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Multi-scale infrared and visible image registration and fusion
algorithm with adaptive feature enhancement
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Abstract: The current infrared and visible light image fusion algorithms often fail to fully extract image features, resulting in the loss of
detail information. In real-world scenarios, infrared and visible light images are typically unregistered, and existing registration
algorithms still suffer from artifacts and biases. To address these issues, this paper proposes an adaptive feature enhancement multi-scale
infrared and visible light image registration and fusion algorithm. First, multi-scale convolutional kernels and dense connections are used
in the registration network to extract features at different scales and prevent information loss. Additionally, an ORB feature point
detection algorithm and a designed feature enhancement module are introduced to fully extract features and adapt to complex
environments. Secondly, a lighting enhancement module is designed by incorporating channel attention and self-learning parameters to
improve the information expression of visible light images. Then, in the fusion network, adaptive multi-scale pooling convolutions are
designed using different pooling strategies and variable convolutions to extract detail information at multiple scales. An EMA feature
fusion module is designed to integrate local and global features. Finally, a flow consistency loss function is introduced to minimize
registration errors. To better validate the practical applicability of the proposed method, an infrared and visible light image dataset is
established. Comparative and ablation experiments are conducted on the public datasets TNO, Roadscene, and a self-constructed
dataset. The experimental results show that, in terms of subjective evaluation, the registered images have minimal bias and no artifacts,

while the fused images are clear and visible. On objective evaluation, it improves about 20% , 7%, 4%, 15%, and 8% on the metrics
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MSE, MI, NCC, SD, and EN compared to other algorithms. Additionally, target detection performance experiments on YOLOv8 show

that the fusion results exhibit good detection performance.
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Fig. 1 Flow chart of infrared and visible image registration and fusion
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Fig.2 Multi-scale dense registration network
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Fig.3 Feature extraction branch of ORB algorithm
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Fig. 6 Lightweight light enhancement module
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B WA FBEE N 0,001, 4EFF 100 4> epoch /N K
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Table 1 Quantitative comparison of registration networks on three datasets

o - TNO Roadscene AR A
MSE NCC MI MSE NCC MI MSE NCC MI
MIS none 0.007 0.876 1.558 0.011 0. 894 1. 602 0.013 0. 899 1.615
Nemar 2020 0. 140 0.309 0.438 0.081 0. 846 0.986 0.076 0.873 1.120
Yang! 4’ 2021 0. 006 0.628 1. 648 0.007 0.783 1.835 0. 007 0.932 1.413
Lttt 2022 0.007 0.772 1.563 0. 008 0.847 1.736 0. 009 0. 892 1.336
CrossRAFT 2022 0.008 0.858 1. 602 0. 009 0.910 1. 744 0.015 0.923 1.653
Superfusion 2022 0.007 0. 886 1.507 0. 004 0.953 1.820 0. 009 0. 874 1.713
UMF 2022 0. 004 0.926 1.648 0. 004 0. 963 1.833 0. 009 0. 882 1.672
IMF 2023 0.003 0.957 1. 804 0. 003 0. 967 1.993 0. 006 0.916 1.637
K> none 0. 002 0.973 1.963 0. 002 0.978 2.103 0. 005 0.953 1.758
2) A X L SE

&l 8 [T H BRI e LS SR . AR SO e
B2 T 22 R 4 A T v O 4% R A5 A G v i G
b5 A T IMF AOBCHER S, IZEE RBORE ,RFN
DIDFuse .LRRNet #1 CoCoNet [l IR G RE RS | 5+
ANBR R HAth =5 5 2 i A 45 R B R AR, PR

WA W, A SOk Al A Y SR BRI UL X LB
Bk,

2% 2~4 i /5 TNO , Roadscene F1 [ @5 ¥E 4 1Y
ERILIREE A, M 3 BN G RIRE , A
FE EN SD MI | Sk 8 5k Al 5 3, 156 1A il 45 245 2R A
£, 7E VIF SSIM $845 o3l HES 26 3 Fs 2 3RIMR 47,
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Fig. 7 Qualitative comparison of the registration network on a self-built dataset
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Table 2 Quantitative comparison of fusion Table 4 Quantitative comparison of fusion
networks on the dataset TNO networks on self-built datasets
Lt AE EN SD VIF  SSIM  MI G Ay EN SD VIF  SSIM  MI
DIDFuse 2020 6.97 45.12 0.61 0.81 1.69 DIDFuse 2020 7.44 52.52 0.57 0. 84 2.05

