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摘　 要:目前的红外与可见光图像融合算法对图像的特征提取不充分,细节信息丢失。 实际生活中的红外与可见光图像多为未

配准图像,已有的配准算法仍存在伪影和偏差等问题。 针对以上问题,提出了一种自适应特征增强的多尺度红外与可见光图像

配准和融合算法。 首先,在配准网络中使用多尺度卷积核和密集连接,以提取不同尺度的特征和防止信息丢失,并引入 ORB 特

征点检测算法和设计的特征增强模块,以充分提取特征和适应复杂环境;其次,通过引入通道注意力和自学习参数设计了光照

增强模块,以增强可见光图像的信息表达;然后,在融合网络里,利用不同池化和可变卷积设计了自适应多尺度池化卷积,以提

取不同尺度的细节信息,并设计 EMA 特征融合模块将局部特征和全局特征进行融合;最后,设计了流场一致性损失函数,从而

减小配准误差。 为了更好地验证方法的实用性,建立了红外与可见光图像数据集。 在公开数据集 TNO、Roadscene 和自建数据

集上进行对比实验和消融实验,实验表明,在主观评价上,配准图像偏差小无伪影,融合图像清晰可见,客观评价上,在指标

MSE、MI、NCC、SD、EN 上相比于其他算法提高了 20%、7%、4%、15%、8%左右。 另外,在 YOLOv8 上进行融合结果的目标检测性

能实验,检测性能表现良好。
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Abstract:
 

The
 

current
 

infrared
 

and
 

visible
 

light
 

image
 

fusion
 

algorithms
 

often
 

fail
 

to
 

fully
 

extract
 

image
 

features,
 

resulting
 

in
 

the
 

loss
 

of
 

detail
 

information.
 

In
 

real-world
 

scenarios,
 

infrared
 

and
 

visible
 

light
 

images
 

are
 

typically
 

unregistered,
 

and
 

existing
 

registration
 

algorithms
 

still
 

suffer
 

from
 

artifacts
 

and
 

biases.
 

To
 

address
 

these
 

issues,
 

this
 

paper
 

proposes
 

an
 

adaptive
 

feature
 

enhancement
 

multi-scale
 

infrared
 

and
 

visible
 

light
 

image
 

registration
 

and
 

fusion
 

algorithm.
 

First,
 

multi-scale
 

convolutional
 

kernels
 

and
 

dense
 

connections
 

are
 

used
 

in
 

the
 

registration
 

network
 

to
 

extract
 

features
 

at
 

different
 

scales
 

and
 

prevent
 

information
 

loss.
 

Additionally,
 

an
 

ORB
 

feature
 

point
 

detection
 

algorithm
 

and
 

a
 

designed
 

feature
 

enhancement
 

module
 

are
 

introduced
 

to
 

fully
 

extract
 

features
 

and
 

adapt
 

to
 

complex
 

environments.
 

Secondly,
 

a
 

lighting
 

enhancement
 

module
 

is
 

designed
 

by
 

incorporating
 

channel
 

attention
 

and
 

self-learning
 

parameters
 

to
 

improve
 

the
 

information
 

expression
 

of
 

visible
 

light
 

images.
 

Then,
 

in
 

the
 

fusion
 

network,
 

adaptive
 

multi-scale
 

pooling
 

convolutions
 

are
 

designed
 

using
 

different
 

pooling
 

strategies
 

and
 

variable
 

convolutions
 

to
 

extract
 

detail
 

information
 

at
 

multiple
 

scales.
 

An
 

EMA
 

feature
 

fusion
 

module
 

is
 

designed
 

to
 

integrate
 

local
 

and
 

global
 

features.
 

Finally,
 

a
 

flow
 

consistency
 

loss
 

function
 

is
 

introduced
 

to
 

minimize
 

registration
 

errors.
 

To
 

better
 

validate
 

the
 

practical
 

applicability
 

of
 

the
 

proposed
 

method,
 

an
 

infrared
 

and
 

visible
 

light
 

image
 

dataset
 

is
 

established.
 

Comparative
 

and
 

ablation
 

experiments
 

are
 

conducted
 

on
 

the
 

public
 

datasets
 

TNO,
 

Roadscene,
 

and
 

a
 

self-constructed
 

dataset.
 

The
 

experimental
 

results
 

show
 

that,
 

in
 

terms
 

of
 

subjective
 

evaluation,
 

the
 

registered
 

images
 

have
 

minimal
 

bias
 

and
 

no
 

artifacts,
 

while
 

the
 

fused
 

images
 

are
 

clear
 

and
 

visible.
 

On
 

objective
 

evaluation,
 

it
 

improves
 

about
 

20%,
 

7%,
 

4%,
 

15%,
 

and
 

8%
 

on
 

the
 

metrics
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MSE,
 

MI,
 

NCC,
 

SD,
 

and
 

EN
 

compared
 

to
 

other
 

algorithms.
 

