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摘　 要:为解决钢材表面缺陷检测中因缺陷类型繁多、尺寸差异显著造成检测精度低,以及现有模型复杂度高等问题,提出了一

种改进 YOLOv8n 的轻量化检测算法 YOLOv8n-CSG。 首先,引入上下文引导模块(context
 

guided
 

block,CG
 

block)设计 C2f_CG 模

块增强对周围特征的捕捉能力,增强信息关联性;其次,加入星型网络模块( Star
 

Block)设计出 C2f_Star 模块,将输入数据映射

到高维的非线性特征空间,生成丰富的特征表示,使得模型在处理细微缺陷时更加有效;最后,设计了集成分组混洗卷

积(grouped
 

and
 

shuffled
 

convolution,GSConv)和高效多尺度注意力机制(efficient
 

multi-Scale
 

attention,EMA)的轻量化检测头 GSE_
Detect,保持了原检测头的高效的同时降低复杂度。 在 NEU-DET 数据集上进行多组实验,结果表明,改进后的 YOLOv8n-CSG 网

络模型平均精度均值(mAP)mAP@ 0. 5 达到了 76. 8%,相较于 YOLOv8n,mAP@ 0. 5 提升了 6. 9%、精度提升了 11. 3%、计算量

降低了 37%、参数量降低了 35. 2%,展现出对钢材表面缺陷更佳的检测能力,且平衡了模型的性能和复杂度。
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Abstract:
 

In
 

order
 

to
 

solve
 

the
 

problems
 

of
 

low
 

detection
 

accuracy
 

and
 

high
 

complexity
 

of
 

existing
 

models
 

due
 

to
 

the
 

variety
 

of
 

defect
 

types,
 

significant
 

size
 

differences,
 

and
 

high
 

complexity
 

of
 

existing
 

models
 

in
 

the
 

detection
 

of
 

steel
 

surface
 

defects,
 

a
 

lightweight
 

detection
 

algorithm
 

YOLOv8n-CSG
 

with
 

improved
 

YOLOv8n
 

was
 

proposed.
 

Firstly,
 

the
 

design
 

of
 

the
 

CG
 

Block
 

module
 

was
 

introduced
 

C2f_CG
 

which
 

enhanced
 

the
 

ability
 

to
 

capture
 

the
 

surrounding
 

features
 

and
 

enhance
 

the
 

information
 

relevance.
 

Secondly,
 

a
 

C2f_Star
 

module
 

is
 

designed
 

by
 

adding
 

the
 

Star
 

Block
 

module,
 

which
 

maps
 

the
 

input
 

data
 

to
 

the
 

high-dimensional
 

nonlinear
 

feature
 

space
 

and
 

generates
 

rich
 

feature
 

representations,
 

which
 

makes
 

the
 

model
 

more
 

effective
 

in
 

dealing
 

with
 

subtle
 

defects.
 

Finally,
 

a
 

lightweight
 

detector
 

GSE_Detect
 

integrating
 

GSConv
 

and
 

EMA
 

attention
 

mechanisms
 

was
 

designed
 

to
 

maintain
 

the
 

high
 

efficiency
 

of
 

the
 

original
 

detector
 

and
 

reduce
 

the
 

complexity.
 

Multiple
 

sets
 

of
 

experiments
 

on
 

the
 

NEU-DET
 

dataset
 

show
 

that
 

the
 

improved
 

YOLOv8n-CSG
 

network
 

model
 

mAP @ 0. 5
 

reaches
 

76. 8%,
 

compared
 

with
 

YOLOv8n,
 

mAP@ 0. 5
 

is
 

improved
 

by
 

6. 9%,
 

the
 

accuracy
 

is
 

increased
 

by
 

11. 3%,
 

the
 

calculation
 

cost
 

is
 

reduced
 

by
 

37%,
 

and
 

the
 

parameter
 

quantity
 

is
 

reduced
 

by
 

35. 2%,
 

showing
 

a
 

better
 

detection
 

ability
 

for
 

steel
 

surface
 

defects,
 

and
 

balancing
 

the
 

performance
 

and
 

complexity
 

of
 

the
 

model.
Keywords:defect
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0　 引　 言

