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摘　 要:航空变压整流器(transformer
 

rectifier
 

unit,
 

TRU)是飞机二次电源系统中关键电能变换装置之一,在 TRU 工作过程中易

受温湿度变化和负载波动的影响导致其组成元件出现相应故障,降低设备的可靠性继而影响飞航安全。 针对 TRU 硬件故障类

别多且故障数据特征相似导致故障定位困难的问题,提出一种基于改进堆叠降噪自编码器( stacked
 

denoising
 

auto
 

encoder,
 

SDAE)结合遗传算法(genetic
 

algorithm,
 

GA)优化 Transformer 的故障诊断方法。 首先,对采集的故障数据进行归一化处理;其
次,在 SDAE 训练阶段引入对比中心损失(contrastive

 

center
 

loss,
 

CCL)函数,利用样本标签信息在 SDAE 逐层非线性映射中学习

最佳分类特征,实现类内距离缩小,类间距离扩大。 同时,将 CCL 与重构成本损失( reconstructing
 

cost
 

losses,
 

RCL)函数联合优

化得到基于改进 SDAE 特征提取模块,实现对原始故障数据的特征预提取。 为进一步提取特征信息并诊断,构建 GA 优化

Transformer 的诊断模块,提高故障检测的准确率。 最后,利用 Simulink 仿真故障数据与现有诊断方法进行对比研究。 结果表

明,所提方法可以较好的实现 101 种故障的诊断,准确率达 96. 05%,且具有良好的抗噪能力。
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Abstract:
 

The
 

transformer
 

rectifier
 

unit
 

(TRU)
 

is
 

one
 

of
 

the
 

key
 

power
 

conversion
 

devices
 

in
 

the
 

secondary
 

power
 

supply
 

system
 

of
 

an
 

airplane.
 

During
 

the
 

operation
 

of
 

the
 

TRU,
 

it
 

is
 

susceptible
 

to
 

temperature
 

and
 

humidity
 

variations
 

and
 

load
 

fluctuations,
 

leading
 

to
 

corresponding
 

failures
 

of
 

its
 

components,
 

which
 

reduces
 

the
 

reliability
 

of
 

the
 

equipment
 

and
 

then
 

affects
 

the
 

safety
 

of
 

flight.
 

In
 

view
 

of
 

the
 

problem
 

that
 

TRU
 

hardware
 

has
 

many
 

fault
 

categories
 

and
 

similar
 

fault
 

data
 

characteristics,
 

a
 

fault
 

diagnosis
 

method
 

based
 

on
 

stacked
 

denoising
 

auto
 

encoder
 

(SDAE)
 

combined
 

with
 

genetic
 

algorithm
 

( GA)
 

to
 

optimize
 

the
 

Transformer
 

is
 

proposed.
 

The
 

following
 

is
 

an
 

example
 

of
 

the
 

optimization
 

of
 

Transformer’ s
 

fault
 

diagnosis
 

method.
 

First,
 

the
 

collected
 

fault
 

data
 

are
 

normalized;
 

second,
 

the
 

contrastive
 

center
 

loss
 

( CCL)
 

function
 

is
 

introduced
 

in
 

the
 

training
 

phase
 

of
 

SDAE
 

to
 

learn
 

the
 

optimal
 

classification
 

features
 

in
 

the
 

layer-by-layer
 

nonlinear
 

mapping
 

of
 

SDAE
 

by
 

using
 

the
 

sample
 

label
 

information,
 

so
 

as
 

to
 

realize
 

the
 

reduction
 

of
 

the
 

distance
 

within
 

classes
 

and
 

the
 

expansion
 

of
 

the
 

distance
 

between
 

classes.
 