Additionally,
 

target
 

detection
 

performance
 

experiments
 

on
 

YOLOv8
 

show
 

that
 

the
 

fusion
 

results
 

exhibit
 

good
 

detection
 

performance.
Keywords:image

 

registration;
 

image
 

fusion;
 

multi-scale;
 

adaptive;
 

feature
 

enhancements

0　 引　 言

　 　 近年来,人们对红外和可见光图像融合( infrared
 

and
 

visible
 

image
 

fusion,
 

IVIF)越来越感兴趣,其目的是合并

红外和可见光传感器的互补信息,从而生成更加全面的

图像。 红外传感器成像利用物体发射的热辐射,不受光

照变化的影响,能够补偿可见传感器在描述场景和物体

的关键属性方面的局限性,特别是在不利的照明条件下。
目前的很多 IVIF 已经应用到目标检测[1] 、语义分割、场
景理解[2] 和自动驾驶等实际应用。 除此之外,多模态融

合技术在电力、遥感、军事和人脸识别等领域发挥着重要

作用[3] 。 现有的基于深度学习的 IVIF 技术可以分为 3
类,即基于自动编码器的方法,端到端基于卷积神经网

络(convolution
 

netural
 

networks,CNN)的方法和生成对抗

网络的方法。
预训练的自动编码器用于实现特征提取和特征重

建,其中融合规则由手动设计完成。 Li 等[4] 首先为
 

IVIF
 

引入了一个自动编码器网络。 通过在编码器部分集成密

集块,可以全面提取特征。 考虑到重要信息通常从网络

退化,Liu 等[5] 采用不同的接收扩张卷积从多尺度前瞻性

中提取特征,然后通过边缘注意机制合并这些提取特征。
Zhao 等[6] 提出了一种基于自动编码器的融合网络,其中

编码器将图像分别分解为具有低频和高频信息的背景和

细节特征图,然后通过解码器部分生成融合结果。
首次将 CNN 应用于红外与可见光图像融合的方法

由 Zhang 等[7] 提 出, 旨 在 提 升 图 像 的 细 节 信 息。
CDDFuse[8] 在突出物体和保留纹理方面表现良好,但在

解决融合图像中的结构畸变和边缘方面遇到了困难。 为

了设计一个可以应用于多个融合任务的融合网络,Xu
等[9] 提出了 U2Fusion。 黄玲琳等[10] 为了解决图像融合

后出现的伪影、小目标不清晰等问题,将图像下采样到多

个尺度再利用注意力模型进行特征融合。 陈潮起等[11]

将红外、可见光图像分解为多层次图像,再设计最优的融

合策略。 陈永等[12] 利用密集连接网络对两种图像的多

尺度信息进一步特征提取,最后利用全连接层构成的解

码器进行图像重建。 李天放等[13] 通过引入卷积注意力

机制和语义分割网络增强特征提取并约束融合网络。 为

了将融合方法应用到无人机端,童小钟等[14] 利用知识蒸

馏技术降低模型参数量。 但是这些方法对图像的细节信

息和长距离依赖关系提取不充分。
除此之外, 已经产生了广泛的基于生成对抗网

络(generative
 

adversarial
 

network,GAN)
 

的融合方法。 Ma
等[15] 在可见光图像和融合结果之间建立对抗性游戏以

增强纹理细节。 然而,他们只使用了可见光图像中的信

息,从而失去了融合结果上目标的对比度或轮廓。 为了

改善这个问题,后来引入了双鉴别器
 

GAN[16] ,其中红外

和可见光图像都参与网络,从而显着提高了融合性能。
随着更多的尝试,Li 等[17] 引入了一种集成了多分类约束

的端到端
 

GAN
 

模型。 Liu 等[18] 设计了一个带有一个生

成器和双鉴别器的融合网络。
Transformer[19] 首次应用在在自然语言处理领域。 后

来,Dosovitskiy 等[20] 提出了用于图像分类的视觉转换

器(vision
 

transformer,ViT)。 VS 等[21] 提出了能够同时使

用局部信息和全局信息的图像融合 Transformer 模型,弥
补了 CNN 模型提取全局上下文信息的能力不足。 Ma
等[22] 提出了一种融合方法,它可以保留强度最大的源模

态像素。 陈彦林等[23] 利用 Transformer 组件和卷积组成

多尺度自注意力编码器-解码器,充分提取局部特征和长

距离依赖关系。 但是由于 Transformer 和自注意力的计算

复杂度高,导致融合模型的运行效率不高。
目前这些融合方法是为手动预配准的红外和可见图

像设计的,但是实际生活中多是未配准的图像。 对于图

像配准。 文献[24]依赖于光流估计,目的是估计源图像

和目标图像之间的密集像素对应关系。 Zhou 等[25] 提出

了一种称为
 

CrossRAFT
 

的图像配准框架,用于扩展多模

态图像的现成单模态光流估计模型。 Nemar[26] 同时训练

图像平移和配准,导致复杂和相互破坏性的优化。 文

献[27]提出的 UMF 从粗到细的图像配准方法采用一阶

段训练方式。 然而,它仅依靠从两个尺度中提取的特征

来估计最终的变形场,缺乏全局特征的表示。
目前的多模态图像配准算法仍存在错位、伪影等问

题,而且缺少多尺度特征的提取,导致部分信息丢失。 现

有的融合算法存在特征提取不充分,细节信息丢失,模型

参数量大等问题。 针对以上问题,本文提出自适应特征增

强的多尺度图像配准和融合算法,在配准网络里,引入

ORB 算法并设计特征增强模块,通过多尺度特征提取和密

集连接使配准算法适用能力更强。 在融合网络里,设计了

自适应多尺度池化卷积和光感增强模块,以提取不同尺度

的特征和增强可见光图像的特征。 将本文算法与其他 7
种先进算法在公开数据集 TNO、Roadscene 和自建数据集

上进行大量对比实验,在主观评价上融合图像纹理轮廓清

晰;在客观评价上,EN、MI、SD 明显高于其他算法。 除此之

外,在融合图像上进行检测实验,检测性能表现良好。
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1　 本文方法

1. 1　 本文框架

　 　 本文的工作流程如图 1 所示。 根据数据来源的不

同,配准的过程分为两种情况,第 1 种是已经配准的红外

与可见光图像,需要利用已有的生成对抗网络 CPST[27]

