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摘　 要:针对流量异常检测模型因噪声和离群点干扰导致鲁棒性下降、特征表达能力不足,以及在处理不平衡高维海量数据时

少数类检测率偏低等问题,提出一种基于生成对抗网络的流量异常检测方法。 首先,采用基于聚类的 SCiForest 算法检测异常

点,减少其对后续网络的影响。 其次,设计以降噪自编码器为核心组件的生成对抗网络( denoising
 

autoencoder-based
 

generative
 

adversarial
 

network,
 

DGAN),基于重建误差分布之间的 Wasserstein 距离定义其训练目标,生成可信的合成少数类样本,从而有

效缓解数据不平衡问题。 再次,通过与判别器一致的降噪自编码器(denoising
 

autoencoder,
 

DAE),输入真实样本与合成样本进

行重构训练,得到优化后的编码器部分作为特征提取与降维模块,以增强特征的表达能力。 最后,将处理后的数据输入融合卷

积神经网络和双向门控循环单元的特征模型(feature
 

fusion
 

model
 

of
 

CNN
 

and
 

BiGRU,
 

CNN-BiGRU-FFusion),在充分捕捉空间特

征和时序特征的基础上实现分类与检测。 在 NSL-KDD 数据集上的准确率和 F1 分数分别达到 92. 06%和 92. 25%,验证了所提

方法在网络流量异常检测任务中的优越性能,并通过 CICIDS2017 数据集的实验进一步验证其可行性。
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Abstract:
 

In
 

response
 

to
 

the
 

problems
 

of
 

decreased
 

robustness
 

and
 

insufficient
 

feature
 

expression
 

ability
 

caused
 

by
 

noise
 

and
 

outlier
 

interference
 

in
 

traffic
 

anomaly
 

detection
 

models,
 

and
 

low
 

minority
 

class
 

detection
 

rates
 

when
 

dealing
 

with
 

imbalanced
 

high-dimensional
 

massive
 

data,
 

a
 

traffic
 

anomaly
 

detection
 

method
 

based
 

on
 

generative
 

adversarial
 

networks
 

was
 

proposed.
 

Firstly,
 

the
 

clustering
 

based
 

on
 

SCiForest
 

algorithm
 

is
 

used
 

to
 

detect
 

outliers
 

and
 

reduce
 

their
 

impact
 

on
 

the
 

subsequent
 

training
 

of
 

the
 

generative
 

adversarial
 

network.
 

Secondly,
 

a
 

denoising
 

autoencoder-based
 

generative
 

adversarial
 

network
 

(DGAN)
 

is
 

designed
 

to
 

generate
 

reliable
 

synthetic
 

minority
 

class
 

samples.
 

The
 

network
 

defines
 

its
 

training
 

target
 

based
 

on
 

the
 

Wasserstein
 

distance
 

between
 

reconstructed
 

error
 

distributions,
 

effectively
 

alleviating
 

the
 

problem
 

of
 

data
 

imbalance.
 

Again,
 

using
 

a
 

denoising
 

autoencoder
 

( DAE)
 

with
 

the
 

same
 

architecture
 

as
 

the
 

generative
 

adversarial
 

network
 

discriminator,
 

real
 

and
 

synthetic
 

samples
 

are
 

input
 

for
 

reconstruction
 

training,
 

and
 

the
 

optimized
 

encoder
 

part
 

is
 

extracted
 

as
 

the
 

feature
 

extraction
 

and
 

dimensionality
 

reduction
 

module
 

to
 

enhance
 

feature
 

expression
 

ability.
 

Finally,
 

the
 

processed
 

data
 

is
 

input
 

into
 

the
 

feature
 

fusion
 

model
 

of
 

CNN
 

and
 

BiGRU
 

(CNN-BiGRU-FFusion)
 

model,
 

which
 

completes
 

classification
 

and
 

detection
 

based
 

on
 

capturing
 

spatial
 

and
 

temporal
 

features.
 

The
 

accuracy
 

and
 

F1
 

score
 

on
 

the
 

NSL-KDD
 

dataset
 

reached
 

92. 06%
 

and
 

92. 25%,
 

respectively,
 

verifying
 

the
 

superior
 

performance
 

of
 

the
 

proposed
 

method
 

in
 

network
 

traffic
 

anomaly
 

detection
 

tasks.
 