RFN 2021 6.83 34.50 0.51 0.92 1.21 RFN 2021 7.32 40.72 0.52 0.87 1.55
UMF 2022 6.98 40.73 1.01 0.47 1.53 UMF 2022 7.33 43.73 0,66 0. 46 1.67
CDDFuse 2023 7.12 46. 00 0.77 1.03  2.19 CDDFuse 2023 7.37 50. 61 0.67 0. 87 2.18
CoCoNet 2023 7.717 46.37 0. 89 1.17  2.31 CoCoNet 2023 7.67 41.72 0. 66 1.15 2.36
LRRNet 2023 6. 85 43.45 0.71 0.70  1.87 LRRNet 2023 6.83 44. 62 0.56 0.62 2.14
IMF 2023 7.27 46.27 1. 00 0.47 2.16 IMF 2023 7.72 48.37 0.77 0.53 2.27
AL none 8.02 47. 18 0.98 .12 2.54 AL none 7.98 53.17 0.78 0.94 2.46

K3 FEEMEEHIEE Roadscene ERIFTLL LIS EE L
Table 3 Quantitative comparison of fusion 3) IBITRR

networks on the dataset Roadscene

BT RS OR A U, A58 R IR /N Rz A7 3 B 7 52 P

T 1 EN SD VIF  SSIM  MI AR E, KL, AR SCIRIE T BT R ) N AF

DI:FF;S" 282(1) ; ‘2‘? ji ji g zi g 32 ? ;:; TR ERCE, T2 TR, A TNO HFBEHLESE 10
. . . , , "N .

UMF 2002 7.37 4473 0.88  0.50 1.87 MR ﬁ%‘;jﬁﬁjﬂﬂﬁj ° ] . o
CDDFuse 2023 7.44  54.67 0.69  0.98  2.30 2 5 FR LR S 56t i 7k AR RN I AR
CoCoNet 2023  7.69 40.67 0.76 1.16  2.53 BT ] B8 a5 R, BT oI T 6 ER o 45 B
LRRNet 2023  6.97 43.73 0.77 0.69  2.17 EMA FHE fil 4 K5 B 5 30870 28054 L DIDFuse 1

IMF 2023 7.67 48.73 0.87 0.49 2.40 LRRNet Ej(o ’fﬂ% , ﬂf]ﬁﬁﬂ‘]%%%ﬂﬁﬁ’\]*ﬁﬁiﬁiﬁﬁi

A none 812 55.87  0.74 104  2.67
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Fig. 8 Qualitative comparison of fusion networks on self-biult dataset
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Table 5 Comparative experiments on the running efficiency of various algorithms on the TNO dataset

DIDFuse RFN UMF CDDFuse CoCoNet LRRNet IMF EN'S

TP/ (x10%) 0. 261 10. 936 7.732 4.273 9.130 0.492 6.736 2.127
F 8B/ GFLOPs 18.71 676. 09 438.27 267.73 115.37 134.79 203.71 220. 68
HIit/s 0. 055 0.239 0.337 0. 064 0. 052 0.079 0. 094 0. 058

AgE L, BRICZ AN, A SCE )38 17 B [ AKX F DIDFuse
FI CoCoNet , #H Lt F it Y CoCoNet {X1& T 11. 54% .,
2.3 HRhsEI

1) it v 00 245 114 974 S 6

kT B UE O P £ P £ A AR Ok R B PE
TE TNO .Roadscene F H 804G 5 VAT T Tic v I 265 114 Rl
SEHG AR 1 S HL K ORB B0k £, Hifb 5 A
A5 AEAE w/o ORB, 7E5 2 45000 L ARAE G s A e 25
1%, HAARAS J0/E w/o LFEM, 45 3 415286 HL W 2 R BE

FRIEFE O B2 74 4 LB, oA AE 2 /E w/o M-D, 2§
4 LS K BT IR PR B, HA AR AR 2R wo
Loss, 25 5 45280 AU e /E w/o Ours,

T 45 T Al SE 50 1 8 S RNk 6 i, "TLLE
R b 22 RUBEREAE S SRR 9% £ 3% 42 101 2% oR 5K 1) 45 SR AR
2% MSE #2557 5 4% ,NCC 1 MI WAL, Bt/ ORB
SFPRIER D> LEEM (9 0 28 350 R WS 25 . 2R G0k, AR S0k
TH BRI 2 R ECAS T B

®6 MAEMBZREINMHBEELHHMIBESILER

Table 6 Quantitative comparison of registration networks in ablation experiments on three datasets

metric TNO Roadscene A #HdEE
MSE NCC MI MSE NCC MI MSE NCC MI
w/0o ORB 0. 005 0. 893 1. 897 0. 006 0. 884 1. 879 0. 008 0. 883 1.472
w/0 LFEM 0. 005 0. 884 1.889 0. 007 0. 794 1.783 0. 007 0.793 1.447
w/0o M-D 0. 009 0.783 1. 847 0. 008 0.778 1. 683 0. 009 0.773 1. 364
w/o Loss 0.010 0.732 1.784 0. 009 0.735 1.573 0. 009 0. 693 1.412
w/0 Ours 0. 002 0.973 1. 963 0. 002 0.978 2.103 0. 005 0.953 1. 658