将红外图像 Iir 错位变形成伪红外图像 Ifakeir , 如式(1) 所

示,然后将 Ifakeir 和 Iir 输入到多尺度密集配准网络( multi-
scale

 

dense
 

registration
 

network, MDRN ) 进 行 配 准, 如

式(2)所示。 另一种情况是给定一对未对齐的可见光图

像 Ivis 和红外图像,其目标是将红外图像配准到可见图像

上,从而输出配准图像 Iregir , 如式(3)所示。 融合过程中,
将配准后的图像与可见光图像输入到自适应特征融合网

络(adaptive
 

feature
 

fusion
 

network,AFFN),通过光感增强

模块(light
 

enhancement
 

module,LEM)提高可见光图像信

息表达,利用 STB( swin-transformer
 

block) 和自适应多尺

度池 化 卷 积 ( adaptive
 

multi-scale
 

pooled
 

convolution,
AMPC)分别提取局部和全局特征并用高效多尺度注意

力特征融合模块( EMA
 

feature
 

fusion
 

module,EMAM) 将

其融合,最后输出融合图像 Ifuse, 如式(4)所示。 图 1 中

绿色和橙色箭头分别表示配准过程的两者情况,红色和

紫色箭头代表融合过程。
Ifakeir = CPST( Iir) (1)
Iregir = MDRN( Iir,I

fake
ir ) (2)

Iregir = MDRN( Iir,Ivis) (3)
Ifuse = AFFN( Ivis,I

reg
ir ) (4)

式中:CPST 代表生成对抗网络;MDRN 代表多尺度密集

配准网络;AFFN 代表自适应特征融合网络。

图 1　 红外与可见光图像配准和融合流程

Fig. 1　 Flow
 

chart
 

of
 

infrared
 

and
 

visible
 

image
 

registration
 

and
 

fusion

1. 2　 多尺度密集配准网络

　 　 由粗到细配准方法主要应用于处理图像的对齐问

题。 粗尺度初步配准通常从较低分辨率或粗略的特征开

始,快速进行初步对齐。 逐步细化配准将配准结果在更

高分辨率的图像上进行微调,逐步引入更多细节信息。
通过不同尺度的图像来确保更高的鲁棒性和精确度。 密

集连接可以保证配准过程里的信息重复使用,降低信息

丢失的风险。 多尺度密集配准网络如图 2 所示。
首先将红外与可见光图像分别输出到双分支特征提

取分支,包括 ORB 算法[28] 分支和卷积层分支。 将两种

特征输出后拼接并利用轻量化的深度可分离卷积进行特

征融合,将通道维度恢复到之前维度。
M1

ir = M( I1
ir) (5)

R1
ir = ORB( I1

ir) (6)
F1

ir = DWConv1(Concate(M
1
ir,R

1
ir)) (7)

F1
vis = DWConv1(Concate(M

1
vis,R

1
vis)) (8)

式中: M为共享的多尺度特征提取器; R 代表 ORB 算法;

F1
ir、F

1
vis 分别为红外与可见光图像在两种特征提取器上的

结合;Concate 为拼接操作;DWConv1 为 3×3 的深度可分

离卷积。 然后将红外与可见光图像输入到变形场预测模

块,预测出变形场为:
D1

ir = DFE(F1
ir,F

1
vis) (9)

式中:DFE 为由粗到细的变形场预测模块[27] ;D 为预测

出的变形场。 将红外图像按照预测的变形场进行变换,
并与下一阶段的红外图像继续预测变形场为:

D2
ir = DFE(ST( I2

vis,D
1
ir),I2

ir) (10)
式中:ST[29] 为基于图像 X 和仿射参数 p 的空间变换的实

现。 将上一阶段的输出分别上采样到下面阶段的分辨率

大小为:
Dense2

ir = Upsample(D2
ir) 􀱇 D1

ir (11)
式中:Upsample 表示上采样操作;Dense[30] 表示密集连接

操作。 将最后的输出进行预测变形进行输:
Iregir = ST(Dense2

ir 􀱇 D3
ir) (12)
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图 2　 多尺度密集配准网络

Fig. 2　 Multi-scale
 

dense
 

registration
 

network

　 　 1)ORB 特征匹配算法

深度学习模型可能在面对大尺度的几何变换时表现

不佳,特别是当数据中变换种类多样时,训练模型可能无

法很好地应对各种变换的情况。
ORB 算法通过提取旋转不变的特征点,并且具有较

好的尺度、旋转和光照变化的适应性。 除此之外,ORB
 

算法还有着高效率、计算速度快、适合实时应用等优势,
它在处理速度和资源有限的场景中表现优异。 ORB 算

法特征提取分支如图 3 所示。

图 3　 ORB 算法特征提取分支

Fig. 3　 Feature
 

extraction
 

branch
 

of
 

ORB
 

algorithm

2)特征增强模块

ORB 描述子是通过基于像素值计算的局部特征生

成的,具有较强的局部性和二值化特征。 在复杂场景中,
这些描述子可能由于光照等变化而表现不佳。 针对这个

问题,本文结合轻量化的深度可分离卷积设计了轻量化

的特征增强模块( lightweight
 

feature
 

enhancement
 

module,
LFEM)。

LFEM 通过对 ORB 特征进行进一步的学习和增强,

能够捕捉到更多复杂的特征信息,从而提升配准的准确

性,尤其是在纹理较少或噪声较多的场景下。 模型能够

更好地应对不同视角、尺度、光照变化等外部因素的干

扰,增强了图像配准的鲁棒性。
3)自适应特征融合网络

本文设计的自适应特征融合网络由 3 部分组成,分
别为特征增强部分,特征提取部分,特征融合部分,如图

4 所示。 特征增强部分包括分组卷积和光感增强模块,
分组卷积可以降低网络参数量,光感增强模块可以使可

见光的重要部分更加明显。 特征提取部分由两个分支组

成,其中全局特征提取分支由 swin
 

transformer
 

block[31] 组

成,以提取图像的全局特征和长距离依赖关系,局部特征

提取分支由自适应卷积和两组不同的池化组成,以提取

图像的细节特征。 特征融合部分由轻量化的残差模

块[32] 和 EMA[33] 组成,以融合图像的局部和全局特征。

图 4　 轻量化特征增强模块

Fig. 4　 Lightweight
 

feature
 

enhancement
 

module

由于拍摄场景多为光照差的条件,所以在可见光图

像后引入光照增强模块,增加可见光的有效信息。 然后

将红外与可见光图像同时输入分组卷积:
Igir = Groupconv( Iir) (13)
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Igvis = Groupconv(LEM( Ivis)) (14)
式中:Groupconv 代表分组卷积;LEM 代表光感增强模块;
Igir、I