　 　 在钢材的铸造、轧制、热处理和使用过程中,常常会

出现夹杂物、裂纹、划痕、氧化皮、斑块等各种表面缺陷。
当应用在汽车外壳、家电外观、建筑装饰材料等需要高质

量表面的应用中,这些缺陷会影响其美观。 当应用在工

业领域中,钢材表面的缺陷会加速其老化,缩短使用寿

命,还可能引发严重的安全事故。 因此,钢材缺陷的检测

在工业生产中至关重要。
传统的钢材缺陷检测方法主要依赖于人工目视检查

和简单的物理测试手段。 这些方法存在效率低下、主观

性强、检测精度不高等问题。 随着计算机视觉和人工智

能技术的快速发展,基于深度学习[1] 的自动化检测技术

逐渐成为钢材缺陷检测[2] 的主流趋势。 这些方法能够通

过图像处理和特征提取,实现对缺陷的高效自动化检测,
具有更高的准确性。 基于深度学习的目标检测算法可分

为两类。
1)

 

以 R-CNN 系列(包括 R-CNN[3] 、Fast
 

R-CNN[4] 和

Faster
 

R-CNN[5-6] )为代表的基于滑窗或候选区域生成的

两阶段方法,此类方法先产生可能包含目标物体的候选

区域,再进行精细分类与边界框回归。 此类方法算法较

为复杂,检测速度较慢,不易于应用在实际的工业生产检

测中。
2)

 

以 SSD[7] 、 EfficientDet[8] 与 YOLO[9-10] ( you
 

only
 

look
 

once)为代表的单阶段方法,此类方法通过一次前向

传播直接从输入图像中预测出目标物体的位置及其类

别,简化检测流程的同时提高了运行速度,更符合工业级

实时检测的需求。 但是在处理复杂目标时效果仍然不

理想。
为了解决钢材表面缺陷检测精度低、算法复杂度高

等问题, 许多研究者提出了其优化的检测模型, Chu
等[11] 提出了一种基于改进 YOLOv8 的轻量化钢表面缺

陷检测网络 YOLO-SDS。 通过替换 YOLOv8 的骨干网络

为 StarNet,实现轻量化优化,同时引入轻量级模块可扩张

残差(DWR)和 C2f 特征提取模块,增强多尺度特征提取

能力;并将遮挡感知注意力机制 SEAM(spatially
 

enhanced
 

attention
 

module)集成到检测头中,提升在复杂场景下的

检测性能。 Gao 等[12] 提出了 CDN-YOLOv7 算法,通过加

入 CARAFE( content-aware
 

ReAssembly
 

of
 

FEatures) 上采

样算子、级联注意力机制和解耦头,提升网络的特征融合

和表征能力,同时引入归一化 Wasserstein 距离和 NF-
EIoU 损失函数,减少漏检率。 徐洪俊等[13] 针对 YOLOv5
在钢材缺陷检测中的不足,提出了一种基于 YOLOv5s 的

改进算法,通过在特征提取模块中加入卷积块注意力模

块(CBAM) 机 制、 使 用 CARAFE 上 采 样、 以 及 替 换

SPPF(spatial
 

pyramid
 

pooling
 

faster) 为 SPPCPSC ( SPPF
 

cross
 

stage
 

partial
 

channel),提升了检测性能和抗干扰

能力。
本文设计了一种基于深度学习的钢材表面缺陷检测

算法, 通过结合卷积神经网络[14] ( convolutional
 

neural
 

network,CNN)等先进算法,有效识别钢材表面的多种缺

陷,提高检测精度[15] ,提升钢材产品的整体质量和安全

性。 对于 YOLOv8n 算法对钢材表面缺陷检测的精度低,
小目标检测[16] 困难,对不规则的细微缺陷难以检测的问

题。 是因为 C2f 模块不能充分挖掘特征之间的语义信

息,并且钢材表面存在微小缺陷,造成提取的特征图比较

模糊,不能有效的融合特征。 而 YOLOv8n 的检测头复杂

度太 高, 影 响 检 测 的 效 率。 基 于 以 上 问 题 本 文 对

YOLOv8n 做出改进。

1　 YOLOv8n 算法改进

　 　 YOLOv8[17] 延续了 YOLO 系列实时目标检测的优

势,并在网络架构以及整体性能等方面进行了显著改进。
除了完成传统的目标检测任务,YOLOv8 还支持图像分

割和目标跟踪等多种任务,展现出更高的灵活性与扩

展性。
为了应对检测钢材表面缺陷的挑战,本文提出了一

种专门为此目的设计的检测算法,其基于 YOLOv8,命名

为 YOLOv8n-CSG,其网络架构如图 1 所示。
本文引入 CGNet[18] 中的上下文引导模块 Context

 