At
 

the
 

same
 

time,
 

the
 

CCL
 

and
 

reconstructing
 

cost
 

losses
 

(RCL)
 

function
 

are
 

jointly
 

optimized
 

to
 

obtain
 

the
 

improved
 

SDAE-based
 

feature
 

extraction
 

module,
 

which
 

realizes
 

the
 

feature
 

pre-extraction
 

of
 

the
 

original
 

fault
 

data;
 

in
 

order
 

to
 

further
 

extract
 

the
 

feature
 

information
 

and
 

diagnose
 

the
 

problem,
 

the
 

diagnostic
 

module
 

of
 

the
 

GA-optimized
 

Transformer
 

is
 

constructed
 

to
 

improve
 

the
 

accuracy
 

of
 

fault
 

detection.
 

Finally,
 

Simulink
 

is
 

utilized
 

to
 

simulate
 

the
 

fault
 

data
 

to
 

compare
 

with
 

the
 

existing
 

diagnostic
 

methods.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

can
 

better
 

realize
 

the
 

diagnosis
 

of
 

101
 

kinds
 

of
 

faults,
 

with
 

an
 

accuracy
 

rate
 

of
 

96. 05%
 

and
 

good
 

noise
 

resistance.
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transformer
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autoencoders;
 

transformer
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0　 引　 言

　 　 航空变压整流器( transformer
 

rectifier
 

unit,
 

TRU) 是

飞机电源系统中的关键部件之一,负责将电源系统中

115
 

V
 

400
 

Hz 交流电转换成 28. 5
 

V 低压直流或 270
 

V 高

压直流,为机载电子设备和其他重要系统提供稳定的直

流电源[1-2] 。 在实际运行中,TRU 的工作环境会经历温

度、湿度等大幅变化,随着运行时间的增加内部器件会出

现老化、腐蚀等现象,一旦出现故障,不仅会直接影响到

机载设备的正常工作,还可能威胁到飞行安全[3] ,因此,
TRU 的故障诊断及健康状态监控,对飞机的安全可靠运

行具有重要的现实意义。
目前在电气系统故障诊断领域的研究可归纳为基于

解析模型的方法、信号处理的方法以及人工智能的方法

3 种类型[4] 。 基于解析模型的方法需要对系统建立精确

的数学模型,然而,电气系统中功率型器件的开关动作会

产生严重的非线性特性,导致精确模型建立不易[5] 。 基

于信号处理的方法多从故障信号进行分析,利用快速傅

里叶变换[6] ( fast
 

Fourier
 

transform,
 

FFT )、 小波 包 分

解[7](wavelet
 

packet
 

decomposition,
 

WPD)、集成经验模态

分解[8] ( ensemble
 

empirical
 

modal
 

decomposition,
 

EEMD)
等方法对原始故障信号进行处理。 FFT 对故障信号的局

部特征提取效果较差,而 WPD 则可以弥补这一缺点,但
分析对比步骤繁多。 EEMD 虽解决了经验模态分解存在

的模态混淆问题,但在数据的降噪过程中易丢失数据的

重要特征。 基于人工智能法又可以分为专家系统( expert
 

system,ES),支持向量机( support
 

vector
 

machine,
 

SVM)
和人工神经网络(artificial

 