2) il OO 245 1 T S B

g UE il A 2% 25 A B He B /R HTL 7E TNO
Roadscene 1 [ 8@ 4504l 4 L UEAT T flA 28 0 fl 5256
TESS 1 5200 B K 0B s He D2 B HE M AR AN 2
ICAE w/o LEM, TESF 2 4HSC 5 B, ¥ swin transformer
block B, oAb AAE iCAE w/o STB, 45 3 415550 H K
HaE N 2 ROBE b A 5 B B, MR A2 g AR wo

AMPC, 55 4 ZHSC00 BT EMA FHIERLA R B
HAWAE 12/E w/o EMA, 26 5 215250 A SO id A
w/0 Ours,

B D £ Rl S ) A 2SR NER 7 iR, B3 A
SEHGA) 4 S FEAREH BT R UL BT A 3 R 2 RO it
BB T ZREEIR R G R RN, 55 1.2 4 HI9
TE 4 DRI TR R, BEHIRC i 2 E

R7T BMENKZEINYEELNEMIBRERLE

Table 7 Quantitative comparison of ablation experiments of fusion networks on three datasets

) TNO Roadscene A iRk
metrie EN SD SSIM MI EN SD SSIM MI EN sD SSIM MI
w/o LEM 7.78 4472 0.93 218  7.84 5118  0.89  2.36  7.19  47.82  0.77  2.25
w/0 STB 7.67 4328  0.79 2.0 773  50.19  0.79 233  7.14  48.62  0.78  2.27
w/0 AMPC 6.73  39.28  0.55 .58  6.62 4529  0.54 .68 573 3792 0.48  1.78
w/o0 EMA 727 41.82  0.68  1.87  7.25  48.28  0.68  2.45 6.8  44.38  0.56  1.94
w/o Ours 8.02  47.18  1.17 254 812 5587  1.04  2.67  7.98  53.17  0.94  2.46

T BE B 22 ROE A B AE T, 7E TNO |
Roadscene F1 H @80 5 AT TIHALSEH, S8 1 4
SR R R AR 2 S B, HAB R FFAE I E w/o
MAXP, 7E55 2 2S00 L K- b Ak 43 52 23 B, At AR
5 CHE w/o AVGP, 55 3 S B W S S BB H

HAREE JEVE w/o DC, 55 4 41 AR SR B iEAE w/o
Ours,

3 22 RURE A6 A5 BR T il S 365 1) i 25 R AN R 8
iR, 85 1.2.3 HSITE 4 D HEARIE ST e, U AR [R]
AL FN B G BB ) B
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Table 8 Quantitative comparison of ablation experiments of AMPC on three datasets

. TNO Roadscene A IR
metrie EN SD SSIM MI EN SD SSIM MI EN sD SSIM MI
w/o MAXP 773 44.46  0.91 206  7.38  51.38 0.8 219  7.22  47.73  0.57  2.23
w/o AVGP 7.64 43.22  0.74 2.0l 774 5011 0.74 212 7.18  48.65  0.58  2.27
w/0 DC 773 43.28  0.85 .87  6.84 4583  0.74 .75 7.33  47.92  0.68  2.18
w/o Ours 8.02 4718  1.17 254 812 5587  1.04 267  7.98 5317  0.94  2.46

AT BRI EMA @A B L He (4R, 72 TNO
Roadscene F1 [ B 42 [ 3-4T TIH AL SC0, 7656 1 41
SCERHL H EMA LB, HA R A 0/E w/o EMA, 7

w/o RES, 8 3 41520 AR SCE 10 /E w/o Ours,
EMA Fill -5 45 71 #5550 () 8 s 45 R W3R 9 iR,
55 1.2 SR 4 AR T R BERH RS EMA I

B2 YLK R AR 22 A L R, A G SRZEREHO T 2 RS R RS T A

&9 EMA BMARIRTE 3 MIRE LRSI ERLILER

Table 9 Quantitative comparison of ablation experiments of EMA fusion module on three datasets

. TNO Roadscene [EREe €S
metrie EN SD SSIM Ml EN SD SSIM MI EN sD SSIM MI
w/0 EMA 7.45  42.83  0.73  2.02  7.35 5.0l  0.79  2.36  7.46  47.36  0.67  2.05
w/o0 RES 7.35 4434 0.78  1.93  7.67 4833  0.98  2.45  6.94 5138  0.76  2.34
w/o Ours 8.02  47.18  1.17 254 812 5587  1.04 267  7.98  53.17  0.94  2.46
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Fig. 9  Qualitative comparison of object detection performance of the fusion network on the dataset Roadscene
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