Guided
 

Block(CG
 

Block)和 Backbone 层的 C2f 融合,以增

强特征之间的语义信息,增强相邻信息之间的相关性。
引入 StarNet[19] 中的星型模块(Star

 

Block)和 Neck 层的第

3 个和第 4 个 C2f 融合,将提取的特征映射到高维非线性

特征空间,以增强特征融合的高效,增强网络学习缺陷信

息的 能 力。 将 分 组 混 洗 卷 积 ( grouped
 

and
 

shuffled
 

convolution,GSConv)和高效多尺度注意力机制( efficient
 

multi-scale
 

attention,EMA)注意力机制集成到检测头上,
在降低参数量和复杂度的同时,保持网络的高效性。
1. 1　 C2f_CG 模块

　 　 C2f 模块是 YOLOv8 中的一个关键模块,它通过引入

跨阶段部分连接和特征融合的设计,显著提升了网络的

性能和效率。 C2f 模块主要由 CBS、Split 和 Bottleneck 组

成。 尽管 C2f 模块能够有效减少计算需求和内存使用,
但其基础卷积操作未能充分挖掘输入特征之间的相互关

系和语义信息,限制了其在复杂特征提取中的表现。
改进后的 C2f_CG 模块通过用 CG

 

Block 模块替代原

有的 Bottleneck 模块,增强了特征提取网络对周围特征信

息的结合能力,从而提升了邻近特征之间的相关性。 考

虑到数据集相对简单,过度的归一化操作可能导致模型
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图 1　 YOLOv8n-CSG 的网络结构

Fig. 1　 YOLOv8n-CSG
 

network
 

structure

的拟合能力降低,同时钢材缺陷类内差异较小,不需要过

多的非线性表达。 在这种情况下,去除 1×1 卷积后的 BN
和 SiLU 激活函数,有助于避免网络过度复杂化,使模型

能够更自由地拟合数据,从而取得更好的结果。 C2f 和

改进后的 C2f_CG 模块的网络结构如图 2 所示。

图 2　 C2f 和 C2f_CG 的网络结构

Fig. 2　 C2f
 

and
 

C2f_CG
 

network
 

structure

CG
 

Block 的基本原理是模拟人类视觉系统依赖上下

文信息来理解场景。 CG
 

block 用于捕获局部特征、周围

上下文和全局上下文,并将这些信息融合起来,这一模块

包含如下 4 部分。

1)将特征图经过 1 × 1 卷积然后分别输入到 f loc 和

fsur 中;
2) f loc 提取局部特征,使用 3×3 的普通卷积,fsur 提取

周围上下文特征,使用 3×3 的扩张卷积;
3) f joi 提取联合特征,将 f loc 和 fsur 的输出进行 Concat

操 作, 再 进 行 BN ( Batch
 

Normalization ) 和

PReLU(Parametric
 

ReLU);
4) fglo 提取全局上下文特征,将输入进行全局平均池

化(GAP) 和多层感知机,将得到的权重和输入按元素

相乘。
CG

 

Block 网络结构如图 3 所示,f loc 和 fsur 采用通道

卷积(Channel-wise
 

Convolutions)减少参数量。

图 3　 CG
 

Block 的网络结构

Fig. 3　 CG
 

Block
 

network
 

structure
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1. 2　 C2f_Star 模块

　 　 由于钢材表面缺陷的大小差异较大且某些缺陷非常

微小,捕获的图像往往较为模糊。 这使得特征的有效融

合变得困难,进而影响了缺陷的边缘、纹理和形状的区

分,导致检测效率低下。 为了解决这个问题,引入 Star
 

Block 模 块 来 替 换 YOLOv8 网 络 中 Neck 层 C2f 的

Bottleneck 模块。 设计了 C2f_Star 模块,其网络结构如图

4 所示。

图 4　 C2f_Star 的网络结构

Fig. 4　 C2f_Star
 

network
 

structure

Star
 

Block 是一种新颖且高效的网络架构,其核心创

新在于引入了“星型操作”(Star
 

Operation)来实现特征映

射。 星型操作通过元素乘法将来自两个不同特征空间的

特征进行交互,类似于传统机器学习中的内核技巧。 其

基本原理是通过元素乘法将输入映射到高维、非线性的

特征空间,从而有效增强特征表示能力。 Star
 

Operation
的独特优势在于,它能够显著扩展特征空间的维度,而无

需增加网络宽度(即不增加通道数),这使得模型在提升

表达能力的同时,保持了计算效率。 在单层网络中,星型

操作通常可以表示为:
(W1

TX + B1) 􀱋 (W2
T + B2) (1)