neural
 

network,ANN),ES 在实

际应用中相关知识库建立不易;SVM 本质上是二分类,
在多类别问题上处理困难;ANN 因其卓越的数据处理能

力在故障诊断领域被学者广泛研究和使用[9] 。
以上诊断方法各有优缺点,为了优势互补,两种或者

多种方法的集成在 TRU 故障诊断领域已经成为研究热

点。 例如,将基于信号处理的方法与人工智能方法集成

实现 TRU 故障诊断,文献[10]利用 WPD 将故障信号分

解,再利用 ANN 提取故障的频谱特征并进行诊断,虽取

得不错的诊断效果,但对 TRU 所有硬件故障模式诊断的

准确率仍有提升空间。 文献[11] 利用设定阈值判断故

障开短路, 之后利用主成分分析 ( principal
 

component
 

analysis,
 

PCA)和 SVM 实现 TRU 整流二极管开短路故障

分级诊断,但对于 TRU 硬件故障模式诊断不够全面。 文

献[12]考虑到基于信号处理方法的局限性,使用堆叠降

噪自编码器 ( stacked
 

denoising
 

autoencoders,
 

SDAE) 和

SVM 的方法实现 TRU 整流二极管的故障诊断,虽有较好

的准确率,但在故障模过多时,特征空间中容易出现特征

混淆问题,影响后续的故障诊断准确率。 为解决上述问

题,本文提出一种基于改进 SDAE-GATransformer 的航空

变压整流器故障诊断方法,实现故障定位到元件。 利用

改进 SDAE 进行故障特征提取与降维,考虑到输入量本

身是序列数据,采用 GA 优化 Transformer 进一步特征提

取并诊断。 通过实验对比分析,该方法表现出良好的性

能,为 TRU 故障诊断提供一种新思路。

1　 问题描述

　 　 本文研究对象为隔离型 12 脉冲变压整流( isolated
 

transformer
 

rectifier
 

unit,
 

ITRU-12)。 其主要结构有一个

移相变压器,两组三相整流桥 RF1 和 RF2,一个平衡电抗

器,如图 1 所示。 为了便于后续故障分类研究,将变压器

绕组按顺序标号 1 ~ 9,平衡电抗器为 L1 ~ L2,整流二极管

为 D1 ~ D12。 TRU 的典型硬件故障模式[13] 有各变压器绕

组间发生开路故障( open-circuit
 

fault
 

between
 

windings,
OCW)、单桥臂短路故障(single-diode

 

short,SDS)、单桥臂

开路故障(single-diode
 

open,SDO)、双桥臂同时发生开路

故障( double-diode
 

open,DDO) 和平衡电抗相间开路故

障(open-circuit
 

fault
 

in
 

balance
 

reactor,OCR) 5 大故障类

型,其中各大类型的故障又分为同类型元器件不同位置

故障,共计 101 种故障类别。
ITRU-12 带额定负载时,正常情况与不同故障模式

的部分三相输入电流波形如图 2 所示,代表 A、B、C 三相

输入电流,整流输出电压波形如图 3 所示。 正常情况下,
移相变压器输出两组相位差 30°的三相电压,两组整流桥

中 12 个二极管规律导通,在工频周期形成 12 个自然换

相,平衡电抗器实现并联整流桥间的动态均流控制,此时

三相输入电流为规整阶梯波,整流输出电压波形呈现等

间隔周期脉动,波形中相邻峰相位差 30°。 OCR 故障时,
仅有一组整流桥工作,ITRU-12 由 12 脉冲变为 6 脉冲,输
出电压波形也呈现等间隔周期脉动,但波形中相邻峰相

位差 60°;OCW 故障时,移相变压器输出电压不再满足特

定的相位和幅值关系,导致整流二极管不再按照原先的

导通电角度和顺序导通,三相输入电流畸变严重,整流输

出电压纹波过大;SDO 和 DDO 故障时,由于整流桥存在

开路,二极管导通电流会发生改变,导致三相输入电流产

生畸变,SDO 故障时整流输出电压波形相较于正常情况

表现为缺少对应的波头,DDO 故障时整流输出电压波形

一般表现为单二极管故障时波形叠加;SDS 故障时,会造

成移相变压器副边绕组相间短路,使电网侧输入端承受

极大的冲击电流,整流输出电压也严重不规则。
为全面反映不同故障模式下的故障特点,本文选取

输入三相电流和整流输出电压作为诊断判据。 如何快速

准确的从原始故障数据中精准提取出故障分类特征,则
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图 1　 ITRU-12 电气原理