The
 

feasibility
 

of
 

the
 

method
 

was
 

further
 

validated
 

through
 

experiments
 

on
 

the
 

CICIDS2017
 

dataset.
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0　 引　 言

　 　 随着互联网的迅速发展,网络安全问题变得愈加严

峻。 大量敏感数据通过网络传输和存储,网络攻击的数

量和复杂性也呈现出快速增长的趋势。 不同类型的网络

攻击通常伴随着大量异常流量,因此,流量异常检测已成

为识别和防范网络攻击的关键环节[1] 。
随着网络攻击的不断升级,机器学习和深度学习技

术逐渐应用于流量异常检测领域。 这些技术能够从海量

数据中自动提取特征、发现隐藏的模式,并通过构建分类

器有效区分正常与异常行为。 相比传统的基于规则的流

量异常检测方法,机器学习方法更适用于复杂的网络环

境。 陈万志等[2] 提出一种空间因素背景基的基点分类方

法,该方法通过提取训练中不同类别数据的背景基构造

基点分类算法,在流量异常检测数据集上的二分类实验

中表现出色。 沈萍等[3] 结合滑动窗口与信息熵设计了特

征提取方法并构建孤立森林评分扩展模型,提升了异常

类别的识别率。 Mohiuddin 等[4] 通过包装鲸鱼优化和正

弦余弦算法筛选特征,并使用极限梯度提升树( extreme
 

gradient
 

boosting,
 

XGBoost)精准识别异常流量。 尽管如

此,在处理大规模、高维且不平衡的网络流量数据时,传
统机器学习方法仍存在局限性,难以充分应对特征表达

能力不足及少数类检测率低等问题。
深度学习技术逐渐成为流量异常检测的研究焦点。

梁欣怡等[5] 提出一种自监督特征以及卷积神经网络与双

向 长 短 期 记 忆 ( convolutional
 

neural
 

networks
 

and
 

bidirectional
 

long
 

short-term
 

memory
 

network,
 

CNN-
BiLSTM)结合的入侵检测方法,通过自编码器进行数据

增强,再利用特征增强的 CNN-BiLSTM 模型进行异常检

测,实验结果验证了模型的高效性。 李晓佳等[6] 提出改

进的物联网入侵检测模型,结合 CNN 和循环神经网

络(recurrent
 

neural
 

network,
 

RNN)以减少池化层信息丢

失与梯度消失问题,并引入自注意力机制以提升多分类

任务的表现。 Alhassan 等[7] 利用基于相关性的方法筛选

高效特征,并借助自编码器( autoencoder,
 

AE) 区分正常

流量与攻击行为。 尽管这些深度学习方法在流量异常检

测领域展现了强大的潜力,但在现实网络中攻击流量的

占比相对相对较低,导致流量异常检测数据集中普遍存

在明显的类别不平衡问题,这种不平衡增加了少数类样

本检测的困难,使得模型在少数类样本的识别上表现能

力不佳。
针对网络流量中正常流量与攻击流量失衡的问题,

研究者提出了多种处理不平衡数据的方法。 常见的方法

有随机过采样、SMOTE[8] 和 ADASYN[9] 等,通过过采样技

术生成新的样本以扩充数据。 然而,这些方法可能导致

数据集过拟合或引入噪声[10] 。 与传统方法相比,生成对

抗网络(generative
 

adversarial
 

network,
 

GAN)在应对样本

失衡问题上表现出色。 GAN 通过模拟真实数据分布生

成高质量的合成样本以实现数据增强,其中生成器负责

生成与真实样本极为相似的合成数据,判别器则通过对

抗学习具备强大的样本区分能力[11] 。 然而,现有 GAN
方法在处理噪声干扰、少数类样本生成质量和特征提取

能力等方面仍有提升空间,这为进一步优化 GAN 在流量

异常检测中的应用提供了方向。
综上所述,尽管网络流量异常检测领域已有多种创

新方法和模型,但仍存在未能生成高质量的少数类样本

而导致模型鲁棒性不足的问题。 此外,传统过采样策略

可能放大数据噪声和离群点,限制特征表达效果。 因此,
从数据预处理、数据增强、特征提取和检测模型 4 个层面

考虑,本文提出一种基于生成对抗网络的流量异常检测

方法,以降噪自编码器为核心的生成对抗网络( denoising
 

autoencoder-based
 

generative
 

adversarial
 

network,
 

DGAN)
数据增强方法,采用对称降噪自编码器作为 DGAN 的判

别器,并使用降噪自编码器的解码器模块作为生成器。
通过对抗训练机制,生成高质量的少数类样本,增强数据

鲁棒性,有效缓解类别不平衡问题。
设计 一 种 降 噪 自 编 码 器 ( denoising

 

autoencoder,
 

DAE)模块,采用与 DGAN 的判别器一致的结构,通过重

构输入样本进行训练,并提取优化后的编码器部分作为

特征提取与降维模块,进一步增强特征表达能力。 融合

卷积神经网络和双向门控循环单元的特征模型( feature
 

fusion
 

model
 

of
 

CNN
 

and
 

BiGRU,
 

CNN-BiGRU-FFusion)进
行检测,分别捕捉特征之间的空间和时序关系,并以多层

感知机( multilayer
 

perceptron,
 

MLP) 作为特征融合模块

将时空特征进行融合,最终实现更精确的分类和预测,从
而显著提升流量异常检测的性能。

1　 相关技术

1. 1　 降噪自编码器

　 　 AE 由编码器和解码器两部分组成,训练目标为最小

化重构误差。
编码器公式为:
z = f(Wx + b) (1)

式中: z为潜在空间中的特征表示; f 为激活函数; W和 b
是对应的权重与偏置向量。

解码器公式为:

x~ = g(W′z +b′) (2)
式中: g 为解码器的激活函数; W′ 和 b′ 是解码器的权重

与偏置向量。
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AE 被广泛用于降维、特征提取、数据压缩等任务。
然而,其在处理含有噪声的数据时鲁棒性较差,难以应对