式中:W1
T 和 W2

T 是两个权重矩阵;X 表示输入要素;B1

和 B2 表示两个偏置;􀱋表示元素乘法运算。
Star

 

Block 是一个以 Star
 

Operation 为核心概念构建

的高效神经网络,其特点在于结构简洁而性能强大,由深

度卷 积 层 ( DW-Conv )、 全 连 接 层 ( FC )、 激 活 函

数(ReLU6)和星型操作组成。 DW-Conv 层在每个通道上

进行独立卷积操作,保持空间分辨率不变。 FC 层将输入

特征映射到不同的子空间,从而增强表达能力。 ReLU6
激活函数引入非线性,进一步提升模型的表示能力。 作

为核心运算,星型操作通过元素乘法融合两个分支的特

征,从而实现高效的信息整合。 Star
 

Block 的框架结构如

图 5 所示。
1. 3　 GSE_Detect 检测头

　 　 YOLOv8 共有 3 个检测头,每个检测头由双分支构

成,每个分支都有两个 3×3 卷积,共使用了 12 个 3×3 卷

积进行构建,导致其参数量和计算复杂度非常大,接近整

个模型大小的 1 / 2。 Li 等[20] 结合 DW-Conv 和普通卷

积(CBS)的特点,提出一种轻量化的 GSConv,该卷积不

图 5　 Star
 

Block 的网络结构

Fig. 5　 Star
 

Block
 

network
 

structure

仅保留了 CBS 高效的特点,且有效降低参数量和计算复

杂度。 本文受文献[20]启发,将其 3 个检测头每个分支

的第 1 个 3×3 卷积替换为 3×3 的 GSConv,大大降低参数

量和复杂度;将另一个 3×3 卷积替换成 EMA[21] 注意力机

制,以维持网络整体的性能,将此检测头命名为 GSE _
Detect。 Detect 和 GSE_Detect 网络结构如图 6 所示。

图 6　 Detect 和 GSE_Detect 的网络结构

Fig. 6　 Detect
 

and
 

GSE_Detect
 

network
 

structure

GSConv 由 CBS、DW-Conv 和通道混洗( Shuffle)模块

组成,其结构如图 7 所示。 为了减少计算量,GSConv 通

过压缩通道数的方式进行优化。 假设输入和输出通道数

分别为 C1 和 C2,该卷积首先对输入进行 CBS 操作,生成

信息 A,此时通道数被压缩至 C2 / 2;接着,经过 DW-Conv
操作得到信息 B,通道数保持不变;最后,信息 A 和信息

B 被拼接在一起,并通过 Shuffle 操作,最终输出通道数为

C2 的信息。

图 7　 GSConv 网络结构

Fig. 7　 GSConv
 

network
 

structure
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为了提升模型的性能和效率,在检测头中引入 EMA
注意力机制。 EMA 采用了 CA 模块中的共享 1×1 卷积分

支,并命名为 1×1 分支。 为了更好地聚合多尺度空间结

构信息,EMA 在 1×1 分支并行添加了一个 3×3 卷积,命
名为 3×3 分支。 通过结合特征分组和多尺度结构,EMA

能够有效地建立短程和长程依赖,从而显著提升模型的

性能。 在该结构中,“g”表示分组,“ X
 

Avg
 

Pool”表示一

维水平全局池化,而“ Y
 

Avg
 

Pool” 表示一维垂直全局池

化。 其完整网络结构如图 8 所示。

图 8　 EMA 网络结构

Fig. 8　 EMA
 

network
 

structure

2　 实验及结果分析　

2. 1　 实验环境与参数配置

　 　 本文实验环境的软硬件配置如表 1 所示。
表 1　 实验环境

Table
 

1　 Experimental
 

environment
名称 参数

操作系统 Windows
 

11
 

CPU Intel
 

Core
 

i5-13400F
GPU NVIDIA

 

GeForce
 

RTX
 

4060Ti
 

8
 

GB
内存 32

 

GB
解释器 Python

 

3. 9
深度学习框架 Pytorch

 

