H39% 10 HL T 5 AR 2 4R Vol.39 No. 10
2025 410 A JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENTATION - 165 -

DOLI: 10. 13382/j. jemi. B2508113

ETERMIMNENRERERNUTIE"

hm & FHBL ERT
(1. T T TREARKEEAM 2R S 125105;2. EMIT TEBIAERAR HO  115005)

T AT R DA TR DR MR P RS R T S BCE R TR IR SRR BE TN R, AR AR Ak B AN - iy v 24 9 B R
RS RGIN 3 i (F S57 (] 5T, 418 G — b i A UK o0 245 19 I e e ARG 5 ¥ . S SR TR T IR 2619 SCiForest S5 A6 I 55
= WD H N S S R4 r e, R s Pt AR B 2 b e R 4% 0 4B A4 1) 2B B4 R 2% ( denoising autoencoder-based generative
adversarial network, DGAN) , 5& T i 1R 22 /04 Z [A] ) Wasserstein FE 5 E X HAINZ: Hin, A 0T E 006 B B MEA, WA
SR RGN ) PR a5 0 g — B R [ g A £ ( denoising autoencoder, DAE) SN ESEREAR 5 A iR A
TN A3 B OUAL T B A 8 3 AR R e SR 5 PR 4EAR B, AR SR AR Y RIB BB T . ), B b IS I B3 s ARt & 45
AR 22 285 FX o] ] P0G ER BT A R AE AR Y (feature fusion model of CNN and BiGRU, CNN-BiGRU-FFusion) , 7EFE 4l £ 25 [H] 45
AN, FPAEAE ) REAt B SC B2 S5 K00, 78 NSL-KDD %Kil E AR5 F1 238035185 92. 069% Al 92. 25% , Wik 1 T4
T B AE P4 I et 5 R A 55 P i Bt B, Il CICIDS2017 $HR4E i) S g itk — AP B i LT A7

SRERIA ;Ui AR S ARSI 5 A O T 4% IR 1 Gt g 5 A LR I 4 5 LT | A B 2 I 4 B T

HRESYES: TP393;TNI1L. 7 XEkARIRES: A BERREFERSERT: 510040

Traffic anomaly detection method based on generative adversarial networks
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(1. College of Software, Liaoning Technical University, Huludao 125105, China; 2. State Grid Yingkou
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Abstract: In response to the problems of decreased robustness and insufficient feature expression ability caused by noise and outlier
interference in traffic anomaly detection models, and low minority class detection rates when dealing with imbalanced high-dimensional
massive data, a traffic anomaly detection method based on generative adversarial networks was proposed. Firstly, the clustering based on
SCiForest algorithm is used to detect outliers and reduce their impact on the subsequent training of the generative adversarial network.
Secondly, a denoising autoencoder-based generative adversarial network ( DGAN) is designed to generate reliable synthetic minority class
samples. The network defines its training target based on the Wasserstein distance between reconstructed error distributions, effectively
alleviating the problem of data imbalance. Again, using a denoising autoencoder ( DAE) with the same architecture as the generative
adversarial network discriminator, real and synthetic samples are input for reconstruction training, and the optimized encoder part is
extracted as the feature extraction and dimensionality reduction module to enhance feature expression ability. Finally, the processed data
is input into the feature fusion model of CNN and BiGRU ( CNN-BiGRU-FFusion) model, which completes classification and detection
based on capturing spatial and temporal features. The accuracy and F1 score on the NSL-KDD dataset reached 92.06% and 92. 25% ,
respectively, verifying the superior performance of the proposed method in network traffic anomaly detection tasks. The feasibility of the
method was further validated through experiments on the CICIDS2017 dataset.
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Recall + Precision



5510 3]

BT LR O I 285 )

SR Ty ik <171 -

K. TP TN 43 50 205 IR 73 288y BUts R AR AR
$e; FP A FN 53 B3R5 00 28N Bt FE H RREAREL
3.3 BSHILE

SR PR BRI VL A TN, A Y S
KON E e S 0 AR S RO e R 512 1L RE

1) SCiForest Z4i% &

SCiForest {257 R I FH T 21 Bz 25 K 2 B8 1 2
BICs R TS A BORSBE . 0S8 n_trees 7€ LT I
ST RO