实际应用中的数据噪声问题。
DAE 通过向数据添加随机噪声,迫使模型在训练过

程中去除噪声,进而重构原始的干净输入。 通过此学习

方式既能避免过拟合又能增强隐藏层学习特征的鲁棒

性,从而有效提高模型的泛化能力。 DAE 的训练目标为

最小化重构误差,其公式为:

LDAE(x, x~ ) = 1
n ∑

n

i = 1
(x - x~ ) 2 (3)

与 AE 相比,DAE 更注重提取隐藏在噪声下的原始

数据特征,从而在流量异常检测等噪声环境复杂的任务

中展现出独特优势,其结构如图 1 所示。

图 1　 DAE 网络结构

Fig. 1　 Network
 

structure
 

of
 

DAE

1. 2　 生成对抗网络

　 　 GAN 由生成器 G 和判别器 D 组成[12] 。 生成器 G 尽

可能生成接近真实数据的样本,而判别器 D 负责判定其

真实性,其整体结构如图 2 所示。

图 2　 GAN 整体结构

Fig. 2　 The
 

overall
 

structure
 

of
 

GAN

GAN 以零和博弈的方式进行对抗。 假设潜在空间

的概率分布为 pz ,真实数据的概率分布为 pdata ,GAN 的

目标函数 V(D,G) 表达为:
V(D,G) =min

G
max

D
Ex ~ pdata

[log(DθD
(x))] +

Ez ~ pz
[log(1 - DθD

(DθG
(z)))] (4)

式中: DθD
(x) 和 1 - DθD

(DθG
(z)) 分别表示判别器判断

数据为真实或由生成器 G 生成的概率。

在训练过程中,判别器 D 的目标是最大化目标函数,
以区分真假数据;而生成器 G 的目标是最小化目标函数,
试图生成更加逼真的样本来“欺骗”判别器,使其无法区

分真实样本和生成样本。 最终,当 GAN 达到纳什均衡

时,目标函数的最小最大问题得到最优解,此时生成器生

成的数据与真实数据极为相似。
实际应用中,GAN 的训练往往不稳定,并难以实现

理想的纳什均衡。 为了解决这些问题,许多研究致力于

提升 GAN 的训练稳定性[13-16] 。 其中,BEGAN 模型[16] 提

出一种基于重构误差的改进方法,通过计算真实数据与

合成数据重构误差分布之间的 Wasserstein 距离,来评估

它们的差异性,从而显著增强了 GAN 的训练稳定性。
BEGAN 的目标函数由判别器损失和生成器损失两

部分构成。 判别器损失的表达式为:
LD = L(x;θD) - k t·L(G(z;θG);θD) (5)

式中: L(x;θD) 和 L(G(z;θG);θD) 分别表示真实样本和

生成样本的重构误差, k t 是动态调整生成器和判别器权

重的平衡因子。 判别器的优化目标是通过减少真实样本

和生成样本的重构误差差异,提高样本的辨别能力。 生

成器损失的表达式为:
LG = L(G(z;θG);θD) (6)
生成器的优化目标是让生成样本的重构误差分布尽

可能接近真实样本的重构误差分布,从而生成更高质量

的合成数据。 为进一步平衡生成器和判别器的训练过程

引入了平衡因子 k t ,其动态更新公式为:
k t +1 = k t + λk·(γ·L(x;θD) - L(G(z;θG);θD))

(7)
式中: γ ∈ [0,1] 被称为 diversity

 

ratio,用于调整真实样

本和生成样本重构误差的权重比例; λk 为学习率,用于

平滑 k t 的更新过程。 通过动态调整 k t ,模型能够在生成

器与判别器之间找到稳定的平衡点,从而改善训练效果。

2　 基于生成对抗网络的流量异常检测模型

2. 1　 总体框架

　 　 在网络流量异常检测任务中,各环节面临着不同的

挑战。 网络流量数据常常受到噪声和离群点的干扰,这
些异常数据可能会干扰模型性能,从而导致分类结果不

准确。 为此,引入 SCiForest 算法检测并隔离离群点,提
升数据质量。

此外,在高维且类别分布不平衡的数据集中,模型往

往忽略少数类样本特征,导致检测能力下降。 传统的解

决方案通常通过对少数类样本进行过采样来缓解这一问

题。 然而,过度采样容易引入噪声。 为了解决这一问题,
采用 DGAN 方法生成可信的少数类样本,以提升数据的

质量和模型的检测能力。
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之后,为进一步增强特征表达能力,使用与 DGAN 判