1. 12. 0
 

+
 

Cuda
 

11. 6

　 　 训练参数如下:输入图像尺寸为 640 × 640,批大

小(batch_size)设为 16,迭代次数( epoch)为 200,非最大

值抑制中的交并比 ( IoU) 阈值为 0. 7,起始学习率为

0. 01,权重衰减因子为 0. 000
 

5,动量为 0. 937,其余参数

为默认值。
2. 2　 实验数据集介绍

　 　 本文采用东北大学钢材表面缺陷数据集 NEU-DET,
该数据集涵盖了 6 种常见的钢材表面缺陷, 包括裂

纹(crazing,Cr)、杂质( inclusion,In)、斑块( patches,Pa)、
点蚀表面 ( pitted

 

Surface, PS)、氧化皮 ( rolled-in
 

Scale,
RS)和划痕(scratches,SC),如图 9 所示。 其中,每种缺陷

类型包含 300 张图片,共 1
 

800 张。 对数据集进行划分,
使得训练集、验证集和测试集比例为 8 ∶ 1 ∶ 1。

图 9　 各类缺陷示例

Fig. 9　 Examples
 

of
 

various
 

types
 

of
 

defects
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2. 3　 实验评价指标

　 　 为了评估模型性能增强功能的优越性,采用了常用

的指标[22] 精度( precision,P)、召回率( recall,R)、平均精

度(AP)、平均精度均值( mAP )。 其中 mAP @ 0. 5 表示

IoU 为 0. 5 阈值处的 mAP。 mAP @ 0. 5:0. 95 则表示 IoU
为 0. 5 ~ 0. 95 阈值的平均 mAP。 TP 表示为正确检测到

的实例,相反,FP 表示为错误检测到的实例。 FN 表示漏

检的实例。 通过评估 TP、FP 和 FN,可以计算关键性能

指标,如精度和召回率。 AP 表示 PR 曲线围成的面积。

2. 4　 改进网络实验结果与分析

　 　 1)改进算法与基准模型对比实验

在 NEU-DET 数据集上分别对原始 YOLOv8n 模型与

改进 YOLOv8-CSG 模型进行训练与验证,可以看出改进

后的 YOLOv8n-CSG 模型在 6 类钢材表面缺陷的平均精

度的值相较于 YOLOv8n 检测数据的值均有一定提升,且
改进后的模型在参数量、模型计算量上都下降较多。 对

比结果如表 2 所示。

表 2　 算法改进前后对比

Table
 

2　 Comparison
 

before
 

and
 

after
 

algorithm
 

improvement

模型
参数量 /

( ×106 )
浮点数 /
GFLOPS

AP / %
Cr In Pa PS RS Sc

mAP@ 0. 5 / %

YOLOv8n 3. 01 8. 1 44. 4 76. 8 92. 8 76. 5 55. 1 73. 9 69. 9
YOLOv8n-CSG 1. 95 5. 1 52. 5 84. 8 93. 3 79. 0 66. 2 85. 2 76. 8

　 　 对比结果表明,本文的 YOLOv8-CSG 模型对各类钢

材表面缺陷展现出优异的检测效果,改进后的模型较原

模型参数量降低了 35. 2%,计算量降低了 37%,mAP @
0. 5 提升了 6. 9%,YOLOv8-CSG 模型在轻量化的同时能

更精准识别各类缺陷,具备卓越的检测能力。
2)C2f_CG 模块实验

为了验证 C2f_CG 模块的有效性,在 NEU-DET 数据

集上分别对原始 YOLOv8n 模型,模型 A 为将 Bottleneck
模块替换成 CG

 

Block 模块,模型 B 为在 A 的基础上继续

将 C2f 中两个 1×1 卷积的 BN 和激活函数移除,模型 C
为在 B 的基础上将原网络的 4 个 C2f 重复次数全部改成

1,进行训练与验证,其中加粗的数值表示最优。
由表 3 可以看出,上述 3 种 CG

 

Block 和 C2f 的融合

方式,在 mAP 上均得到了提升,参数量和计算量都有一

定的下降,但选择融合方式 C 后,对网络的性能提升贡献

最大,检测精度和模型复杂度都达到最优。 除此之外,与
基线模型相比较,参数量和计算量分别降低了 0. 48×106

和 1. 4
 

GFLOPs,mAP@ 0. 5 提升了 3. 5%。
表 3　 C2f_CG 模块有效性验证

Table
 

3　 C2f_CG
 

module
 

validity
 

verification
模型 参数量 / ( ×106 ) 浮点数 / GFLOPS P / % R / % mAP@ 0. 5 / % mAP@ 0. 5:0. 9 / %

