLOvSs i mAP@ 0. 5 Fa 25 {8 A ELYE 86% ~

88% 2 [f]
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Table 3 Results of comparative experiments on target detection

. AP@0.5/% E 2§ =i
R mAP@ 0. 5/%

R1 R2 R3 R4 R5 R6 R7 (x10%) GFLOPs
YOLOv5s 88.6 89. 1 87.9 80.9 82.9 90. 4 92.7 87.5 6.70 15.8
YOLOv7-tiny 89. 8 90. 3 90.9 83.4 82.8 90. 1 86.9 87.7 5.75 13.2
YOLOv8s 88.8 94.0 89.9 79.9 84.6 93.3 90.5 88.7 10. 62 28.5
YOLOV9s 92.3 82.5 90. 8 84.6 84.7 94.7 9.5 89.1 9.33 39.8
YOLOvl1s 91.3 87.8 9.5 84.4 84.3 95. 1 89. 4 89.6 9.43 21.6
YOLOv12s 90. 3 92.8 94.9 83.2 85.0 90. 3 95.1 90.2 9.26 21.5
YOLOv5s-CSD 90. 5 93.1 9. 6 84.1 84.6 92.2 95.5 91.0 10. 04 15.7

R R1-(person) ; R2-( R-cutting) ; R3-( S-cutting) ; R4-( A-jumbolter) ; R5-( H-jumbolter) ; R6-(support) ; R7-( E-locomotive )

2 3wl X person ,support 1 E-locomotive )
2 B b ARSI ORS BE 7 T, YOLOVSs X support 5 E-
locomotive ARG & 14 &5 T 90. 0% , T Xt A-jumbolter 5
H-jumbolter f4 45 Il 45 B2 3K, #H WL Y AP @ 0.5 {EAU N
80.9% 55 82. 9% s YOLOv5s-CSD Xt F person | R-cutting | S-
cutting . support , E-locomotive [ 5 Z$5 8 H f5 460 A7 i 14
=T 90. 0% , I HZXT S-cutting 5 E-locomotive B8
JETE S FhEE R i ELA3 ik 96. 6% 5 95. 5% ; YOLOVSs-
CSD Xt T A-jumbolter 5 H-jumbolter [ £ M 4§ & 5
YOLOv9s YOLOv11s ,YOLOv12s AR5 , I HLim T IiAh 3
PR JUHRARES T YOLOVSs B3k, O — 35 i 46 0
K MR T T 3.2% 5 1.7%; YOLOv7-tiny %f H-
jumbolter 55 support (YAGTIKEEE 5 YOLOvSs AHEZIE , Xt
person, R-cutting 5 S-cutting B ¥ W & & & & T
YOLOvSs, 43 5l & 89.8% . 90.3% 5 90.9%, {H X} E-
locomotive AASINNAE BEAR T HiAy 6 Z8H 3 MW ) AP@
0.5 {1V 86. 9% ; YOLOvSs X} R-cutting 5 support FFG
TNKE E f5e 5, 43 00 94% 55 93. 3%, i %t A-jumbolter fY
KPR EELE 7 R e R, AN AP @ 0.5 AL N
79.9% ; YOLOv9s X} F person | S-cutting, support 5 E-
locomotive FEMAE BE 34 =5 F 90% , {HXF R-cutting AYAG A
JEAE 7 RO AR, AHBL Y AP@ 0.5 1EALH 82.5%
YOLOv11s XfF S-cutting 55 support A4 H: 4 JF &% &= , 43
Bk 94. 5% 5 95. 1% , B %t E-locomotive HY K 45 B 5
YOLOv7-tiny AR5, MR 1Y AP@ 0. 5 {H1LH 89. 4% , ik
FHAG 5 FhE . YOLOvI2s XF T H-jumbolter FY46 I
FE i, I8 T YOLOvSs-CSD  (H X HiAth 6 Fh 48 H ARAY
KA B2 IR T YOLOvSs-CSD,

XHF mAP@ 0. 5 $0{f 7 1, YOLOvSs-CSD W & i F
Fofth 6 FhFE3L MR mAP@ 0.5 {64 91. 0%, 43l Lt
YOLOv5s, YOLOv7-tiny , YOLOv8s, YOLOv9s, YOLOvl1s,
YOLOv12s & 3.5%.3.3%.2.3% .1.9% . 1. 4% . 0. 8%,