别器结构一致的 DAE 模型对扩展数据集进行特征提取

与降维,确保特征空间的兼容性与稳定性。
最后,由于网络流量数据同时具备空间特性和时序

性,传统的机器学习方法通常难以有效捕捉数据中的局

部特征和空间依赖关系。 为此,结合 CNN 与 BiGRU 分

别提取空间与时间特征,并通过 MLP 模块融合多维信

息,实现高精度的流量异常检测。 所提出的流量异常检

测模型的整体框架如图 3 所示。

图 3　 模型总体框架

Fig. 3　 Overall
 

framework
 

of
 

the
 

model

2. 2　 检测流程

　 　 本文提出的基于生成对抗网络的流量异常检测方法

由预处理、数据增强、特征降维和流量异常检测 4 个主要

流程组成,算法流程如图 4 所示。
1)数据集预处理

(1)数据清洗

原始数据中可能存在特征值异常的“脏数据”,这些

数据不仅无法用于模型训练和测试,还可能降低模型的

检测性能。 因此,首先需对这些数据进行清洗与剔除,以
确保模型训练数据的质量。

(2)字符特征的二进制编码

数据集中通常包含字符类型的特征,为使模型能够

处理这些数据,首先使用 LabelEncoder 方法将这些字符

特征转换为数字编码,随后采用独热编码将每个分类特

征映射为多个互斥的二进制特征。 在处理过程中,确保

测试集与训练集使用相同的类别列,并对测试集中缺失

的类别进行填充。
(3)数据规范化处理

由于数据集中各个特征的取值范围差异较为显著,
本文采用归一化方法规范数据,归一化处理后,特征值被

缩放至相同的量纲范围内,避免因数值差异对模型产生

偏差。 其公式如下:

x′i =
x i - xmin

xmax - xmin
(8)

(4)SCiForest 离群点检测

为提升检测准确性,采用 SCiForest 算法剔除异常数

据。 该算法通过构造一组孤立树对数据进行划分,并计

算数据点到达叶子结点的路径长度。 路径越短,表示越

容易被孤立,异常的可能性越大,最终以平均路径长度作

为异常得分依据,得分越高异常性越强。 通过去除异常

点,可有效缓解噪声干扰,提升模型的性能。
2)DGAN 模型

在流量异常检测中,生成高质量且具有可信度的合

成数据,对于增强原始特征的表达能力和提高异常检测

的准确性至关重要。 传统的过采样方法往往容易导致过

拟合或引入噪声,而本文提出的 DGAN 模型能够有效生

成高质量的数据,增强数据的鲁棒性。
(1)数据准备

首先,将所使用的流量数据集按流量类型划分为多

个子数据集。 每个子数据集训练一个单独的 DGAN 模

型,从而使每个 DGAN 模型只生成对应流量类型的合成

数据。
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图 4　 总体流程

Fig. 4　 Overall
 

procedures

(2)判别器的训练

首先,将真实数据和生成器生成的伪造样本进行加

噪,为每个样本 x i 添加高斯噪声,得到加噪样本 x∗
i :

x∗
i = x i + (0,σ2) (9)

其次,将加噪的数据输入到降噪自编码器的编码器

部分,使用式(1)将数据映射为潜在空间表示 zi 。
然后,降噪自编码器的解码器通过式(2) 将潜在空

间表示 zi 解码为重构数据 x~i 。
最后,判别器通过式(3) 分别计算真实样本和生成

样本的重构误差,并根据式(5)对判别器参数进行优化。
(3)生成器的训练

首先,从潜在空间采样得到随机变量 zi ,将其输入到

由降噪自编码器解码器部分构成的生成器中,生成伪造

样本 x fake = G(z;θG) 。
之后,生成样本 x fake 被输入到判别器中进行评估,根

据公式(3)计算生成样本的重构误差,并将其作为生成

器的损失函数。 生成器通过最小化该损失函数,使生成

样本无限接近真实样本。
(4)平衡因子 k t 的更新

为了平衡生成器和判别器的训练过程,根据式(7)
的动态平衡因子 k t 平衡生成器和判别器的训练过程,避
免生成器和判别器过度优化,从而确保训练保持平衡。

(5)训练终止的标准

在流量异常检测任务中,GAN 的训练终止标准是一

个重要的考虑因素,直接影响其生成数据的质量。 引入

收敛标准作为训练终止标准,其公式为:
= L(x;θD) +| γ·L(x;θD) - L(G(z;θG);θD) |

(10)
式中: L(x;θD) 和 L(G(z;θG);θD) 分别表示真实样本和

生成样本的重构误差; γ ∈ [0,1] 为 diversity
 

ratio。
当满足下面任一条件时训练终止:①已达自定义训

练轮数的上限;②当收敛标准 达到设定阈值时。
(6)训练完成后,利用训练好的 DGAN 根据原始数

据中各类攻击样本的数量,生成指定类别的合成攻击样

本,并将合成的样本与原始训练数据结合,构建一个新的

平衡训练集。
3)基于 DAE 的特征降维

在特征降维阶段,采用基于 DAE 的特征提取与降维

方法。 考虑到前一阶段的 DGAN 的判别器模型本身已采

用对称结构的 DAE 模型用于识别真实和生成样本,其体

系结构已具备良好的特征学习能力,因此本模块延续该

结构用于降维任务。 在体系结构上,二者具有相同的数

据输入格式与特征分布,使得结构统一具有较好的兼容

性与稳定性。 构建 DAE 模型后,使用由原始数据与合成

样本构成的扩展数据集对其进行训练。 训练完成后提取

其中的编码器部分作为特征降维模块。 在测试阶段,不
再对输入数据添加噪声。 此时使用已经训练好的编码器

模块直接对输入数据进行特征提取和降维,并将其结果

用于后续的异常检测。
4)基于 CNN 和 BiGRU 的特征融合流量异常检测

模型

所提出的 CNN-BiGRU-FFusion 流量异常检测模型主

要有 CNN 模块、BiGRU 模块和特征融合模块三个部分,
采用并行架构将 CNN 模块与 BiGRU 模块结合,通过特

征融合模块对捕捉的时空特征进行融合,最终完成分类

任务。
(1)CNN 模块

CNN 作为一种深度学习模型,因其在图像和音频等

输入类型上的出色表现而广泛应用。 卷积层是其核心计
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算单元。 池化层通过采样减少输入特征的维度,降低计