YOLOv8n 3. 01 8. 1 60. 4 68. 4 69. 9 36. 2
A 2. 54 6. 8 58. 8 73. 0 72. 6 37. 2
B 2. 54 6. 8 61. 1 70. 2 73. 0 37. 3
C 2. 53 6. 7 61. 4 70. 7 73. 4 38. 4

　 　 3)C2f_Star 模块实验

为了验证 C2f_Star 模块的有效性,在 NEU-DET 数据

集上分别对原始 YOLOv8n 模型,模型 D 为将 Neck 网络

中的 4 个 C2f 模块全部替换成 C2f_Star 模块,模型 E 为

将 Neck 网络中的后 2 个 C2f 模块替换成 C2f_Star 模块,
进行训练与验证,其中加粗的数值表示最优。

由表 4 可知,上述两种 C2f_Star 模块和 C2f 的替换

方式,在 mAP 上均得到了提升,参数量和计算量都有一

定的下降,但选择替换方式 E 后,对网络的性能提升贡献

最大,检测精度和 mAP@ 0. 5 达到最优。 除此之外,与基

线模型相比较,参数量和计算量分别降低了 0. 17×106 和

0. 2
 

GFLOPs,mAP@ 0. 5 提升了 3. 4%。 表明 C2f_Star 模

块能够在不增加复杂度的情况下将特征映射到高维、非
线性的特征空间,让特征融合更加高效。

表 4　 C2f_Star 有效性验证

Table
 

4　 C2f_Star
 

module
 

validity
 

verification
模型 参数量 / ( ×106 ) 浮点数 / GFLOPS P / % R / % mAP@ 0. 5 / % mAP@ 0. 5:0. 9 / %

YOLOv8n 3. 01 8. 1 60. 4 68. 4 69. 9 36. 2
D 2. 81 7. 7 70. 4 66. 1 73. 0 39. 2
E 2. 84 7. 9 71. 3 67. 3 73. 3 38. 2
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　 　 4)GSE_Detect 检测头实验

为了验证 GSE_Detect 检测头的有效性,在 NEU-DET
数据集上分别对 YOLOv8n 模型、GSConv 与不同的注意

力机制集成的检测头进行训练与验证,其中加粗的数值

表示最优。
由表 5 可知,上述 5 种不同的注意力机制与 GSConv

集成的检测头,在 mAP 上均得到了提升,参数量和计算

量都有一定的下降,但选择 EMA 注意力机制和 GSConv
集成后,对网络的性能提升贡献最大,mAP@ 0. 5 和 mAP
@ 0. 5:0. 9 都达到最优。 除此之外,与基线模型相比较,
参数量和计算量分别降低了 0. 42×106 和 1. 4

 

GFLOPs,
mAP@ 0. 5 提升了 2. 2%。 GSConv 通过压缩通道有效降

低了参数量和计算复杂度,EMA 注意力机制让模型更加

高效。 实验证明了 GSE_Detect 检测头的合理性。

表 5　 GSE_Detect 有效性验证

Table
 

5　 GSE_Detect
 

module
 

validity
 

verification
模型 参数量 / ( ×106 ) 浮点数 / GFLOPS P / % R / % mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / %

YOLOv8n 3. 01 8. 1 60. 4 68. 4 69. 9 36. 2
SE 2. 54 6. 1 62. 4 66. 6 70. 7 37. 9

SEAM 2. 57 6. 2 64. 7 68. 0 71. 3 35. 7
ECA 2. 53 6. 1 64. 4 64. 4 71. 0 36. 5

SimAM 2. 53 6. 1 67. 2 63. 8 71. 3 36. 7
EMA 2. 59 6. 7 63. 7 69. 0 72. 1 38. 5

2. 5　 消融实验

　 　 为了评估所提出的网络的性能和效率,对网络架构

的组件进行了各种实验,M1 表示 C2f_CG 模块,M2 表示

C2f_Star 模块,M3 表示 GSE_Detect 模块,√表示加入该

模块。 其中加粗的数值表示最优。

表 6　 消融实验

Table
 

6　 Ablation
 

experiments
M1 M2 M3 参数量 / ( ×106 ) 浮点数 / GFLOPS P / % R / % mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / %

YOLOv8n 3. 01 8. 1 60. 4 68. 4 69. 9 36. 2
√ 2. 53 6. 7 61. 4 70. 7 73. 4 38. 4

√ 2. 84 7. 9 71. 3 67. 3 73. 3 38. 2
√ 2. 59 6. 7 63. 7 69. 0 72. 1 38. 5

√ √ 2. 36 6. 5 68. 3 70. 6 75. 7 39. 9
√ √ 2. 11 5. 2 68. 3 68. 2 75. 4 39. 4

√ √ 2. 43 6. 5 65. 5 70. 4 73. 7 38. 4
√ √ √ 1. 95 5. 1 71. 7 73. 0 76. 8 40. 4

　 　 由表 6 可见,当将 Backbone 中的 C2f 模块替换为

C2f_CG 模块时,模型的参数量和计算量分别减少了

0. 48×106 和 1. 4
 

GFLOPs,同时 mAP@ 0. 5 提升了 3. 5%,
证明 C2f_CG 模块有效减少冗余信息并增强特征提取能

力。 同时替换 C2f_CG 和 C2f_Star 模块时,模型复杂度和

检测精度进一步优化,参数量和计算量减少 0. 65×106 和

1. 6
 

GFLOPs, mAP @ 0. 5 提升了 5. 8%。 将 C2f _ CG 和

GSE_Detect 检测头同时替换时,参数量和计算量分别减

少了 0. 9×106 和 2. 9
 

GFLOPs,mAP@ 0. 5 提升了 5. 5%。
替换 C2f_Star 模块和 GSE_Detect 检测头时,参数量和计

算量分别减少 0. 58×106 和 1. 6
 

GFLOPs,mAP@ 0. 5 提升

了 3. 8%。 最终,本文提出的 YOLOv8n-CSG 算法在各项

指标上均优于 YOLOv8n,且达到了最佳性能:参数量和

计算量分别降低了 1. 06×106 和 3
 

GFLOPs,精度和召回

率分别提升 11. 3%和 4. 6%,mAP@ 0. 5 和 mAP@ 0. 5:

0. 9 分别提升了 6. 9%和 4. 2%。 该模型在保持较低参

数量 和 计 算 负 担 的 同 时, 显 著 提 升 了 性 能, 证 明

YOLOv8n-CSG 在检测性能和模型复杂性之间达到了更

优的平衡。
2. 6　 对比实验

　 　 为了验证本文算法的优越性,在 NEU-DET 数据集和

相同 实 验 条 件 下, 将 YOLOv5n、 YOLOv5s、 YOLOv7、
YOLOv7-tiny、YOLOv8n、YOLOv8s、YOLOv10n、YOLOv11n、
YOLOv8n-CSG 算法进行实验验证,以及参考文献 [ 23-
25]的算法进行对比。 表 7 为了其对比实验的结果,其中

加粗表示最优值。
由表 7 可知,本文提出的 YOLOv8n-CSG 算法相对于

传统算法表现出了优越性,mAP @ 0. 5 达到 76. 8%的同

时参数量和计算量仅为 1. 95×106 和 5. 1
 

GFLOPs。 相对

于文献[23]来说,表现得更加优异。 而文献[24]相对本
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　 　 　 表 7　 对比实验

Table
 

7　 Comparative
 

experiments
模型 参数量 / ( ×106 ) 浮点数 / GFLOPS P / % R / % mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / %

YOLOv5n 1. 77 4. 2 63. 4 71. 8 71. 8 38. 3
YOLOv5s 7. 03 15. 8 69. 2 71. 8 72. 6 38. 9
YOLOv7 37. 20 105. 2 63. 8 68. 6 70. 7 34. 8

YOLOv7-tiny 6. 03 13. 2 65. 9 57. 0 66. 9 31. 2
YOLOv8n 3. 01 8. 1 60. 4 68. 4 69. 9 36. 2
YOLOv8s 11. 10 28. 4 70. 1 70. 1 73. 5 37. 2

YOLOv10n 2. 70 8. 2 66. 0 61. 0 67. 4 35. 3
YOLOv11n 2. 58 6. 3 64. 3 68. 8 72. 0 38. 2

FMG-YOLOv8s[23] 2. 90 6. 7 - - 75. 9 -
YOLOX[24] 7. 23 20. 7 - - 77. 0 -

YOLOv8n-SDEC[25] 4. 86 - 71. 2 71. 3 76. 7 -
YOLOv8n-CSG 1. 95 5. 1 71. 7 73. 0 76. 8 40. 4

文算法虽然 mAP@ 0. 5 高了 0. 2%,但是模型更加复杂,
参数量和计算量达到了 7. 23×106 和 20. 7

 

