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YOLOvV8n-CSG : Lightweight steel surface defect detection algorithm
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Abstract: In order to solve the problems of low detection accuracy and high complexity of existing models due to the variety of defect
types, significant size differences, and high complexity of existing models in the detection of steel surface defects, a lightweight detection
algorithm YOLOv8n-CSG with improved YOLOv8n was proposed. Firstly, the design of the CG Block module was introduced C2f_CG
which enhanced the ability to capture the surrounding features and enhance the information relevance. Secondly, a C2f_Star module is
designed by adding the Star Block module, which maps the input data to the high-dimensional nonlinear feature space and generates rich
feature representations, which makes the model more effective in dealing with subtle defects. Finally, a lightweight detector GSE_Detect
integrating GSConv and EMA attention mechanisms was designed to maintain the high efficiency of the original detector and reduce the
complexity. Multiple sets of experiments on the NEU-DET dataset show that the improved YOLOv8n-CSG network model mAP@ 0.5
reaches 76. 8% , compared with YOLOv8n, mAP@ 0. 5 is improved by 6. 9%, the accuracy is increased by 11. 3%, the calculation cost
is reduced by 37%, and the parameter quantity is reduced by 35.2%, showing a better detection ability for steel surface defects, and
balancing the performance and complexity of the model.
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Table 1 Experimental environment

K 24
BIERSE Windows 11
CPU Intel Core 15-13400F
GPU NVIDIA GeForce RTX 4060Ti 8 GB
WAF 32GB
fil R4 Python 3.9
RIS HESR Pytorch 1.12.0 + Cuda 11. 6
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(b)

(b) Inclusion (c) Patches
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Fig.9  Examples of various types of defects
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Table 2 Comparison before and after algorithm improvement
B S ey v AP/ %
iR - - mAP@0.5/%
(x10%) GFLOPS Cr In Pa PS RS Se
YOLOv8n 3.01 8.1 44.4 76.8 92.8 76.5 55.1 73.9 69.9
YOLOv8n-CSG 1.95 5.1 52.5 84.8 93.3 79.0 66. 2 85.2 76.8

Xof He 4 R B, AR SCHY YOLOVS-CSG 5 1 %of 2% 2 4
oA 2 T Lo o TR P S5 P G 00 265 SR ot I ) A A A
RIS PR T 35. 2%, T R [EMK T 37% , mAP @
0.5 3T T 6.9% , YOLOv8-CSG #5575 1+ Ak 1 ] 1) fi
TORE MU 25 S B | HL A B A e

2) C2f_CG FRB 525

J T IIE C2f_CG B4 201k , 7 NEU-DET %4
B RN E LS YOLOvSn AL 581 A 54 Bottleneck
BB CG Block £ A5 B SHTE A (LA [ 4k4L

B C2f R4S 1x1 BFREY BN FIELTE sR 5O 45, i C
HTE B AYSERN R IR Y 4 A4S C2f HAR B4 T K,
1, AT RS 50 UE , FEh R A $UE 2R St

3 W LAFEH, LR 3 F CG Block A1 C2f W&
T, 7E mAP B R T T, S8R R R —
ER R B EERS TR C R, R A PERERR T BTk
K, KNS B RIS T A ZR B RRIA B s f . BRUbZAh, 5
FLARAERUM oA, S50 T B S B FEAR T 0. 48x10°
1.4 GFLOPs,mAP@O0. 5 #2777 3.5%.,

F3 C2oA_CGERBHEWIE
Table 3 C2f_CG module validity verification

iRy SR/ (x10°) #1550/ GFLOPS P/% R/ % mAP@O0. 5/% mAP@0.5:0.9/%
YOLOv8n 3.01 8.1 60. 4 68. 4 69.9 36.2
A 2.54 6.8 58.8 73.0 72.6 37.2
B 2.54 6.8 61.1 70.2 73.0 37.3
C 2.53 6.7 61.4 70.7 73.4 38.4

3) C2f_Star PR S2LG

AT BIE C2f_Star HRHRBYA R, 7 NEU-DET #4f&
£ L%t )G YOLOv8n A7 B D At Neck 4%
T 4 A C2f BEH AT il C2f_Star B1HE BIHL E
# Neck PIZEH G 2 4> C2f BB Bi 4 il C2f_Star bk |
AT ZR 5 500, For i i EUE 2 s me

26 4 Al A, R AP C2f_Star FEHLFN C2f fE

J730, 76 mAP ¥R 3| T T, S80E Ft R E AR —
ER TR B =X E 5, X R A PERESE T TRk
K, RIS B2 F mAP@ 0. 5 ik B, BRIb =z ok, 53k
BT A, SECR AT R A BIFRAIR T 0. 17x10°
0.2 GFLOPs,mAP@0. 5 &7+ 1 3.4%, KW C2f_Star 15
HBBASTE AN G NS Z% BE A 1 50 B K R AR e S 38 v 4
LR AR AARAE 25 18], AR AR Bl A T s Rk,