算复杂度。 全连接层根据提取的特征执行分类任务。
采用一维卷积神经网络 ( 1 D

 

convolutional
 

neural
 

network,
 

1 D-CNN)提取数据的空间特征。 1 D-CNN 通过

卷积操作提取数据中的局部空间信息,池化层进一步提

取更为广泛的特征,以提高模型的性能。 为减小训练过

程中内在协变量的变化,引入批归一化层,以加速模型的

训练过程,并采用 ReLU 激活函数加速网络的收敛。
(2)BiGRU 模块

门控循环单元( gate
 

recurrent
 

unit,
 

GRU)对 RNN 进

行改进,有效地缓解传统 RNN 的长期依赖和梯度消失问

题。 然而,传统的 GRU 模型只能处理单向时序数据,这
可能导致模型无法捕捉到与当前数据相关的重要信息。
为了解决上述问题,采用 BiGRU 从前向和后向同时处理

数据,从而有效捕捉流量数据中的时序特征,其公式

如下:
rt = σ(Wr × [h t-1,x t]) (11)
zt = σ(Wz × [h t-1,x t]) (12)

h
~

t = tanh(W × [rt☉h t-1,x t]) (13)

h t = (1 - zt)☉h t-1 + zt☉ h
~

t (14)

式中: rt 为重置门; zt 为更新门; h
~

t 和 h t 为时刻 t的候选

隐藏状态和最终隐藏状态。
BiGRU 包含两个独立的 GRU 模块,一个处理序列的

正向信息,另一个处理反向信息,通过拼接正向和反向的

隐藏状态得到综合的隐藏状态。 对于时间步 t ,BiGRU
的最终隐藏状态 hBiGRU

t 为:

hBiGRU
t = [h

➝
t,h

←
t] (15)

(3)特征融合模块

为充分整合 CNN 和 BiGRU 模块提取的空间特征与

时序特征,采用 MLP 作为特征融合与分类模块。 首先,
将 CNN 提取到的空间特征标记为 FCNN ,BiGRU 输出的

双向时序特征表示为 FBiGRU ,其次,将 FCNN 与 FBiGRU 进行

拼接操作构成融合向量:
F fusion = Concat(FCNN,FBiGRU) (16)
融合后的向量 F fusion 被输入到 MLP 中,首先经过一

层隐藏全连接层进行非线性特征变换,之后连接输出层

进行最终分类。 整个模块支持端到端训练,损失函数通

过反向传播影响 CNN、BiGRU 和 MLP 的权重更新,从而

显著提升整体模型的表达能力与分类精度。

3　 实验设计与结果分析

　 　 所有实验基于 AMD
 

Ryzen
 

7
 

8845HS
 

处理器和

Window
 

10 操作系统实现,编程语言采用 Python3. 9,使用

TensorFlow-GPU
 

2. 4. 2 软件环境。
3. 1　 实验数据集

　 　 1)NSL-KDD 数据集是对 KDD
 

Cup
 

1999 数据集的改

进,去除了其中大量冗余数据,并对训练集与测试集比例

进行了合理划分[2] 。 其具体信息如表 1 所示。
表 1　 NSL-KDD 数据集信息

Table
 

1　 NSL-KDD
 

dataset
 

information
样本类别 训练样本数 测试样本数

Normal 67
 

343 9
 

711
Dos 45

 

927 7
 

460
Probe 11

 

656 2
 

885
R2L 995 2

 

421
U2R 52 67
总计 125

 

973 22
 

544

　 　 2)CICIDS2017 数据集源于加拿大网络安全研究所,
涵盖了正常流量和 14 种不同类型的攻击。 为避免失衡,
本文从正常数据中抽取部分样本与所有攻击数据拼接为

实验数据集[5] 。 CICIDS2017 数据集详细数据分布如表 2
所示。

表 2　 CICIDS2017 数据集信息

Table
 

2　 CICIDS2017
 

dataset
 

information
类别 描述 样本数

正常数据 BENIGN 529
 

918

攻击数据

DoS
 

Hulk 231
 

073
PortScan 158

 

930
DDoS 128

 

027
Dos

 

GoldenEye 10
 

293
FTP-Patator 7

 

938
SSH-Patator 5

 

897
DoS

 

Slowloris 5
 

796
DoS

 

Slowhttptest 5
 

499
Bot 1

 

966
Web

 

Attack-Brute
 

Force 1
 

507
Web

 

Attack-XSS 652
Infiltration 36

Web
 

Attack-Sql
 

Injection 21
Heartbleed 11

总计 - 1
 

087
 

564

3. 2　 实验评估指标

　 　 采用准确率( Accuracy)、精确率( Precision)、召回

率(Recall)和 F1 分数( F1-score) 4 个指标评估本文模型

性能,计算公式如下:

Accuracy = TP + TN
TP + TN + FP + FN

(17)

Precision = TP
TP + FP

(18)