GFLOPs,浪费

了过多的资源不利于在设备上部署。 文献[25]在精度、
召回率和 mAP@ 0. 5 都和本文相差无几,但是本文算法

参数量低于文献[25]。 相比之下,YOLOv8n-CSG 在较低

的参数量的计算量的同时却能保持较高的 mAP @ 0. 5
值,展现了较好的轻量化和性能平衡。
2. 7　 可视化对比

　 　 钢材缺陷同一类中差异较小,YOLOV8n-CSG 网络引

入了上下文引导模块,从而提升了邻近特征之间的相关

　 　 　 　

性,提高邻近特征的提取能力。 钢材表面缺陷不同类中

的大小差异较大且某些缺陷非常微小,捕获的图像往往较

为模糊,这使得特征的有效融合变得困难,进而影响了缺

陷的边缘、纹理和形状的区分,而引入星型网络可以将输

入映射到高维、非线性的特征空间,从而有效增强特征融

合能力,而高效的检测头能够更加有效的识别微小缺陷。
为验证本文算法的检测效果,将其与原始模型算法

在 NEU-DET 数据集上进行预测,并使用不同颜色的锚定

框区分不同缺陷类别,可视化结果如图 10 所示。 由图

8(a) ~ (c)、(e)可见,YOLOv8n 在对裂纹、杂质和斑块

　 　 　 　

图 10　 可视化钢材表面缺陷检测图

Fig. 10　 Visualize
 

a
 

steel
 

surface
 

defect
 

detection
 

diagram
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的检测时产生了漏检的情况,而在对氧化皮检测时出现

了误检,而 YOLOV8n-CSG 不仅解决的这些问题,还增加

了检测的准确度。 显然本文提出的算法在微小缺陷、伪
装缺陷以及相似缺陷的检测上更加优异。

不同模型训练的边界回归损失图如图 11 所示。 与

基线模型相比,早期训练 YOLOv8n-CSG 损失下降得更快

并且最终值低于 YOLOv8n,表明引入的上下文引导模

块、星型网络模块,以及高效轻量级检测头优化了特征提

取和特征融合能力,证明了改进措施的有效性。

图 11　 改进前后模型损失曲线对比

Fig. 11　 Comparison
 

of
 

model
 

loss
 

curves
before

 

and
 

after
 

improvement

为验证改进方法的有效性,本文在 NEU-DET 数据集

上将 YOLOv8n-CSG 与基线模型进行了详细对比,如图

12 所 示。 由 图 12 可 见, 该 方 法 在 精 度、 召 回 率 和

mAP0. 5 等关键指标上均有显著提升。 同时,计算量和

参数量分别减少了 37. 0%和 35. 2%,实现了性能与效率

的双重优化。 性能的提升主要得益于更有效的微小缺陷

信息提取与多尺度特征融合。 综合来看,YOLOv8n-CSG
在钢材缺陷检测中展现出优越性能,不仅提升了检测准

确性与实时性,也为工业应用提供了更可靠的技术支持。

图 12　 模型检测性能对比

Fig. 12　 Model
 

detection
 

performance
 

comparison
 

chart

3　 结　 论

　 　 针对钢材缺陷检测模型复杂度高、检测精度低等问

题,本文提出一种基于 YOLOv8n 改进的检测算法命名为

YOLOv8n-CSG。 YOLOv8n-CSG 在检测精度和模型复杂

度都表现出了出色的性能。 首先,在特征提取网络引入

CG
 

Block 增强对周围特征的捕捉能力,增强关联性信息

的提取能力;其次,在特征融合网络加入 Star
 

Block,可以

将输入数据映射到一个极高维的非线性特征空间,能够

生成丰富的特征表示,使得模型在处理复杂数据时更加

有效。 最后,在检测头中集成了 GSConv 和 EMA 注意力

机制,在保持原检测头高效的同时大大降低了复杂度。
在 NEU-DET 数据集上进行多组实验,结果表明,改进后

的 YOLOv8n-CSG 网络模型相比 YOLOv8n 模型 mAP @
0. 5 提升了 6. 9%、准确率提升了 11. 3%、召回率提升了

4. 6%、浮点数下降了 37%、参数量降低了 35. 2%。 通过

对其他模型的对比,表现出本文提出的 YOLOv8n-CSG 模

型对钢材表面缺陷更佳的定位与识别能力,且检测速度

满足工业应用需求,平衡了模型的性能和复杂度。 在未

来的研究中,将考虑继续对检测头进行轻量化处理,减少

计算开销,使其能部署在小型的嵌入式平台上,并将其应

用于钢材缺陷检测领域。
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