g
vis 代表红外与可见光图像在分组卷积后的输出。 然

后将图像输入到双分支特征提取部分,同时提取局部特

征和全局特征:
IAir = AFFN( Igir) (15)
ISir = STB( Igir) (16)

式中:AFFN 代表自适应多尺度池化卷积;STB 代表 swin
 

transformer
 

block; IAir、I
S
ir 代表提取的红外图像的局部和全

局特征。 将红外与可见光图像的局部特征和全局特征分

别融合,并利用残差模块进行进一步融合特征:

ISfuse = Residual( ISir 􀱇 ISvis) (17)
IAfuse = Residual( IAir 􀱇 IAvis) (18)

式中:Residual 代表残差模块; ISfuse、I
A
fuse 代表融合后的全局

和局部特征。 为了将融合后的局部-全局特征进行更合适

的权重融合,这里使用 EMA 进行融合,然后利用 sigmoid
生成权重分别与局部和全局特征相乘,为保留原有特征,
最后与融合的局部-全局特征相融合并输出融合图像:

IEMA
fuse = Sigmoid(EMA( ISfuse + IAfuse)) (19)
Ifuse = IEMA

fuse 􀱋 ISfuse + IEMA
fuse 􀱋 ILfuse + ILfuse + ISfuse (20)

式中:Sigmoid 代表激活函数;EMA 代表高效多尺度注

意力。

图 5　 自适应特征融合网络

Fig. 5　 Adaptive
 

feature
 

fusion
 

network

　 　 (1)Swin
 

Transformer
 

Block
Swin

 

Transformer 是一个改进的视觉
 

Transformer
 

模

型,在图像处理任务中具有较高的性能和效率。 机制弥

补了普通窗口划分可能带来的局部性问题,使网络在捕

捉全局信息时更具优势。 全局特征提取分支可以表

示为:
ISir = MLP(LN(SWMA(LN( Igir)) + Igir)) (21)

式中:SWMA 代表滑动窗口注意力;MLP 代表多层感知

机;LN 代表层归一化。
(2)自适应多尺度池化卷积

实际生活中的各个场景可能存在于不同的尺度上。
自适应多尺度池化卷积可以动态调整卷积尺度,从而在

不同尺度下都能准确地识别物体。 相比于传统的固定卷

积核结构,这种适应性使其在检测大范围和细小范围方

面表现更好。
自适应多尺度池化卷积由深度可分离卷积、不同池

化层和动态卷积构成,通过动态调整卷积核,使得网络能

够更好地适应输入数据特征的变体,从而更加准确地捕

获细节和全局特征。 这提高了网络的灵活性和复杂度,
在不同的场景下可以提高模型的表现能力,提高模型的

泛化性能。 相比使用固定的大卷积核或多个卷积核组

合,自适应卷积能在相对较低的计算复杂度下,获得更好

的特征提取能力。
首先输入到逐点卷积升高维度,按通道维度将输入

平均分成两部分:
X1,X2 = Split(PWConv( Igir)) (22)

式中:PWConv 代表逐点卷积;Split 代表划分操作;X1、X2

代表划分出的两个分支。 两个分支分别利用平均池化和

最大池化进行提取特征,然后利用深度可分离卷积提取

局部特征,逐点卷积降低通道维度:
Y1 = PWConv(DWConv(Avgpool(X1))) (23)
Y2 = PWConv(DWConv(Maxpool(X2))) (24)
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式中:DWConv 代表 3×3 的深度卷积;Avgpool 代表平均池

化;Maxpool 代表最大池化;Y1、Y2 代表两个分支的输出。
将两个分支的特征进行拼接,利用 sigmoid 生成权重,可
学习参数生成动态卷积核,最后与输入相乘:

IAir = (Sigmoid(Concate(Y1,Y2)) 􀱋 L) 􀱋 Igir (25)
式中:Sigmoid 代表激活函数;L 代表学习参数。

(3)EMA 特征融合模块

EMA 不仅通过类似 CA 的处理避免了维度减缩,还
通过 3×3 卷积捕获特征,并通过跨空间学习方法聚合多

个并行子网络的输出特征图。
EMA 特征融合模块由轻量化的 Residual

 