Recall = TP
TP + FN

(19)

F1 - score = 2 × Recall × Precision
Recall + Precision

(20)
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式中: TP 和 TN 分别表示正确分类为攻击和正常的样本

数; FP 和 FN 分别表示错误分类为攻击和正常的样本数。
3. 3　 超参数设置

　 　 超参数的选择对模型性能有重要影响,合适的超参

数配置能够显著提高模型的准确率与泛化能力。
1)SCiForest 参数设置

SCiForest 离群点检测用于剔除远离大多数数据的离

散点,提升异常检测的精度。 核心参数 n_trees 定义了孤

立树的数量。
通过实验测试不同 n_trees 对检测性能的影响,最终

确定 n_trees = 150 时检测效果最佳。 去除离群点前后

NSL-KDD 数据集规模的对比结果如表 3 所示。
表 3　 SCiForest 去除离群点前后样本数据大小

Table
 

3　 The
 

size
 

of
 

the
 

sample
 

data
 

before
 

and
 

after
outlier

 

removal
 

using
 

SCiForest
样本类别 离群点去除前 离群点取出后

Normal 67
 

343 63
 

572
Dos 45

 

927 44
 

526
Probe 11

 

656 11
 

344
R2L 995 995
U2R 52 52

　 　 2)DGAN 参数设置

采用的 DGAN 模型的判别器为一个具有 5 层结构的

对称降噪自编码器。 判别器的编码器和解码器均由包含

90 个神经元的隐藏层组成,潜在空间的维度设置为 50,
生成器的潜在空间和解码器隐藏层与判别器的相应模块

保持一致。 为提高学习稳定性,模型为每个隐藏层应用

批归一化,并采用 ReLU 激活函数。 对于训练终止标准,
本文设定的收敛度量阈值为 0. 06,训练的最大迭代次

数(epoch)为 200。 当模型的收敛度量低于阈值或达到

最大 epoch 时,训练将终止。
利用 DGAN 对 NSL-KDD 数据集中的 Probe、R2L 和

U2R 类别进行样本扩充,分别扩充 5
 

000、2
 

000 和 1
 

000
个样本,扩充后的数据将与原数据集合并,构建新的训练

集。 同时,由于用于降维和特征提取的 DAE 模型与

DGAN 的判别器在结构上完全一致,因此 DGAN 的配置

同样适用于特征降维模块。
为验证 DGAN 模型的训练收敛性与稳定性,本文监

测了 NSL-KDD 数据集中 Probe、R2L 和 U2R 三类少数样

本在训练过程中生成器与判别器的损失函数变化以及收

敛度量 的动态变化,相关训练曲线如图 5 所示。

图 5　 Probe、R2L 和 U2R 三类训练曲线

Fig. 5　 Training
 

curves
 

for
 

Probe,R2L
 

and
 

U2R
 

classes

　 　 从图 5 可以观察到,训练初期,3 类样本的生成器和

判别器损失均迅速下降,约在第 25 轮后下降速率减缓。
对于 Probe 与 U2R 类,生成器与判别器的损失在接近

200 轮次时基本稳定,且收敛度量波动收窄,表明训练过

程稳定并达成收敛。 R2L 类别则在第 172 轮其收敛度量

率先下降至预设阈值 0. 06,触发提前终止机制,显示

该类样本训练已满足收敛条件。 由此可得出 DGAN 模型

具有良好的稳定性和收敛性。
3)CNN-BiGRU-FFusion 模块参数设置

CNN 模块用于提取数据中的空间特征。 使用 1D-
CNN 模型提取空间特征,其包含两个卷积层,分别使用

大小为 3 的 32 和 64 个卷积核。 每个卷积层后都接有 2×
2 的最大池化层,并应用批归一化来减少内部协变量偏

移。 最后,全连接层将卷积和池化后的特征展平,并将其

传递到后续的特征融合模块。
BiGRU 模块用于提取数据中的时序特征,捕捉前后

时序关系。 BiGRU 的隐藏层单元数设置为 64,并且采用

双向 GRU 结构,以更全面地捕捉数据中的时间依赖关

系。 此外,为增强模型的泛化能力,BiGRU 模块中引入了

dropout 层,丢弃率设为 0. 2,并使用 ReLU 作为激活函数。
特征融合模块采用 MLP,输入层将 CNN 和 BiGRU

提取的特征进行拼接,形成一个融合向量。 隐藏层单元

数设置为 64, 为适应多类别分类任务, 输出层采用

Softmax 激活函数。 模型整体采用 Adam 优化器优化,使
用交叉熵损失函数。
3. 4　 实验结果分析

　 　 1)DGAN 生成样本质量分析

为评估 DGAN 生成样本的质量与分布特性,采用 t-
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分 布 随 机 近 邻 嵌 入 ( t-distributed
 