FERS R AZ Z% 3 5 1, % 1 2 80, YOLOv8s, YOLOv9s |
YOLOv11s . YOLOvI2s, YOLOv5s-CSD )2 B A0 12 3T,
3508 10.62 x 10°.9. 33 x 10°, 9. 43 x 10°, 9. 26 x 10°,
10. 04x10°; YOLOvS5s 5 YOLOv7-tiny 4 kb F A% 7K
435K 6. 70x10° F1 5.57x10°, XF Tt i, YOLOvSs .
YOLOV9s . YOLOv11s YOLOvI2s {54k T %5 &5 K S, 43 51
3 28.5 GFLOPs, 39.8 GFLOPs. 21.6 GFLOPs,
21.5 GFLOPs; YOLOv5s-CSD ., YOLOvSs 5 YOLOv7-tiny
PIhb F 8K K SE, 43 %1 15.7 GFLOPs  15. 8 GFLOPs .
13.2 GFLOPs, M LR 44 Al WL, YOLOv5s-CSD Hy T filt
47 CGNet SlimNeck 5 Dyhead 3 FiAL5ms , FHHZ
B AT R R BRI R A e B vh O HAS
5 T 3 IO A TR W X A 00 4 i %) -, o L0 A% 3 A
PRI I 0 PR S5 H B TR, YOLOv8s , YOLOVYs |
YOLOv11s ,YOLOv12s (S 4 515 a5, Bl 4
MEXBIUREREZ , AFTIREEDZITREK& L
B AR H . YOLOVSs 5 YOLOv7-tiny W 340 1k fit
RV Z BB E TG DU PE RE A 22 , (3 3t sk AT )
W5 2 TR, 25 B3 Fral 1, YOLOvSs-CSD 5k
TR 4 F R RS H mAP@ 0. 5 B0 91. 0% ¥
T H AR S AR PERE ek, L YOLOvSs-
CSD B3 A SRy 52 36 T 65 08 G 0 19X 6%, L S 300 %)
WIF T EIE S Al RIS s 2 B 24 El ok
i HARARE N S A,
3.6 HRAHN LI

HHE— B YOLOV5s-CSD A4 52 A6 PR BE | SR FH
8 Brtu & B N SR ORI S Bt 4 R Ak
Vi 35 B SE B AR 77 A0 R B A R I A0, IFK )11 2
JG 19 YOLOvSs-CSD iE 8 38 8 2] 52 50 I 15 19 405 14
AR, LU X 8 BERLA A BeA Hh person .
support . E-locomotive 55 ( SZ #1148 ML A FF B AL | P 2E AL
RISk CRIEVLARE S,  F R AR PL MR A 5L S H AL
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Z2) T FhOCEHE H AR Y SRR

YOLOv5s-SCD [P B i &5 3% 4 frw, i
TensorRT-FP16 5| % i # J5 , >4 £ A A< #it & ( Batch
size) ¢ iE 4 32 W}, NVIDIA Jetson Xavier NX 35 il #iz Y
GPU Al 358 5 i R FH £ . YOLOvSs-CSD X i 48 & 1%
BRI AL B AT ] B 265, M 0. 4 s, B (&1 4 R A () i oy | HLG
SIS AG 0 8 RE R 38.6 fps, #3E F YOLOv s, BEAIK F
YOLOv12s, YOLOvSs . YOLOv7-tiny, {H & F YOLOv8s 5
YOLOV9s [ oy A U A8 - by AREA0 B 4 A0 S5 o A ) i
SRR UE AT, S G 00 2 SRS I 3 B AR T 24 fps,
I, YOLOvSs-CSD 7558 I8 23t 1 mT L%l Bl 52 36 00
V-5 ST I Z AR g5 B 22 0B v O HE H bR
SRR . SRR S W 15 B, AR Sl i S
Mk F 4 XF YOLOvSs ~ YOLOvI2s 6 Fl ( YOLOvSs ~
YOLOV9s 4 Fft) YOLO % 51 28 L4 I 54 % 5 YOLOvSs-