Fig. 1　 ITRU-12
 

electrical
 

principle

图 2　 部分输入三相电流波形

Fig. 2　 Partial
 

input
 

three-phase
 

current
 

waveforms

是 TRU 故障诊断的关键。 本文针对这一问题进行研究,
设计基于改进 SDAE-GATransformer 的 TRU 故障诊断方

法,实现更优的诊断性能。

2　 基于改进 SDAE-GATransformer 的 TRU 故
障诊断方法

　 　 故障诊断模型总体结构如图 4 所示。 基于改进

SDAE-GATransformer 的 TRU 故障诊断方法包括 5 个模

块,输入层、 基于改进 SDAE 的特征提取模块、 基于

Transformer 的诊断模块、基 GA 的 Transformer 超参数寻

优模块和输出层。 首先通过输入层采集故障原始序列数

据并进行归一化预处理,之后将预处理后的数据输入基

于改进 SDAE 的特征提取模块,实现关键分类特征提取

与降维。 然后,将所提取的故障特征信息传递至基于

Transformer 的诊断模块,该模块能够有效地捕捉故障特

征长距离依赖关系,从而提高故障诊断的准确率。 同时

引入 GA 对诊断模块的超参数寻优,提升诊断模块的泛

化能力和诊断效率;最后输出层输出诊断结果。
2. 1　 输入层

　 　 为消除电压电流数据量纲影响,降低计算复杂度和

提升模型收敛速度,对数据进行归一化到[ -1,1]区间:
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图 3　 部分整流输出压波形

Fig. 3　 Waveform
 

of
 

partially
 

rectified
 

output
 

voltage

图 4　 故障诊断模型总体结构

Fig. 4　 Overall
 

structure
 

of
 

the
 

fault
 

diagnosis
 

model

XN = 2
X - Xmin

Xmax - Xmin

- 1 (1)

式中: XN 是预处理输出数据; X 是原始数据; Xmax 是单个

样本中的最大值; Xmin 是单个样本中的最小值。
2. 2　 基于改进 SDAE 的特征提取模块

　 　 传统 SDAE 在故障类别数较少时,展现出较好的特
征提取能力[14-15] 。 然而,当故障类别数过多时,其训练目

标仅通过最小化重构成本损失( reconstructing
 

cost
 

losses,
 

RCL)函数来实现,而未能充分考虑类别标签信息。 因

此,所提取的特征可能包含与分类无关的信息,进而影响

后续故障诊断的准确性。
针对高维过多类别故障数据,不仅能从原始故障数

据中提取关键特征并有效降维,还能保留显著分类判别

信息,从而增强特征类间可分性,优化后续分类模型的泛

化性能,本文提出一种改进 SDAE 模型。 该模型通过联

合对比中心损失( contrastive
 

center
 

loss,
 

CCL)函数[16] 和

RCL 函数来优化 SDAE,其结构如图 5 所示。
图 5 中,fθ 为编码过程,将各层的输入数据映射到隐

藏层。 各隐藏层和输入层之间的关系为:
H = fθ(WeX + be) = σ(Wen

× fn-1(X) + ben
) (2)



　 第 11 期 基于改进 SDAE-GATransformer 的航空变压整流器故障诊断方法 ·207　　 ·

图 5　 改进 SDAE 结构

Fig. 5　 Improved
 

SDAE
 

structure
 

diagram

式中: We 为编码器的权重矩阵; be 为编码器的偏置向

量;训练时 X 为添加高斯噪声后的数据; H 为 SDAE 隐藏

层数据; σ(·) 为非线性激活 Tanh 函数。

σ( z) = ez - e -z

ez + e -z (3)

gθ 为解码过程,旨在训练时从各隐藏层降噪重构出

数据,用以计算重构误差成本损失。 重构过程为:
　 Y = gθ(VdH + cd) =σ(Vdn

σ(Wen
× fn-1(X) + ben

) + cdn)
(4)

式中: Vd 为解码器件的权重矩阵; cd 为解码器的偏置向

量; Y 为重构输出的数据。 CCL 在深度神经网络逐层非

线性映射的应用为在特征空间尽可能让类内间距缩小,
类间间距扩大。 如带标签仿真故障数据 X={x1,x2,…,xn}
由 n 个样本构成,其中有 K 个类别,X = {X1,X2,…,XK},
每个样本有 m 维。 对比中心损失函数在特征空间先为

每个类别生成一个相同维度的类别中心向量 c ,计算中

心损失为:

Sp = 1
2 ∑

m

i
‖h i - cyi

‖2
2 (5)

式中: h i = fθ(WeX
j
i + be) 为隐藏层输出数据; cyi

为对应

类别的中心向量。 所有样本与非对应类别中心的距离表

示为:

Sn = ∑
m

i = 1
∑ k

j = 1,j≠yi
‖h i - c j‖

2
2 (6)

式中: c j 为本数据非对应类别中心向量。 所以对比中心

损失函数为:

Lcct =
SP

Sn

= 1
2 ∑

m

i = 1

‖h i - cyi
‖2

2

∑ k

j = 1,j≠yi
‖h i - c j‖

2
2 + δ

(7)

为了防止公式无意义,令 δ = 10 -6。 本文 RCL 函

数为:

Lr =
1

2m∑ m

i = 1
‖h i - y i‖

2
2 (8)

式中: m 为样本数量;‖·‖为 2 的范数; h i 为上一个隐

藏层输出数据; y i 为重构输出数据。 改进后的堆叠降噪

自编码器的目标损失函数为:
L{We,be,Vd,cd} = Lr + Lcct (9)
在 SDAE 逐层贪婪训练中,联合 RCL 与 CCL 的协同

优化机制可有效规范隐层表征学习过程。 其中 RCL 通

过最小化原始输入与解码输出的差异,驱动网络有效捕

获关键特征;CCL 函数则通过建立类内紧凑性与类间差

异性的双重约束,引导特征空间满足最大可分性准则。
该联合优化策略通过反向传播算法实现网络参数的同步

迭代更新,提升模型特征提取性能。
2. 3　 基于 Transformer 的诊断模块

　 　 经过改进 SDAE 提取后的故障样本在特征空间虽已

最大化的实现特征提取目标,但仍有少许故障样本在特

征提取空间存在特征混淆问题,也考虑到原始故障数据

是序列数据,因此,本文基于 Transformer 设计诊断模块,
旨在进一步特征提取的同时实现故障诊断。 传统的

Transformer 是编码加解码的结构,将其直接应用到 TRU
故障诊断领域并不适用。 本文舍去解码部分,设计一个

分类器代替解码,在简化模型结构同时,提高模型诊断效

率。 基于 Transformer 的诊断模块是通过堆叠单个编码模

块实现的。 每个基础模块包含一个多头注意力机

制(multi-head
 

attention,
 

MHA )、 一 个 前 馈 神 经 网

络(feedforward
 

neural
 

network,
 

FNN) 和残差连接与层归

一化[17-18] 。
1)多头注意力机制

MHA 是 Transformer 中一个核心部分,其主要思想是

通过多个头并行地执行注意力操作,从而捕捉输入中不

同位置间的关系。 假设输入的故障样本数据是 X = [x1,
x2,…,xn] 每个向量的维度是 d; 先将输入向量转换为查

询
 

(Q)、键
 

(K)和值
 

(V),公式为:
Q = XWQ (10)
K = XWK (11)
V = XWV (12)

式中: WQ、WK、WV 是可学习权重。 使用点积计算 Q 和 K
之间的相似度,并进行缩放:

Attention(Q,K,V) = softmax(QK
T

dK

)V (13)

式中: dK 是键的维度,用于缩放以避免数值过大。 MHA
的思想就是重复上述过,让每个头使用不同的权重矩阵:

Head i = Attention(QWQi
,KWKi

,VWVi
) (14)

式中: WQi
、WKi

、WVi
表示第 i 个注意力头中 Q、K、V 的权

重矩阵。 最后将所有头的输出拼接起来并通过线性

变换:
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MHA(Q,K,V) = Concat(Head1,Head2,…,Headh)WO

(15)
式中: WO 为最后线性变换的权重矩阵。 多头注意力机

制能够让模型关注局部和全局的重要特征,从而提高了

模型的表达能力。
2)前馈神经网络

前馈神经网是一种基本的 ANN 结构,由输入层、隐
藏层和输出层构成。 信息在网络中单向流动,经过加权

求和后,通过激活函数进行非线性变换,前馈神经网络将

多头注意力提取到的特征映射为更加抽象的特征表达。
考虑到 Relu 激活函数存在导数不连续且在负值部分存

在死区现象,改用 GeLU 激活函数:

σ(Z) = Z· 1
2

(1 + erf( Z
2

)) (16)

式中: erf(·) 是误差函数,用以计算 Z 的高斯积分,这样

可以使得 GeLU 具有平滑且单调的性质。 此外引入

Dropout
 

机制避免前馈神经网络模型过拟合。
3)残差连接加层归一化

残差连接加层归一化被添加在 Transformer 的 MHA
和 FNN 的输出部分,公式为:

O = LayerNorm(x + Sublayer(X)) (17)
4)分类层

利 FNN 搭建一个故障分类器。 该分类器结构包括

一个全连接层和 Softmax 层。 每个类别被预测的概率值

如下:

P j = Softmax(Z j) = eZ j

∑ K

j = 1
eZ j

(18)

Z j = XW j + b j (19)
式中: P j 是每个类别输出的概率; W j 和 b j 分别是全连接

层的对应类别的可学习权偏置; K 为类别数,利用极大似

然准则即可实现 TRU 的故障诊断。

2. 4　 基于遗传算法的诊断模块超参数寻优模块

　 　 基于 Transformer 的诊断模块不同超参数组合直接影

响收敛速度和诊断准确率。 因此利用 GA 在求解空间自

适应搜索问题的最优解[19] 。 以诊断模块的准确率为目

标函数,基本步骤包括初始化种群、评估适应度、选择优

秀个体、交叉生成新个体以及变异以增加多样性。 经过

多代演化,种群逐渐逼近最优解本文遗传算法采用实值

编码、模拟二进制交叉、多项式变异和轮盘赌选择,如

图 6 所示。

图 6　 GA 优化流程

Fig. 6　 GA
 

optimization
 

flowchart

3　 仿真与实验

3. 1　 ITRU-12 仿真模型

　 　 文本利用 Simulink 对 ITRU-12 进行建模仿真,如图 7
所示。 负载为纯电阻负载,仿真输出的电压电流的幅值、
波纹等相关参数都满足 EMC 试验标准 DO-160G。

图 7　 ITRU-12 仿真模型

Fig. 7　 ITRU-12
 

simulation
 

model
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3. 2　 故障仿真与数据采集

　 　 将正常也视为一种故障模式( Normal) 共 102 种故

障,按 Normal、OCR、OCW、SDS、SDO、DDO 的顺序,为其

从 0 ~ 101 打上对应的标签,如表 1 所示。 设置仿真时

间 0. 6
 

s,采样频率为 1
 

000
 

kHz,将采集数据限制在

20
 

000 个点,以 ITRU-12 输入三相电流和整流输出的

电压作为原始故障信号进行采集,每种故障采集 30
次,得到 3

 

060×20
 

000 原始数据集。 之后将经过预处

理的故障数据按照 7 ∶ 3 的比例划分成训练集和测

试集。
表 1　 故障类别及样本分布

Table
 

1　 Fault
 

type
 

and
 

sample
 

distribution
故障标签 故障模式 种类 样本数量 标签 故障模式 种类 样本数量

0 Normal 1 种 30 66~ 73 D4D5O~ D4D12O 8 种 240
1 ~ 2 OCR1 ~ OCR2 2 种 60 74~ 80 D5D6O~ D5D12O 7 种 210

3 ~ 11 OCW1 ~ OCW9 9 种 270 81~ 86 D6D7O~ D6D12O 6 种 180
12 ~ 23 SD1S ~ SD12S 12 种 360 87~ 91 D7D8O~ D7D12O 5 种 150
24 ~ 35 SD1O~ SD12O 12 种 360 92~ 95 D8D9O~ D8D12O 4 种 120
36 ~ 46 D1D2O~ D1D12O 11 种 330 96~ 98 D9D10O~ D9D12 3 种 900
47 ~ 56 D2D3O~ D2D12O 10 种 300 99 ~ 100 D10D11O~ D10D12O 2 种 600
57 ~ 65 D3D4O~ D3D12O 9 种 270 101 D11D120 1 种 300