stochastic
 

neighbor
 

embedding,
 

t-SNE) 算法对 NSL-KDD 的原始训练集与

DGAN 增强后的训练集进行可视化对比。 该方法可将高

维特征映射至二维空间,以直观展示各类样本的分布结

构。 原始训练集与加入合成样本后的扩展训练集在二维

空间中的分布情况如图 6 所示。

图 6　 DGAN 数据增强前后训练集数据分布

Fig. 6　 Distribution
 

of
 

training
 

set
 

data
 

before
 

and
 

after
 

DGAN
 

data
 

augmentation

　 　 从图 6 可以观察到,经过 DGAN 生成样本扩充后的

训练集在样本边界上更加清晰,尤其是 Probe、 R2L 与

U2R 三个少数类的分布更加明显,显著改善了原始训练

集中存在的类别混叠现象。 这种分布优化有效缓解了分

类器因数据稀疏导致的过拟合风险,从而为后续分类模

型的训练提供了更优的数据基础。
2)数据增强比较实验

为了验证 DGAN 算法在数据增强中的优越性,设计

不同采样方法的对比实验。 在相同的检测模型条件下,
采用 ROS[17] 、SMOTE[8] 、ADASYN[9] 、ADASYN-WGAN[18]

和本文方法通过 NSL-KDD 数据集进行处理,精确率比较

实验结果如图 7 所示。

图 7　 数据增强方法对比

Fig. 7　 Comparison
 

of
 

different
 

data
 

augmentation
 

methods

由图 7 可知,由于 Normal 类属于多数类,且 DoS 类

的样本数占比也明显高于其他类别,因此这两个类别的

精确率都比较高,而对于少数类 Probe、R2L 和 U2R,本文

方法明显优于其他数据增强算法,这是由于 ROS 方法仅

对原始数据进行简单的重采样,容易导致数据过拟合现

象;SMOTE 方法虽然有效避免了过拟合,但可能加剧类

内数据分布的不平衡、并且容易放大噪声,从而影响分类

效果;ADASYN 算法根据插值原理合成样本,但其性能受

到样本分布不均衡和噪声的影响。 本文通过重构误差的

改进方法,克服了 WGAN 在训练过程中可能出现的模型

崩塌和训练不稳定的问题,使得生成器生成更接近真实

数据的可信合成样本,显著提升各类别准确率。
3)特征降维对比实验

为验证用于特征降维的 DAE 模块与 DGAN 的判别

器结构一致性是否有助于提升特征降维性能,设计多种

特征降维结构进行对比实验。 在保持检测模块不变的条

件下,分别构建 DAE-Small、 DAE-Large、 DAE-Deep 以及

VAE 模型 4 种降维结构,并在 NSL-KDD 数据集上进行性

能评估。 各模型均采用对称结构设计,具体设置如下:
DAE-Small 采用隐藏层神经元数为 80,潜在空间维度为

40,表示较小参数规模的结构;DAE-Large 采用 120 个神

经元和 60 维潜在空间,表示较大参数规模的结构;DAE-
Deep 采用双层编码器结构,分别设置 120 和 90 个神经

元,潜在空间维度为 50;VAE 模型的隐藏层采用 90 个神

经元,潜在空间维度设置为 50,各模型性能结果如表

4 所示。
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表 4　 不同降维方法对比结果

Table
 

4　 Comparison
 

results
 

of
 

different
dimensionality

 

reduction
 

methods (%)
方法 Normal DoS Probe R2L U2R

DAE-Small 94. 61 82. 61 79. 18 46. 35 38. 15
DAE-Large 95. 86 87. 54 83. 60 62. 17 52. 09
DAE-Deep 95. 23 88. 67 84. 95 59. 26 49. 71

VAE 96. 09 90. 34 86. 28 50. 67 47. 96
本文 96. 29 92. 63 90. 95 68. 53 55. 22

　 　 从表 4 可以看出,本文所采用的 DAE 模型在各类样

本上的精确率均优于对比模型。 相比之下,参数规模较

小的 DAE-Small 在特征学习方面存在不足,导致精度偏

低;DAE-Large 和 DAE-Deep 尽管增加了参数规格,但并

未带来更明显的性能提升,且存在一定的过拟合风险;
VAE 模型在 Normal 和 DoS 类中表现良好,但由于其结构

设计与 DGAN 体系不统一,对于 Rrobe、R2L 和 U2R 三个

少数类兼容性较差,导致这 3 个类别的检测性能低于本

文方法。 上述结果表明,本文设计的 DAE 结构在特征降

维方面更具有优势,能有效提升整体分类性能。
4)消融实验

为了验证 SCiForest、DGAN、DAE 和 CNN-BiGRU-特
征融合模块结合使用的有效性,基于 NSL-KDD 数据集上

进行系列消融实验。 以 CNN 和 BiGRU 单独进行异常检

测作为基线模型,逐步添加模块,验证各模块对整体性能

的贡献,实验结果如表 5 所示。
表 5　 消融实验结果

Table
 

5　 Ablation
 

experiment
 

results (%)
模型 SCiForest DGAN DAE CNN BiGRU 特征融合模块 Accuracy Precision Recall F1-score

基线模型:CNN √ 81. 23 80. 25 81. 23 80. 74
基线模型:BiGRU √ 80. 68 82. 08 80. 68 81. 37

CNN+特征融合模块 √ √ 81. 75 81. 28 81. 75 81. 51
BiGRU+特征融合模块 √ √ 81. 15 82. 61 81. 15 81. 87
CNN-BiGRU-FFusion √ √ √ 82. 40 83. 75 82. 40 83. 07