block 和

EMA 注意力组成,其通过动态加权和聚焦重要特征,显
著提高了模型的表现能力并使全局特征和局部特征更好

地进行结合。
(4)光感增强模块

可见光图像在光线不足时会显得较为模糊或噪声较

大。 针对以上问题本文基于通道注意力设计了光感增强

模块。
LEM 由 3 个部分组成,即联合特征提取部分、通道注

意力和学习参数校正。 首先使用深度可分离卷积层对三

通道进行联合特征提取,以捕获跨通道的光照变化。 然

后根据改进的 SE[34] 为输入图像的不同通道分配不同的

权重,以实现自适应增强。 最后通过对 RGB
 

3 个通道分

别应用不同的 Gamma 值进行调整,达到细腻的亮度增强

效果。
LEM 可以自适应调整图像的对比度和亮度,以便在

低光环境下仍能突出重要的图像特征,如物体的轮廓、细
节等。 这样可以避免图像过暗或过亮,保证目标物体的

清晰可见。

图 6　 轻量化光感增强模块

Fig. 6　 Lightweight
 

light
 

enhancement
 

module

1. 4　 损失函数

　 　 1)配准网络的损失函数

通过设计 ORB 特征点的流场一致性,能够确保配准

后的图像在具有较大位移或变化的情况下依然能够保持

较高的精度。 ORB 特征点在不同模态(如红外与可见光

图像)的配准中尤其有效。 即使图像的像素值差异较大,
ORB 特征点仍能提取出关键点,保证在不同模态图像中

的配准一致性。
光度损失确保图像的整体一致性,梯度损失确保边

缘和细节的保持,而流场一致性损失则帮助优化全局与

局部特征的对齐,所以本文的配准网络使用光度损失、梯
度损失、流场一致性损失相结合的损失函数。

光度损失用于衡量配准后图像的像素级差异,确保

图像的全局对齐,光度损失函数定义为:

LPH( Iregir ,Iir) = 1
HW∑

H,W

i,j
‖Iregir ( i,j) - Iir( i,j)‖1 (26)

梯度损失通过衡量图像中像素强度变化(即边缘信

息)的差异,有助于保留图像中的结构信息:

Lgrad( I
reg
ir ,Iir) = 1

HW∑
H,W

i,j
‖▽Iregir ( i,j) - ▽Iir( i,j)‖2

2

(27)
流场一致性损失表示为:

L flow = ∑
N

i = 1
‖( flowreg→ir(p i) - flow ir→reg(p i)‖2

2 (28)

其中, flowreg→ir(p i) 表示特征点
 

p i 从配准图像红外

图像的光流估计,而 flow ir→reg(p i) 是反向流场,表示从红

外图像到配准图像的光流估计。
总的配准网络损失函数可以表达为:
Lreg = LPH + αLgrad + βL flow (29)

式中:α、β 代表权重系数,这里设置为 10 和 2。
2)融合网络的损失函数

本文利用结构相似性( SSIM) 损失函数来保持融合

图像的更清晰的强度分布,定义为:
LSSIM = (1 - SSIM( Ifuse,I

reg
ir )) + (1 - SSIM( Ifuse,Ivis))

(30)
式中:SSIM[35] 表示结构相似度度量,可以从光线、对比度

和结构 3 个角度度量图像失真。
为了获得更清晰的纹理,

 

融合图像的梯度被迫接近

红外和可见图像梯度之间的最大值。
Lgrad = ‖▽Ifuse - max(▽Iregir ,▽Ivis)‖1 (31)
融合图像还期望融合源图像中的强度信息,特别是

红外图像中的重要目标。 因此,本文使用强度最大化损

失 L int 来引导融合网络自适应地整合源图像的强度信息:

L int = 1
HW

‖Ifuse - max( Iregir ,Ivis)‖1 (32)

总融合网络损失函数可以表达为:
LFuse = LSSIM + ωLgrad + μL int (33)

式中: ω、μ 代表权重系数,这里取 10 和 3。

2　 实验

2. 1　 实验数据和细节

　 　 1)数据集和预处理

(1)公开数据集

TNO 数据集[36] 和
 

Roadscene 数据集[9] 两个公开的
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数据集包含了不同类型的场景。 为了保证实验的公平

性,将两个数据集打乱并随机分组,按照比例 4 ∶ 1 ∶ 1 划

分为训练集、验证集和测试集。 为了评估模型的泛化能

力,划分之前将两个数据集混合打乱,即让训练集、验证

集和测试集都有复杂的场景。
(2)自建数据集

为了验证本文方法在实际生活中的实用性,使用无

人机搭载红外和可见光双摄像机在鄂尔多斯城市街道采

集了红外与可见光图像数据集。 无人机型号为 DJI
 

Matrice
 

300
 

RTK,相机模组为 DJI
 

Ienmuse
 

H20T,该无人

机将两种摄像机高度集成,同时支持红外和可见光拍摄,
并支持同步拍摄。 拍摄场景包含了白天、夜间下的汽车、
行人、树木等,保证了数据集的复杂性及模型的泛化能

力。 处理后的数据集包含 500 对红外和可见光图像,统
一处理为 640×512 的分辨率,按比例 6 ∶ 1 ∶ 1 划分为训

练集、验证集和测试集,并确保数据随机分布均匀。
2)对比方法

配准网络的对比实验选择 7 种经典的配准方法,分
别为 Nemar、 CrossRAFT、 Superfusion[37] 、 UMF、 IMF[38] 、
Yang 等[39] 和 Li 等[40] 。 融合网络的对比实验选择 7 种融

合 方 法, 分 别 为 DIDFuse、 RFN[41] 、 UMF、 CDDFuse、
CoCoNet[42] 、LRRNet[43] 、IMF。

3)评价指标

本文使用 3 个指标评估图像的配准结果,即均方误

差(mean
 

squared
 

error,MSE)、互信息(mutual
 

information,
MI) [44] 和归一化互相关 ( normalized

 

cross
 

correlation,
NCC) [45] 。 使 用 熵 ( EN )、 互 信 息、 视 觉 信 息 保 真

度(visual
 

information
 

fidelity, VIF ) [46] 、 SSIM[47] 和 标 准

差(standard
 

deviation,SD)评估融合图像。
4)实验细节

配准网络和融合网络都在
 

PyTorch
 

1. 10. 1 中实现,
使用 NVIDIA

 

Geforce
 

RTX3090
 

GPU
 

进行训练和测试。
选择 Adam

 

优化器( β1
 =

 

0. 9,β2
 =

 