F4 C2f _Star HRIEMIE
Table 4 C2f_Star module validity verification

AL SR/ (x10°) % 18U/ GFLOPS P/ % R/ % mAP@O0. 5/% mAP@0.5:0.9/%
YOLOv8n 3.01 8.1 60. 4 68. 4 69.9 36.2
D 2.81 7.7 70.4 66. 1 73.0 39.2
E 2.84 7.9 71.3 67.3 73.3 38.2
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4) GSE_Detect £ 3k 5256

AT HriE GSE_Detect Failll Sk 145 3414 , 76 NEU-DET
Bl 14X YOLOv8n 57  GSConv 5 AN [] 14 4 7
JIAIL A ARSI Sk AT N 255 50, rbolmREL ) B
Tl

5 w0, ik 5 FOR A B9 i 2 H1 L S GSCony
LUK Sk, 7E mAP ISR T A, S8 E T

HHA —E BT, H e EMA E 3 S HLH A GSConvy
LG, X P25 1 P RE SR T BTk i K, mAP@ 0. 5 Al mAP
@0.5:0.9 #BIRBEAL, BRUILZ AN, 5 ILLLHIRIA 4
SR A B ML T 0.42x10° #1 1.4 GFLOPs,
mAP@0. 5 2T+ T 2. 2%, GSConv i 32t 1 47 3 18 A % [
T BHEFIHE B R EMA TE 75 S L 1A R
ERL, SCEGHER] T GSE_Detect ¥l Sk f-4 FE

% 5 GSE_Detect B3£I IE

Table 5 GSE_Detect module validity verification

B SR/ (x10%) 7% 18U/ GFLOPS P/ % R/ % mAP@O0. 5/% mAP@0. 5:0.95/%
YOLOv8n 3.01 8.1 60. 4 68. 4 69.9 36.2
SE 2.54 6.1 62.4 66. 6 70.7 37.9
SEAM 2.57 6.2 64.7 68.0 71.3 35.7
ECA 2.53 6.1 64.4 64. 4 71.0 36.5
SimAM 2.53 6.1 67.2 63.8 71.3 36.7
EMA 2.59 6.7 63.7 69.0 72.1 38.5

2.5 HEAI
ST VEAG i LT 0 285 1) M B RS0 X I 45 SR A
HYLHPFHEAT T &R 25, M1 KR C2f_CG B M2 KR
*6

C2f_Star i, M3 %75 GSE_Detect BiE V35 A %
i, HA A EE RS R,

TH AL SEIE

Table 6 Ablation experiments

Ml M2 M3 B/ (x10°) IFAE/GFLOPS  P/% R/% mAP@0.5/% mAP@ 0. 5:0.95/%
YOLOv8n 3.01 8.1 60. 4 68. 4 69. 9 36.2
vV 2.53 6.7 61.4 70.7 73.4 38.4
Vv 2.84 7.9 71.3 67.3 73.3 38.2
Vv 2.59 6.7 63.7 69.0 72.1 38.5
vV 2.36 6.5 68.3 70.6 75.7 39.9
Vv vV 2.11 5.2 68.3 68.2 75.4 39.4
Vv vV 2.43 6.5 65.5 70. 4 73.7 38.4
vV Vv 1.95 5.1 7.7 73.0 76.8 40. 4

i 6 A UL, 24 Backbone "1 C2f 5B 5 4y
C2f_CG HE il BT iy 2 80 i FE 38 a8 o 5l > 17
0.48x10° 1 1. 4 GFLOPs, [} mAP@0. 5 $27+ T 3. 5%,
UERH C2f_CG BiHAT 88 A TUAR M5 B I 1 5 FRAE $2 A
J1o RIS C2f_CG Fl C2f_Star FLHRI | H1 55 0 i 1
RIS B2 — 25 Ak, S8 A5 82> 0. 65 10°
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Table 7 Comparative experiments

FELHY SR/ (x10°) I 580/ GFLOPS P/% R/% mAP@ 0. 5/% mAP@O0. 5:0.95/%
YOLOv5n 1.77 4.2 63. 4 71.8 71.8 38.3
YOLOvS5s 7.03 15.8 69.2 71.8 72.6 38.9
YOLOv? 37.20 105.2 63.8 68.6 70.7 34.8
YOLOv7-tiny 6.03 13.2 65.9 57.0 66.9 31.2
YOLOv8n 3.01 8.1 60. 4 68. 4 69.9 36.2
YOLOv8s 11. 10 28. 4 70. 1 70. 1 73.5 37.2
YOLOv10n 2.70 8.2 66.0 61.0 67.4 35.3
YOLOvl1n 2.58 6.3 64.3 68.8 72.0 38.2
FMG-YOLOv8s % 2.90 6.7 - - 75.9 -
YOLOX ! 7.23 20.7 - - 71.0 -
YOLOv8n-SDEC?! 4.86 - 71.2 71.3 76.7 -
YOLOv8n-CSG 1.95 5.1 71.7 73.0 76.8 40. 4
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Fig. 10 Visualize a steel surface defect detection diagram
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