DAE+CNN-BiGRU-FFusion √ √ √ √ 84. 30 85. 15 84. 30 84. 72
DGAN+DAE+CNN-BiGRU-FFusion √ √ √ √ √ 90. 26 90. 72 90. 26 90. 49

本文 √ √ √ √ √ √ 92. 06 92. 45 92. 06 92. 25

　 　 从表 5 可以看出,单独使用 CNN 和 BiGRU 进行流量

异常检测时,模型的准确率分别为 81. 23%和 80. 68%,这
是因为 CNN 能够有效提取数据的空间特征,而 BiGRU
擅长捕捉双向的时序特征,因此两者均对异常检测性能

有一定提升。 接下来,CNN 和 BiGRU 分别与特征融合模

块结合,模型的准确率达到 81. 75%和 81. 15%,说明以

MLP 作为特征融合模块能够充分学习特征之间的关系,
并通过反向传播的方式优化网络权重,从而提高分类性

能。 之后将 CNN 和 BiGRU 提取的特征共同输入到特征

融合模块,结合成完整的异常检测模块后,模型的准确率

提高至 82. 40%,原因是异常检测模型能够充分学习时空

特征,进一步增强了分类能力。 在此基础上引入 DAE 模

块,模型的准确率和 F1 分数分别提升至 84. 30% 和

84. 72%,这是因为 DAE 能够对数据特征进行有效学习

和降维,有效增强了特征的表达能力。 随后,结合 DGAN
生成高质量的少数类样本,模型的准确率和 F1 分数分别

提升至 90. 26%和 90. 49%,这一提升表明 DGAN 模块能

够有效缓解数据失衡问题,生成接近真实分布的少数类

样本,从而显著提高少数类的检测性能。 最后,通过加入

SCiForest 模块,有效去除了数据中的异常点,进一步优化

数据,最终模型的准确率和 F1 分数分别达到了 92. 06%
和 92. 25%。 这些实验结果表明,各模块的结合能够有效

提升模型性能,充分验证了本文方法的有效性。

5)与其他方法对比

为全面验证所提方法的性能,与其他基于 NSL-KDD
数据集的检测方法进行对比,对比结果如表 6 所示。

表 6　 NSL-KDD 数据集上与现有模型的比较结果

Table
 

6　 Comparison
 

results
 

with
 

existing
 

models
on

 

the
 

NSL-KDD
 

dataset (%)
方法 Accuracy Precision Recall F1-score

文献[19] 86. 59 88. 55 86. 59 86. 88
文献[20] 90. 99 91. 39 90. 94 90. 89
文献[21] 91. 74 91. 62 91. 86 91. 54
文献[22] 90. 64 91. 78 90. 28 91. 05

本文 92. 06 92. 45 92. 06 92. 25

　 　 从表 6 可以看出,本文方法的评价指标均优于对比

模型。 实验结果表明,通过 DGAN 生成少数类样本并利

用 DAE 进行特征降维,之后采用 CNN-BiGRU-FFusion 进

行分类的方法为流量异常检测提供了新的解决方案。
6)可行性实验

为了评估本文方法的可行性,在 CICIDS2017 数据集

上进行进一步验证,按 3 ∶ 7 的比例划分测试集和训练

集,实验流程与 NSL-KDD 数据集一致[2] 。 将本文方法与

最新的流量异常检测模型进行比较,实验结果如表 7
所示。
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表 7　 CICIDS2017 数据集上与现有模型的比较结果

Table
 

7　 Comparison
 

results
 

with
 

existing
 

models
on

 

the
 

CICIDS2017
 

dataset (%)
方法 Accuracy Precision Recall F1-score

文献[23] 97. 84 97. 73 95. 91 96. 81
文献[24] 99. 12 98. 60 98. 20 98. 80
文献[25] 95. 21 88. 76 82. 59 84. 14
文献[26] 99. 49 99. 26 99. 21 99. 23

本文 99. 63 99. 69 99. 63 99. 66

　 　 从表 7 可以看出,本文方法在 CICIDS2017 数据集上

的表现突出,准确率为 99. 63%,精确率为 99. 69%,召回

率为 99. 63%,F1 分数为 99. 66%,验证本文方法在异常

检测方面具有明显优势。 其主要原因在于本文方法能够

生成可信的少数类样本,DAE 的编码器模块用于特征提

取和降维,有效增强了数据的表达能力;同时,使用 CNN
和 BiGRU 分别捕捉了数据的空间特征和时序特征,并将

二者融合用于异常流量检测,从而显著提升了模型对异

常流量的识别能力。

4　 结　 论

　 　 为了解决现有流量异常检测模型中存在的问题,本
文提出一种基于生成对抗网络的流量异常检测方法。 通

过 SCiForest 隔离异常点,并采用以降噪自编码器为核心

的 DGAN 方法生成可信的少数类样本,有效缓解失衡问

题;采用与 DGAN 判别器相同架构的 DAE 进行特征提取

与降维以增强数据特征的表达能力;通过 CNN-BiGRU-
FFusion 模型在融合空间特征与时序特征的基础上完成

分类检测。 在数据集上的实验结果表明,本文方法能够

有效识别异常流量。 下一步工作将重点在更复杂场景验

证所提方法的有效性。
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