0. 999) 用于优化模

型。 初始学习率设置为
 

0. 001,每隔 100 个 epoch 减小为

之前的 1 / 10,共经过
 

300
 

个
 

epoch,Batch
 

size 设置为 16。
2. 2　 对比实验

　 　 1)配准网络对比实验

为了直观地展示本文配准算法的优越性,在图 7 中

的真实世界错位多模态数据集中提供了不同方法的配准

情况。 由于真实的错位数据集缺乏目标红外图像,通过

配准图像和可见图像之间的误差图来评估配准精度。 观

察后,本文方法产生了理想的配准效果并抑制边缘重影。
表 1 为配准网络的对比实验定量分析,加粗字体为

指标中最出色的算法,下划线的算法为第 2 名。 本文方

法与其他 7 种配准方法相比,本文方法在所有指标(即
 

MSE、NCC
 

和
 

MI)中排名第 1,在 3 个数据集上都优于其

他方法。 综合分析本文方法在图像配准实验中表现最

佳,也说明了多尺度特征提取和密集连接的重要性。

表 1　 配准网络在 3 个数据集上的对比实验定量比较

Table
 

1　 Quantitative
 

comparison
 

of
 

registration
 

networks
 

on
 

three
 

datasets

方法 年份
TNO Roadscene 自建数据集

MSE NCC MI MSE NCC MI MSE NCC MI

MIS none 0. 007 0. 876 1. 558 0. 011 0. 894 1. 602 0. 013 0. 899 1. 615

Nemar 2020 0. 140 0. 309 0. 438 0. 081 0. 846 0. 986 0. 076 0. 873 1. 120

Yang[40] 2021 0. 006 0. 628 1. 648 0. 007 0. 783 1. 835 0. 007 0. 932 1. 413

Li[41] 2022 0. 007 0. 772 1. 563 0. 008 0. 847 1. 736 0. 009 0. 892 1. 336

CrossRAFT 2022 0. 008 0. 858 1. 602 0. 009 0. 910 1. 744 0. 015 0. 923 1. 653

Superfusion 2022 0. 007 0. 886 1. 507 0. 004 0. 953 1. 820 0. 009 0. 874 1. 713

UMF 2022 0. 004 0. 926 1. 648 0. 004 0. 963 1. 833 0. 009 0. 882 1. 672

IMF 2023 0. 003 0. 957 1. 804 0. 003 0. 967 1. 993 0. 006 0. 916 1. 637

本文 none 0. 002 0. 973 1. 963 0. 002 0. 978 2. 103 0. 005 0. 953 1. 758

　 　 2)融合对比实验

图 8 所示为自建数据集的定性结果。 本文方法在融

合之前使用了多尺度密集配准网络进行精细配准,而其

他方法使用了 IMF 的配准网络。 从综合表现来看,RFN、
DIDFuse、LRRNet 和 CoCoNet 的融合图像光度较暗,场景

不明显。 其他三者方法的融合结果对比度较低,纹理细

节不够清晰。 本文方法融合的图像清晰可见,对比度

合适。
表 2 ~ 4 所示为 TNO、Roadscene 和自建数据集上的

定量比较结果。 从 3 个数据集的综合表现来看,本文方

法在 EN、SD、MI 上明显超过其他方法,说明融合结果最

佳,在 VIF、SSIM 指标上分别排名第 3 和第 2,表现良好。
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图 7　 配准网络在自建数据集上的对比实验定性比较

Fig. 7　 Qualitative
 

comparison
 

of
 

the
 

registration
 

network
 

on
 

a
 

self-built
 

dataset

表 2　 融合网络在数据集 TNO 上的对比实验定量比较

Table
 

2　 Quantitative
 

comparison
 

of
 

fusion
networks

 

on
 

the
 

dataset
 

TNO
模型 年份 EN SD VIF SSIM MI

DIDFuse 2020 6. 97 45. 12 0. 61 0. 81 1. 69
RFN 2021 6. 83 34. 50 0. 51 0. 92 1. 21
UMF 2022 6. 98 40. 73 1. 01 0. 47 1. 53

CDDFuse 2023 7. 12 46. 00 0. 77 1. 03 2. 19
CoCoNet 2023 7. 77 46. 37 0. 89 1. 17 2. 31
LRRNet 2023 6. 85 43. 45 0. 71 0. 70 1. 87

IMF 2023 7. 27 46. 27 1. 00 0. 47 2. 16
本文 none 8. 02 47. 18 0. 98 1. 12 2. 54

表 3　 融合网络在数据集 Roadscene 上的对比实验定量比较

Table
 

3　 Quantitative
 

comparison
 

of
 

fusion
networks

 

on
 

the
 

dataset
 

Roadscene
模型 年份 EN SD VIF SSIM MI

DIDFuse 2020 7. 43 51. 58 0. 58 0. 86 2. 11
RFN 2021 7. 21 41. 25 0. 54 0. 90 1. 68
UMF 2022 7. 37 44. 73 0. 88 0. 50 1. 87

CDDFuse 2023 7. 44 54. 67 0. 69 0. 98 2. 30
CoCoNet 2023 7. 69 40. 67 0. 76 1. 16 2. 53
LRRNet 2023 6. 97 43. 73 0. 77 0. 69 2. 17

IMF 2023 7. 67 48. 73 0. 87 0. 49 2. 40
本文 none 8. 12 55. 87 0. 74 1. 04 2. 67

表 4　 融合网络在自建数据集上的对比实验定量比较

Table
 

4　 Quantitative
 

comparison
 

of
 

fusion
networks

 

on
 

self-built
 

datasets
模型 年份 EN SD VIF SSIM MI

DIDFuse 2020 7. 44 52. 52 0. 57 0. 84 2. 05
RFN 2021 7. 32 40. 72 0. 52 0. 87 1. 55
UMF 2022 7. 33 43. 73 0,66 0. 46 1. 67