3. 3　 TRU 故障诊断实验

　 　 1)改进 SDAE 实验

改进 SDAE 特征提取模块的性能主要受到隐藏层数

和隐藏层节点数等结构参数的影响。 设定网络的结构参

数为 3 层隐藏层,其中每层的节点数依次设置为[1
 

000,
500,250],训练优化器采用 Adam,模型学习率为 0. 001。
改进 SDAE 特征提取模块与传统 SDAE 特征提取模块,
提取的故障特征利用 t-SNE 技术二维可视化,如图 8
所示。

由图 8(a)和 8(b)可知,相较于未改进 SDAE 的特征

提取效果,本文方法有较大提升,从图 8( a)可以看出,绝
大部分的故障特征都已经实现缩小类内间距,扩大类间

间距,但任有少部分依旧存在特征混淆问题,其中标签为

6 的 OCW4 和标签为 38 的 D1D4O、标签为 7 的 OCW5 和

标签为 59 的 D3D6O、标签为 8 的 OCW6 和标签为 49 的

D2D5O 几乎完全重叠,为此,需要进一步特征提取,以获

得到更好的故障特征表达。

图 8　 改进 SDAE 与未改进 SDAE 特征提取二维可视化

Fig. 8　 Two-dimensional
 

visualization
 

of
 

feature
 

extraction
 

with
 

and
 

without
 

improved
 

SDAE
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　 　 2)基于遗传算法优化 Transformer 的诊断模块实验

影响诊断模型性能的 5 个主要超参数,注意力机制

的多头 数 ( MH )、 编 码 块 个 数 ( EN )、 隐 藏 层 节 点

数(HD)、Dropout
 

P 和学习率(Lr),与之对应的超参数取

值范围,如表 2 所示。
表 2　 超参数及取值范围

Table
 

2　 Hyperparameters
 

and
 

value
 

ranges
超参数 超参数范围

MH [2,10]
EN [1,6]
HD [16,256]
P [0. 01,0. 2]
Lr [0. 01,0. 000

 

01]

　 　 本文利用 GA 优化组合超参数,选取模型在训练集

上的准确率作为目标函数,种群数量 50,交叉概率 0. 7,
变异概率 0. 3,算法迭代 200 次,目标函数变化曲线如图

9 所示。

图 9　 GA 超参数优化过程

Fig. 9　 GA
 

hyperparameter
 

optimization
 

process

　 　 经过 15 次迭代后,目标函数趋于稳定。 在目标函数

为最优值时获得一组超参数组合,MH、EN、HD、P、Lr 依

次为 5、 3、 197、 0. 03、 0. 000
 

1, 将 超 参 数 组 合 带 入

Transformer 诊断模型训练,得到损失率和准确率变化曲

线如图 10 所示。

图 10　 训练准确率和损失率变化曲线

Fig. 10　 Training
 

accuracy
 

and
 

loss
 

rate
 

variation
 

curves

经过 5 次迭代后训练准确率达到 95% 以上,迭代

100 次时,准确率可达 96. 34%,且训练损失函数基本接

近 0,验证了本文方法快速性和有效性。
图 11 所示为单次测试样本诊断结果图。 204 个测

试样本中只有 32、71、83、94、124、138、170、183 号样本共

计 8 个样本诊断错误,故障诊断准确率有 96. 07%。 图 11
中,纵轴表示每种故障类别标签,故标签范围是 0 ~ 101。

图 11　 测试集故障诊断结果

Fig. 11　 Diagram
 

of
 

test
 

set
 

troubleshooting
 

results

　 　 对模型进行 20 次诊断试验,计算其平均准确率作为

诊断准确率, 可得模型在训练集上诊断准确率 为

96. 14%,测试集上诊断准确率为 96. 05%,训练集准确率

与测试集准确率差别较小,表明基于 GATransformer 的诊
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断模型经过训练后性能良好,也表明此算法对 TRU 故障