(a) YOLOVSs

(b) YOLOv7-tiny

(c) YOLOv8s

(d) YOLOV9s

(e) YOLOvl11s

(f) YOLOvVI12s
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Fig. 15 Experimental platform for test robot
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Fig. 16  Visual presentation of test results
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Table 4 Performance test results of YOLOv5s-SCD
[ SRR/ (x10°) 1% 1580/ GFLOPs SIC s D0 4/ fps HiT AL B/ ms BA Pl BRAS []/ ms
YOLOvS5s 6.70 15.8 47.6 0.8 19.3
YOLOv7-tiny 5.75 13.2 48.3 1.0 18.7
YOLOv8s 10. 62 28.5 35.5 1.7 25.3
YOLOv9s 9.33 39.8 28.4 0.5 33.6
YOLOvl1ls 9.43 21.6 41.1 1.6 21.3
YOLOv12s 9.26 21.5 44. 1 1.5 20.0
YOLOv5s-CSD 10. 04 15.7 38.6 0.4 24.8

M & 16 AT AL ST R A 5 R R AR L R,
YOLOv7-tiny ~ YOLOv3s-CSD 6 Ff#GilI 874 %} S-cutting ¥5:
TS B 75 T 90% , 3 H. YOLOv5s-CSD % S-cutting #6171
YR E, 1K 96% , 1] YOLOvSs X S-cutting 6 K5 B f
IR 82% , Xif T BERE A it a2t/ ll 3% 5, YOLOVSs-
CSD Xf R-cutting FYAGINAF B 5 55, 38 92%, Tl YOLOVSs |
YOLOv7-tiny ,YOLOv8s . YOLOv11s 4 F % 75X} R-cutting
R R 322 IR T 90% , X F AHLIR A% 3 A5 1 S ki
FEAL 5t , YOLOv5s-CSD X support , person , A-jumbolter .
H-jumbolter 4 2 G5 H b (1% 46 WA B2 = T HoAth 6 A5
%, YOLOvSs ~ YOLOv12s 4 FE: 4} support 9K 25
% KT 90%, I H YOLOv7-tiny 5 YOLOv8s X A-
jumbolter fEFEIRRIE ML, XFFAFAE/N B bR RUE 1 # B iz
BifE ¥ 5, YOLOvSs-CSD X E-locomotive 6 I 4 & fix
15,35 94% . R 255 BBl UL, 78 SE 8 &
I, YOLOv5s-CSD X person ~ E-locomotive 7 KX H bR
FASINRG FE I 7E 90. 0% VUL, HAFFAE TR SRR 1 1L,
LEA R IIPERE IR, I8 H TR0 I T 2R 2415k 5
S SCEE B ARR SIS AT

4 & 8

XTI I N e SR SR S Bl s A 2
BT 58 5T 2 5 280 e 5 S 7R B
S8 S ARSI A R R A 4 ) R, AR SCHR Y T — R T
PLESALBE I 2 3 5 O B H AR A I 5375 ( YOLOvSs-
CSD) . T4, M CGNet BBy Ja 385 4 ik 22 2% 2T AL
il A B B 305 |5 0 W 348 5, 3 9 2% 119 R AE 2 R
FIFH SlimNeck 553 (1438 18 TR Uk 5 — W R G 9 & 32 T 3
P28 B RRE A5 RE T 5 FE 1 Dyhead 5B 5 AG I Sk /)
ZUEAE BB RE T LR T RIS AR 1) 2 A 45 2k 5 43 2
Bk, Rk, ETAENETZ B = 8iEES
AutoDL z [Ijt 55 #% JF J& 15 Ml 52 56 FXT b SC 56, B uE T
YOLOv5s-CSD LB RE . 5c)m , ¥ YOLOvSs-CSD if#%
T B SN & o A AR SE PR 2 e R AR T
TRRIMERE  SCIR R AR S LI I T 25

S 2R BRSEE rp O AR A PREAGLIN 4K i 3 o 5 3 )
WCARPLR SRR B S I 25 5 52 3] 22 55 I PR T
P, FECBEE BT A%, 5 )5 % B %@ RGB AHHL S
CLANRAGARDLAH 5 R AR Bl B, 0 T 45
PR X Hs R A B 5[] I b Ak SE R R I R R E
(Rl R7 RN
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