CDDFuse 2023 7. 37 50. 61 0. 67 0. 87 2. 18
CoCoNet 2023 7. 67 41. 72 0. 66 1. 15 2. 36
LRRNet 2023 6. 83 44. 62 0. 56 0. 62 2. 14

IMF 2023 7. 72 48. 37 0. 77 0. 53 2. 27
本文 none 7. 98 53. 17 0. 78 0. 94 2. 46

　 　 3)运行效率

除了融合效果的比较,模型大小和运行速度在实际

应用中也很重要。 因此,本文验证了所提出模型的内存

消耗和计算效率。 对于运行时间,从 TNO
 

中随机选择 10
个图像来计算平均时间。

表 5 所示为几种最先进的方法中模型大小、浮点数

和运行时间的定量结果。 由于引入了光感增强模块和

EMA 特征融合模块,导致模型参数量相比 DIDFuse 和

LRRNet
 

更大。 但是,因为用的是轻量化的特征增强模块

和残差模块,使得本文算法参数量相比其他模型表现

　 　 　 　

图 8　 融合网络在自建数据集上的对比实验定性比较

Fig. 8　 Qualitative
 

comparison
 

of
 

fusion
 

networks
 

on
 

self-biult
 

dataset



·250　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

表 5　 各种算法在数据集 TNO 上的运行效率对比实验

Table
 

5　 Comparative
 

experiments
 

on
 

the
 

running
 

efficiency
 

of
 

various
 

algorithms
 

on
 

the
 

TNO
 

dataset
DIDFuse RFN UMF CDDFuse CoCoNet LRRNet IMF 本文

TP / ( ×106 ) 0. 261 10. 936 7. 732 4. 273 9. 130 0. 492 6. 736 2. 127
浮点数 / GFLOPs 18. 71 676. 09 438. 27 267. 73 115. 37 134. 79 203. 71 220. 68

用时 / s 0. 055 0. 239 0. 337 0. 064 0. 052 0. 079 0. 094 0. 058

不错。 除此之外,本文算法的运行时间仅次于 DIDFuse
 

和
 

CoCoNet,相比于最快的 CoCoNet 仅慢了 11. 54%。
2. 3　 消融实验

　 　 1)配准网络的消融实验

为了验证配准网络内各个模块和损失函数的作用,
在 TNO、Roadscene 和自建数据集上进行了配准网络消融

实验。 在第 1 组实验里,将 ORB 算法去除,其他保持不

变,记作 w / o
 

ORB。 在第 2 组实验里,将特征增强模块去

除,其他不变,记作 w / o
 

LFEM。 第 3 组实验里,将多尺度

特征提取和密集连接去除,其他不变,记作 w / o
 

M-D。 第

4 组实验,将设计的损失函数去除,其他不变,记作 w / o
 

Loss。 第 5 组实验为本文算法,记作 w / o
 

Ours。
配准网络消融实验的定量结果如表 6 所示。 可以看

出缺少多尺度特征提取和密集连接、损失函数的结果很

差,MSE 提高了 5 倍,NCC 和 MI 也降低不少。 缺少 ORB
算法和缺少 LFEM 的网络效果略差。 综合来看,本文设

计的模块和损失函数不可或缺。

表 6　 配准网络在 3 个数据集上的消融实验定量比较

Table
 

6　 Quantitative
 

comparison
 

of
 

registration
 

networks
 

in
 

ablation
 

experiments
 

on
 

three
 

datasets

metric
TNO Roadscene 自建数据集

MSE NCC MI MSE NCC MI MSE NCC MI
w / o

 

ORB 0. 005 0. 893 1. 897 0. 006 0. 884 1. 879 0. 008 0. 883 1. 472
w / o

 

LFEM 0. 005 0. 884 1. 889 0. 007 0. 794 1. 783 0. 007 0. 793 1. 447
w / o

 

M-D 0. 009 0. 783 1. 847 0. 008 0. 778 1. 683 0. 009 0. 773 1. 364
w / o

 

Loss 0. 010 0. 732 1. 784 0. 009 0. 735 1. 573 0. 009 0. 693 1. 412
w / o

 

Ours 0. 002 0. 973 1. 963 0. 002 0. 978 2. 103 0. 005 0. 953 1. 658

　 　 2)融合网络的消融实验

为了验证融合网络内各个模块的作用,在 TNO、
Roadscene 和自建数据集上进行了融合网络消融实验。
在第 1 组实验里,将光感增强模块去除,其他保持不变,
记作 w / o

 

LEM。 在第 2 组实验里, 将 swin
 

transformer
 

block 去除,其他不变,记作 w / o
 

STB。 第 3 组实验里,将
自适应多尺度池化卷积去除, 其他不变, 记作 w / o

 

AMPC。 第 4 组实验,将设计的 EMA 特征融合模块去除,
其他不变,记作 w / o

 

EMA。 第 5 组实验为本文算法,记作

w / o
 

Ours。
融合网络消融实验的定量结果如表 7 所示。 第 3 组

实验的 4 个指标明显下降,说明设计的自适应多尺度池

化卷积对于多模态图像融合的重要性。 第 1、2、4 组实验

在 4 个指标略微下降,说明模块的必要性。
表 7　 融合网络在 3 个数据集上的消融实验定量比较

Table
 

7　 Quantitative
 

comparison
 

of
 

ablation
 

experiments
 

of
 

fusion
 

networks
 

on
 

three
 

datasets

metric
TNO Roadscene 自建数据集

EN SD SSIM MI EN SD SSIM MI EN SD SSIM MI
w / o

 