故障定位到元件具有较好的诊断效果。
3)与其他算法对比

为验 证 模 型 的 有 效 性, 与 SDAE-PSOSVM[12] 、
CNN[13] 、ResNet-BiLSTM[20] 模型进行对比实验,每个模型

进行 20 次重复实验,每次迭代 100 次,得到对应模型的

诊断准确率( precision)、召回率 ( recall)、 F1 得分 ( F1-
Score)和每次输出所需时间取均值,实验结果如表 3 所

示,其中 Recall 的计算公式为:

Recall = T
T + F

(20)

式中: T 为诊断正确的样本数; F 为诊断错误的样本数。
F1-Score 计算公式如下

F1 - Score = 2 × Precision × Recall
Precision + Recall

(21)

表 3　 不同模型性能对比

Table
 

3　 Performance
 

comparison
 

of
 

different
 

models
序号 模型名称 Precision / % Recall / % F1-Score 测试时间 / s

1 本文 96. 05 96. 34 0. 96 0. 133
 

2
3 SDAE-PSOSVM 82. 02 82. 34 0. 82 0. 073

 

0
4 CNN 90. 69 90. 72 0. 91 0. 701

 

2
5 ResNet-BiLSTM 91. 48 91. 57 0. 92 2. 530

 

2

　 　 由表 3 可以看出,在 100 次迭代的情况下,本方法在

Precision、Recall 和 F1-Score 三个方面均展现出优于其他

3 种模型的表现。 与其他 3 个模型中最高性能的 ResNet-
BiLSTM 模型相比,本文方法分别提高 5. 00%、5. 21%和

4. 21%,与最低性能的 SDAE-PSOSVM 相比,本方法分别

提高 17. 1%、17. 00%和 17. 07%。
其次,由表 3 中测试时间对比结果可知,尽管本文方法

的单次测试所需时间略长于 SDAE-PSOSVM 的 0. 073
 

0
 

s,达
到 0. 133

 

2
 

s。 但本文所提方法的诊断效率依旧可以满足

实际 TRU 离线或在线检测需求。
4)模型抗噪性能实验

为验证所提方法的抗噪性能,在测试集上添加不同

信噪比的高斯白噪声进行对比测试,诊断结果如表 4
所示。

表 4　 不同信噪比对诊断结果影响

Table
 

4　 Effect
 

of
 

different
 

SNR
 

on
 

diagnostic
 

results
信噪比 / dB 准确率 / %

20 94. 55
25 95. 45
30 95. 64
35 95. 78
40 95. 92
45 95. 78
50 95. 92

无噪声 96. 05

　 　 由表 4 可知,当信噪比从 20 ~ 50
 

dB 变化时,本文方

法依有 94. 55%以上的诊断准确率。 测试集无噪声时诊

断准确率为最高,为 96. 05%。 随着噪声含量的增大,测
试集的诊断准确率有小幅度下降,当信噪比为 20

 

dB 时,
测试集的准确率为最低,为 94. 55%,与无噪声相比相差

了 1. 5%。 可以认为本文所提方法具有良好的抗噪能力,

能够应对 TRU 故障诊断时出现的噪声情况。

4　 结　 论

　 　 本文提出了基于改进 SDAE-GATransformer 的 TRU
故障诊断方法,并将其应用于飞机电源设备 TRU 的故障

诊断。 利用 TRU 三相输入电流数据和整流输出电压数

据实现其硬件故障定位到元件,得出如下结论:
1)在 TRU 故障类别过多且不同故障模式的数据类

似情况下,在传统 SDAE 中引 CCL 函数,可高效实现类内

间距缩小,类间间距扩大的故障特征提取。
2)简化 Transformer 结构,舍去其解码块部分以便适

用于航空变压整流器的故障分类,并利用 GA 优化模块

超参数实现高效的故障诊断。
3)通过对比实验该方法在 101 种故障模式下可以较

为准确的实现故障分类,准确率达 96. 05%,且具有良好

的抗噪能力,为相关故障诊断研究提供了一种新的思路。
但由于 TRU 硬件故障模式特征复杂多变,所提方法

在特征提取和诊断上仍有提升空间。 下一步将针对 TRU
故障特点,结合多源数据融合的方式,实现高效的 TRU
故障诊断。
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