8 1 SIS AS[F] n_trees Ko A6 P4 BE 14 52 Wi | e 2%
T n_trees = 150 FF A I RCR e, 22 BR B BE S AT
NSL-KDD 4 4 LB %) e 45 R a0k 3 Fin

% 3 SCiForest XFRE R mBIEREAHIER /N
Table 3 The size of the sample data before and after

outlier removal using SCiForest

2)DGAN S8

SR DGAN BERY ] 5128 S — A~ BA7 5 24501
XFFRIENE St as . B0 1 A R e ) 28 2 Pl A
90 A2 TT 1) B 23 AL, Vs 7 255 ] (R 248 18 R 50,
A B TR A 225 R R RS g I P 2 5 140 ) e 10 A oz A
PREE—3, AR AF T Re M A O A A B2 1
HEIH—1k, IR ReLU 3476 Rk, X FUIZRZ 1k Arife,
AR SCBEE ISR S B N 0. 06, I 2R i d K% ARk
H (epoch) A 200, 445 A [ e S5 AN (8 0k 3
K epoch B} UIZRFF L2 0L

FIF DGAN XF NSL-KDD %4 4 1 i Probe . R2L #
U2R ZE AT REAY 58, 4309 58 5 000,2 000 1 1 000
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Table 4 Comparison results of different

dimensionality reduction methods (%)
kS Normal DoS Probe R2L U2R
DAE-Small 94. 61 82.61 79. 18 46. 35 38. 15
DAE-Large 95. 86 87.54 83. 60 62. 17 52.09
DAE-Deep 95.23 88. 67 84.95 59.26 49.71
VAE 96. 09 90. 34 86. 28 50. 67 47.96
AL 96. 29 92. 63 90. 95 68.53 55.22
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Table 5 Ablation experiment results (%)

8| SCiForest DGAN DAE  CNN BiGRU f#iE@liAHEIR  Accuracy  Precision  Recall — Fl-score
FEERAEAY . CNN vV 81.23 80. 25 81.23  80.74
FLAR . BiGRU vV 80. 68 82.08  80.68  81.37
CNN+RHIE Rl A v vV 81.75 81.28  81.75  81.51
BiGRU+HFAE il A AR 2 2 81.15 82.61  81.15  81.87
CNN-BiGRU-FFusion vV Vv Vv 82. 40 83.75  82.40  83.07
DAE+CNN-BiGRU-FFusion vV vV vV vV 84.30 85.15  84.30  84.72
DGAN+DAE+CNN-BiGRU-FFusion 2 vV vV VvV Vv 90. 26 90.72  90.26  90.49
AL vV vV VvV VvV VvV vV 92.06 92.45 92,06  92.25
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Table 6 Comparison results with existing models

on the NSL-KDD dataset (%)
ViRiS Accuracy Precision Recall F1-score
k[ 19] 86. 59 88.55 86. 59 86. 88
k[ 20] 90. 99 91.39 90. 94 90. 89
SCHk[ 21 ] 91.74 91.62 91. 86 91.54
SCHk[22] 90. 64 91.78 90. 28 91.05
AL 92.06 92. 45 92.06 92.25
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Table 7 Comparison results with existing models

on the CICIDS2017 dataset (%)
ViRiS Accuracy Precision Recall F1-score
SCHK[ 23] 97. 84 97.73 95.91 96. 81
SCHik[ 24 ] 99. 12 98. 60 98. 20 98. 80
SCHR[ 25] 95.21 88.76 82.59 84.14
k[ 26] 99. 49 99. 26 99.21 99. 23
AL 99. 63 99. 69 99. 63 99. 66

M T W LLE AR SO AE CICIDS2017 di 46
HFEIZEH  HER R 99. 63% , k512K 99. 69% , 73 [1]
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