LEM 7. 78 44. 72 0. 93 2. 18 7. 84 51. 18 0. 89 2. 36 7. 19 47. 82 0. 77 2. 25
w / o

 

STB 7. 67 43. 28 0. 79 2. 01 7. 73 50. 19 0. 79 2. 33 7. 14 48. 62 0. 78 2. 27
w / o

 

AMPC 6. 73 39. 28 0. 55 1. 58 6. 62 45. 29 0. 54 1. 68 5. 73 37. 92 0. 48 1. 78
w / o

 

EMA 7. 27 41. 82 0. 68 1. 87 7. 25 48. 28 0. 68 2. 45 6. 89 44. 38 0. 56 1. 94
w / o

 

Ours 8. 02 47. 18 1. 17 2. 54 8. 12 55. 87 1. 04 2. 67 7. 98 53. 17 0. 94 2. 46

　 　 为了验证自适应多尺度池化卷积的作用,在 TNO、
Roadscene 和自建数据集上进行了消融实验。 在第 1 组

实验里,将最大池化分支去除,其他保持不变,记作 w / o
 

MAXP。 在第 2 组实验里,将平均池化分支去除,其他不

变,记作 w / o
 

AVGP。 第 3 组实验里,将动态卷积去除,其

他不变,记作 w / o
 

DC。 第 4 组实验为本文算法,记作 w / o
 

Ours。
自适应多尺度池化卷积消融实验的定量结果如表 8

所示。 第 1、2、3 组实验在 4 个指标略微下降,说明不同

池化和动态卷积模块的必要性。
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表 8　 自适应多尺度池化卷积在 3 个数据集上的消融实验定量比较

Table
 

8　 Quantitative
 

comparison
 

of
 

ablation
 

experiments
 

of
 

AMPC
 

on
 

three
 

datasets

metric
TNO Roadscene 自建数据集

EN SD SSIM MI EN SD SSIM MI EN SD SSIM MI
w / o

 

MAXP 7. 73 44. 46 0. 91 2. 06 7. 38 51. 38 0. 84 2. 19 7. 22 47. 73 0. 57 2. 23
w / o

 

AVGP 7. 64 43. 22 0. 74 2. 01 7. 74 50. 11 0. 74 2. 12 7. 18 48. 65 0. 58 2. 27
w / o

 

DC 7. 73 43. 28 0. 85 1. 87 6. 84 45. 83 0. 74 1. 75 7. 33 47. 92 0. 68 2. 18
w / o

 

Ours 8. 02 47. 18 1. 17 2. 54 8. 12 55. 87 1. 04 2. 67 7. 98 53. 17 0. 94 2. 46

　 　 为了验证 EMA 融合模块内部模块的作用,在 TNO、
Roadscene 和自建数据集上进行了消融实验。 在第 1 组

实验里,将 EMA 去除,其他保持不变,记作 w / o
 

EMA。 在

第 2 组实验里,将两个残差模块去除,其他不变,记作

w / o
 

RES。 第 3 组实验为本文算法,记作 w / o
 

Ours。
EMA 融合模块消融实验的定量结果如表 9 所示。

第 1、2 组实验的 4 个指标明显下降,说明内部的 EMA 和

残差模块对于多模态图像融合的重要性。

表 9　 EMA 融合模块在 3 个数据集上的消融实验定量比较

Table
 

9　 Quantitative
 

comparison
 

of
 

ablation
 

experiments
 

of
 

EMA
 

fusion
 

module
 

on
 

three
 

datasets

metric
TNO Roadscene 自建数据集

EN SD SSIM MI EN SD SSIM MI EN SD SSIM MI
w / o

 

EMA 7. 45 42. 83 0. 73 2. 02 7. 35 51. 01 0. 79 2. 36 7. 46 47. 36 0. 67 2. 05
w / o

 

RES 7. 35 44. 34 0. 78 1. 93 7. 67 48. 33 0. 98 2. 45 6. 94 51. 38 0. 76 2. 34
w / o

 

Ours 8. 02 47. 18 1. 17 2. 54 8. 12 55. 87 1. 04 2. 67 7. 98 53. 17 0. 94 2. 46

2. 4　 目标检测实验

　 　 为了进一步体现本文算法的优越性,本文使用最先

进的检测器 YOLOv8[48] 对 Roadscene 数据集进行目标检

测实验。 为了保证公平的比较,本文使用了 YOLOv8s 模

型,并将各种方法的融合结果直接输入到检测器中进行

再训练。 定性比较实验结果如图 9 所示。 检测框显示了

每个类别和相应的置信度。 DIDFuse、UMF、CoCoNet、IMF
检测到的类别明显缺少,只能检测到其中两种类别。
RFN 和 LRRNet 检测出的效果很好,但是置信度没有本

文算法高。 综合来看,本文算法在目标检测性能上表现

最佳。

图 9　 融合网络在数据集 Roadscene 上的目标检测性能定性比较

Fig. 9　 Qualitative
 

comparison
 

of
 

object
 

detection
 

performance
 

of
 

the
 

fusion
 

network
 

on
 

the
 

dataset
 

Roadscene

3　 结　 论

　 　 为了应对目前红外与可见光图像的难以配准以及融

合效果不佳等问题,本文提出了一种自适应特征增强的

多尺度红外与可见光图像配准和融合算法。 具体来说,
在配准网络中,使用 ORB 算法和特征增强模块提取特

征,并利用多尺度卷积和密集连接进行配准。 在融合网

络中,利用光感增强模块增强可见光图像的特征,然后利

用 swin
 

transformer
 

block 和自适应多尺度池化卷积提取

全局和细节特征,最后利用注意力融合模块进行融合。
未来仍有很多的工作需要开展,比如降低网络的参数量,
如何应用到更多的多模态图像融合任务里。
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